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Abstract: This paper considers a kind of generalized measure AU of fault tolerance in the (n, E)-star graph 5, ;. for

2<k<n—1and 0<h<n—k, and determines A" (S,.x) = min{(n —h — 1)(h+ 1), (n — k+ 1)(k— 1)},
which implies that at least min{(n — k + 1)(k—1).(n —h —1)(h+ 1)} edges of S, , have to remove to get a

disconnected graph that contains no vertices of degree less than /2. This result shows that the (., k}-star graph is robust when it is
used to model the topological structure of a large-scale parallel processing system.
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. Introduction

It is well known that interconnection networks play an important role in parallel computing/communication systems.
An interconnection network can be modeled by a graph G = (V, E), where V" is the set of processors and F is the
set of communication links in the network. The connectivity x(¢) of a graph (& is an important measurement for
fault-tolerance of the network, and the larger A(G) is, the more reliable the network is.

A subset of vertices B of a connected graph 7 is called an edge-cut if ¢ — £ is disconnected. The edge connectivity
A(G)of G is defined as the minimum cardinality over all edge-cuts of (7. Because A has many shortcomings, one
proposes the concept of the f-super edge connectivity of 7, which can measure fault tolerance of an interconnection
network more accurately than the classical connectivity A.

A subset of vertices B of a connected graph ¢+ is called an k-super edge-cut, or fi-edge-cut for short, if ¢ — B is
disconnected and has the minimum degree at least /2. The h-super edge-connectivity of ¢¢, denoted by )\Q")(G), is
defined as the minimum cardinality over all £-edge-cuts of ¢7. It is clear that, if AE”‘)(G) exists, then

MG) =A@ <A@ < AP(6G) < - <A G < A(G).

For any graph ¢7 and integer i, determining AS")(G)is quite difficult. In fact, the existence of /\g”‘)(G) is an open

problem so far when 2 = 1. Some results have been obtained on AQ")(G) for particular classes of graphs and small
h's (see Section 16.7 in [5]).

This paper is concerned about A for the (n, k)-star graph 5, ,. For the f-super connectivity, several authors have
done some work. For £ = n — 1, S,.,_1iS isomorphic to a star graph S,,. Akers and Krishnamurthy [1] determined

ASn)=n—1forn = 2and A,i”(S,,_) = 2n — 4 for n = 3. In this paper, we show the following result.

Theorem: If2<k<n—1and0 < h <n—k, then
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)\(h)( ) = (n—=h—=1)(h+1) forh<k—-2andh <5 -1,
ok (n—k+1)(k—1) otherwise.

This result implies that at least min{(n — & + 1)(k — 1),(n — h — 1)(h + 1)} edges of S,, , have to remove to get a
disconnected graph that contains no vertices of degree less than /. The proof of this result is in Section 3. In Section
2, we recall the structure of 5, ;, and some lemmas used in our proofs.

Il. Definitions and Lemmas

For mtegers n and Awith 1 < n—1, let I, ={1,2,...,n} and P(n,k) = {pip2...px: pi € In,pi # pj,
<i#j< k) =nl/(n—k)

Definition 2.1: The (n, k}-star graph S,, , is a graph with vertex-set P(n., k). The adjacency is defined as follows: a
vertex p = pip2...p; ... pi IS adjacent to a vertex

"

@) pip2 - pi_1p1Pis1 - P, Where 2 < 4 <k (swap py with p)).
(b) apaps - - - pi, Where a € I, \ {p; : 1 < i<k} (replace p) by a).

The vertices of type (a) are referred to as swap-neighbors of p and the edges between them are referred to as swap-
edge or 1-edges. The vertices of type (b) are referred to as unswap-neighbors of p and the edges between them are
referred to as unswap-edges. Clearly, every vertex in 5, ; has & — 1 swap-neighbors and »n — % unswap-neighbors.
Usually, if @ = pips...prisavertexin S, ; we call p; the i-th bit for each ; € I;.

The (n, k)-star graph S,, ;. is proposed by Chiang and Chen [4]. Some nice properties of .5, . are compiled by Cheng
and Lipman (see Theorem 1 in [2]).

Lemma 2.2: S,, , is (n — 1)-regular (n — 1)-connected.

Lemma 2.3: For any o = p1ps-- - pr—1 € P(n, k= 1) {(k = 2), let V, = {pa: pe I, \{pi: i€ lr_1}}. Then
the subgraph of 5, , induced by 1, is a complete graph of order n —k+1,denoted by K, . .

Let S,‘.jil,;;,l denote the subgraph of 5, ;. induced by vertices with the ¢-th bit : for 2 <t < k. The following
lemma is a slight modification of the result of Chiang and Chen [4].

Lemma 2.4: For a fixed integer ¢ with 2 < < &, S, . can be decomposed into » subgraphs S%% , |, which is
isomorphic to S,,_ 5y, for each i € I,,. Moreover, there are (;’j f%, independent swap-edges between S'7, ,
and S¥7 , foranyi.je I, withi # j.

Since S, 1 = K,,, we only consider the case of &£ = 2 in the following discussion.

Lemma?2.5: If2 < n—1land0< h < n-—k then

()¢ (n—h—=1)(h+1) for h<%—

A (Sni) < { (n—k+1)(k=1) otherwise.

Proof: By our hypothesis of 2 < k < n — 1, for any a € P(n,k — 1), we can choose a subset X € V/(A;_, ;)
such that | X'| = h + 1. Then the subgraph of K ., induced by X is a complete graph K, .. Let B3 be the set of
incident edges with and not within X. Since S,  is (n — 1}-regular and K, is A-regular, we have that

|IBl|=(n—h—1)(h+1).

Clearly, B is an edge-cut of S, 4. Let x be any vertex in S, , — X, and d(x) denote the number of edges incident
with xin S, , — X. In order to prove that B is an A- edge -cut, we only need to show d{x) = h. Note that X is
contained in S/ _, ., and edges between S} _, ., and S}_, ., are independent for any i, j I,{ with ¢ # j by
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Lemma 2.4. If wis in Si_, ,_; — Ko .., orisinS/_ , | withi # j,thend(x)=n—2=n—k=h. For
rve V(KN ;. —X), if exists, then d(x) =n —1—| \’| =n—h—=22zhforh <% — 1. Therefore, B is an /-
edge-cut of 5, 4, and so

AP (Spi) Bl = (n—h—1)(h+1) forh< 2 1.

8

For h > %, we choose X = V(K2_,.,). Then|B|=(n—k+1)(k—1). For any = in s’ _ ., — X or

5
Sfje._1,k_1 with ¢ # j,we have d(x) 2 n — 2 = n — k = L. Thus, B is an h-edge-cut of S, ;, and so

s

A, ) < |Bl=(n—k+1)(k—1) for h > g

The lemma follows.
Corollary 2.6: A" (S,2) =n—1for0 < h < n — 2.
Proof: On the one hand, A{"(5,,2) < n — 1 by Lemma 2.5 when & = 2. On the other hand, A{" (S,,.2) > A(S., )
=n—1 by Lemma 2.2.
The following lemma shows the relations between (n — h — 1)(h + 1) and (n — k& + 1)(k — 1).
Lemma27: For2<hk<n—1,0<h<n—F,let
Wi k) =min{(n —h—=1)(h+1),(n —k+1)(k—1)}.
Ifh <5 —1,then

h gy (m=h=0(h+1) H0<h<k-—2

v k) = { (n—k+1)(k—1) ifh=k-1

Proof: Let f(x) = (n — )z, then ¢(h, k) = min{f(h+ 1), f(k—1)}. It can be easily checked that f{z}is a
convex function on the interval [0, n], the maximum value is reached at .- = Z. Thus, f () is an increasing function
on the interval [0, &].

FO<h<k—2thenh+1<k—1.Sinceh<n—kh+l<n—Fk+landmin{k—1,n—k+1} <
Thus, when h <SE-Lf(h+1) < f(k—1)=f(n—k+1),andsoy(h k)= f(h+1)=(n—h—1)(h+ 1).

Ifhzhk-1thenk —1<h+1<% f(h—1)<f(h+1),s0¢(nk)=f(k—-1)=(n—k+1)(k—1)
The lemma follows.

To state and prove our main results, we need some notations. Let B be a minimum £-edge-cut of 5,, ;. Clearly,
Sn.e — B has exactly two connected components. Let X and ¥ be two vertex-set of two connected components of
Snx — B.Forafixedt € I\ {1} andany i e [, let

Xi=4&n I"r(Swli_:iLk-—l)a

Vi=Y V(S 1)

B; = Bn E(SE 15—1) and

Bij=BNE(S 1,57 4 1)

and let

J = {? cl,: X; ?é {0}.

J={ieJ: Y;#0} and

T={iel,: Y, #0}.
Lemma 2.8: Let B be a minimum h- edge-cut of S, and X be the vertex-set of a connected component of
Spr—B.M3<k<n—1andl <h<n—Fk then, foranyt e I\ {1},

(a) B; isan (h — 1yedge-cutof 5/”, , | foranyic .V,
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©) A (S, 0) = [T ATV (S k).

Proof. (a) By the definition of 7', B; is an edge-cut of S&* Lxforany i e J'. For any vertex in SP4 L — B,
since i has degree at least 2 in S, ., — S and has exactly one nelghbor outsider S4* 151« has degree at least
h —1in S/ — B This fact shows that B; is an (h — 1)-edge-cutof ;2| , | foranyi e J'.

(b) By the assertion (a), we have |B;| = A" (S, _1.._1), and so
AP (Suw) = Bl 2 Y 1Bl 2 [T (Surgen).
e J!

The lemma follows.

I11. Proof of Theorem
By Lemma 2.5 and Lemma 2.7, we only need to prove that, for2 < &k <n—1land0< h<n—*Fk,

{ (n—h—-1)h+1) forh<k—-2andh<% -1,

(Mg 2
A (Snk) 2 (n—k+1)(k—1) otherwise.

Letw(h, k) =max{(n—h—1(h+1),(n—k+ 1)(k— 1}

We proceed by induction on & z 2and £ = 0. The inequality is true for £ = 2and any Awith0 < h < n — 2
by Corollary 2.6. The inequality is also true for & = (0 and any & with 2 < & < n — 1since AL )(5‘.,,_:;,.,) = ASn,p) =
n — 1. Assume the induction hypothesis for /: — 1 with % > 3 and for , — 1 with i = 1, that is,

o 1 L7 Q] n—1
(h—1) < (n—h)h for h <k —3and h < %5
AT (1) 2 { (n—k+2)(k—2) otherwise.

Let B be a minimum /-edge-cut of S, , and X be the vertex-set of a minimum connected component of S, . — 3.
By Lemma 2.5, we have

|B| < w(h, k). (1)
Use notations defined in Section II. Choose t € I;. \ {1} such that|.J|is as large as possible. For each i € I,,, we
write 5%, _, ,_, for S& . for short.
We first show |.7| = 1. Suppose to the contrary |.7| 2 2. We will deduce contradictions by considering three
cases dependingon |.J'| = 0, |J'| = Llor|.J| = 2.
Case 1. |J'| = 0.

In this case, X; # Pand Y; =@ for each i £ .J, that is, / N7 = 0. By|.J| > 2 and the minimality of X, |T| =

Assume {iy,i2} € .Jand {i3.74} € T. By Lemma 2.4, there are ”’ ;2%1 independent swap-edges between Sn 1 h—1

(resp. S)2 , ,_)and S7 | . (resp. i+, ), all of which are contalned in 3. Since ./ 1T = (), we have that

n—2)!
|B| = EIL k)t
For &k = 3,

Bl 24 {223 2 4(n - 2) > 2(n - 2)

Combining Lemma 2.5 with Lemma 2.7 yields | B| < A" (S,..5) < 2(n — 2), a contradiction. For £ 3 4, it is easy
to check that
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|IB] =4 E:::i;; >4n—2)(n—3) = (2n —4)(2n — 6)
>max{(n —h—1)(h+1),(n—k+1)(k—1)}

=w(h, k),

which contradicts the inequality (1).
Case2. |J'|=1.

Without loss of generality, assume ./ = {1}. By Lemma 2.8 (a), B, is an {h — 1)-edge-cut of S! Li1 BYIJ[ =2
there exists an i € .7 — .J such that X; = V(S _, ,_,). By the minimality of X, there exists some j € 7' — J' such

that Y; = V(57 |, ,). By Lemma 2.4, there are “’ f%w independent swap-edges between S!,_ |, and Sﬁ._m_r

thus | B;;| = (=25 > n — 2. We consider the foIIowmg two cases.

If/\(h 1) ( e 1) P (?L* h)h,then

|B1| + | Bij

(n—"h)h+ (n—2)
(n—h—=1h+n—-h-1)
(n—h—=1)(h+1),

n—k+1)(k—2)+(n—k+1)
(n—Fk+1)(k—-1).

Therefore, we have | B| > w(h, k), which contradicts the inequality (1).
Case 3. |.J| =

> |
zn—k+2)(k—2)4+(n—2)
> (

By Lemma 2.8 (b), if A" (S,_1.4—1) > (n — h)h then

= 7N (S k)
z2(n—hhz(n—hh+(n—nh)
>(n—h—1)h+1),

|B|

if AV (S, ely) = (n— k+ 2)(k — 2) then

= STV (S k)
=Z2n—k+2)(k—2)
2n—k+2)(k—2)4+(n—k+2)
>(n—k+1)(k-1).

Bl

Therefore, we have | B| > w(h, k), which contradicts the inequality (1).

Thus, we have |.7| = 1. By the choice of ¢, the :-th bits of all vertices in X are same for each i = 2.3,....k, and so
X is a complete graph. Thus, we have that

A (S, ) =Bl =(n—|X

)

X

Since h +1 <

X[ <n—k+1and f(x) = (n —«)xis a convex function on the interval [0, 1], we have that
AN (S, ) =Bl = (n— | X]|X]| = vk, k).
where (k. X} is defined in Lemma 2.7.

If h < 5 — 1, using Lemma 2.7, we have
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(h) ¢ (B ) — (n—h-1h+1) f0<h<<k-—2
As ("5’“*’)9*“(”’“{ (n—k+1)k—1) ifhzk-L

If A= % then X = V(A _,41). Otherwisg, there exists some » € V(K41 — X) such that
h<da)=n—1—-|X|<n—h-2,
which implies i < % — 1, a contradiction. Therefore, we have | X'| = n — & + 1, and

A8, ) = Bl = (n — | X))

X|=m—-k+1)(k—-1) for h = 3.
By the induction principle, the theorem follows.

As we have known, when k =n — 1, S, ,_ IS isomorphic to the star graph 5,,. Akers and Krishnamurthy [1]

determined A(S,,) and Agl)(sn}, which can be obtained from our result by setting # =n—1 and A =0,1,
respectively.

Corollary: A(S,) =n —1 forn = 2and \”(S,) = 2n — 4 forn > 3.
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