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Abstract: This paper focuses on the employment of utility theory for decision makingunder risk and uncertainty. Further, we have
also investigated the efficiency of the three types of utility curves namely Conservation Man, Average player and the Gambler. The
utility theory has been analyzed for its efficiency to solve cell placement problem.
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1 Introduction

General utility refers to the way people assign value
based on their ordering of preferences [1,2,3,4,5]. Utility
is a measure of the satisfaction a person derives from
choosing a good, a course of action, or a lottery that offers
chances of altering a good. Utility theory methods take
advantage of individuals subjective risk perception to
derive values for objects or decisions. Most phases of
VLSI design automation comprise very large and
complex combinatorial optimization problems with
numerous constraints and very noisy solution space.
Physical design of VLSI Circuits constitutes the
conversion of structural representation into layout
representation of circuits. Structural representations
describe the system in terms of logic components and its
interconnects. Layout representations define circuits in
terms of a set of geometric objects which specify the
dimensions and locations of transistors and wires on a
silicon surface. One of the most critical problems
encountered in the design of VLSI Circuits is assigning
locations to circuit modules and routing the connections
among them such that the ensuing area is minimized. The
complexity of the problem has mandated the partitioning
the VLSI Circuits into two consecutive stages. The first
stage, commonly referred to as the placement problem,
deals with assigning locations to individual modules . The
quality of the routing obtained at the second stage
depends critically on the placement output of the first
stage. Hence the goal of a good placement techniques is
to position the cells such that the ensuing area is
minimized, while the wire lengths are subject to critical

length constraints. Walker[6] provides defense for unified
notion of utility that does not need risk for its existence,
but that has relevance for risk. Walker observes that the
development of expected utility theory by Von Neumann
and Morgenstern [5] was motivated by their desire to
obtain a cardinal utility that is relevant to the game theory.
In the past, the principal of the VLSI placement has been
minimization of interconnect wire-length. In standard cell
layout style all the circuits modules or cell are constrained
to have the same height , while width of the cell is
variable and depends upon its complexity [7]. Cells are
placed in horizontal rows and the cell rows are separated
by horizontal routing channels. Module placement is an
NP-hard problem and therefore, cannot be solved exactly
in polynomial time. Trying to get an exact solution by
evaluating every possible placement to determine the best
one would take time proportional to the factorial of the
number of modules. The utility framework requires the
outcome probabilities to obtain proposed well
configurations. In some cases the determination of
outcome probabilities might be computationally
infeasible, particularly for very large numerical modules.

A second approach is presented in which the well
placement problem has been formulated as the
optimization of a random function which does not require
the prior knowledge of outcome probabilities. Hence, in
this paper, the notion of utility theory is focused in both
decision making under risk and uncertainty. Also we have
investigated the efficiency of selection of three types of
utility curves, such as Conservation Man, Average player
and the Gambler. Further, the utility theory has been
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Fig. 1: The well placement decision tree with event nodes

analyzed for its efficiency to solve cell placement
problem.

2 Utility Theory and Utility Functions

We define decision under certainty as “the decisions taken
under certainty of action results invariably in a specific
outcome (prospect, alternative, etc)” We propose that a
decision is taken under risk if each action of the decision
results in a set of possible specific outcomes, with each
outcome occurring within a known probability. Utility
theory and Utility functions are applicable to decision
making under uncertainty or under risk. The whole
process of decision tree construction and definition of the
problem as the maximization of expected utility rather
than the monetary value constitutes a transformation of
the problem according to the decision makers attitude
towards risk utility or preference theory, which explains
how this transformation is made possible [8]. The utility
function is a tool which to quantifies the decision makers
risk attitude [9].

Based on the shape of the utility function, the nature
of the decision maker can be determined and classified as
either, risk prone, risk averse or risk neutral (Fig. 1). A
decision maker, who is risk neutral, has a linear utility
function which is equivalent to basing decisions purely on
monetary value (Net present value(NPV)). A risk-averse
decision maker has a concave utility function which
corresponds to the avoidance of uncertain areas of search
space event if they might have the possibility of greater
financial gain. The decision maker, who is risk prone, is
willing to take some risk for greater financial gain [3],
hence has a convex utility function. The exponential form
of a simple analytical utility function is represented as

U(x) = a+b−rx (1)

Fig. 2: The exponential utility function for different exponent
values, R

Fig. 3: Utility Curve

Where ‘x’ is the objective function value which is
NPV in this case. A normalized version of (1),with a=1
and b= -1 is visualized in Fig.2. The curvature of the
utility function determines the risk attitude of the decision
maker asφ in Fig.2. The magnitude of risk aversion of a
given utility function U , is given by

R(x) =−
U ′′(x)
U ′(x)

(2)

The term R(x) in (2) is also referred to as the Arrow-
Pratt measure of absolute risk aversion or the risk aversion
coefficient[8]. The risk aversion coefficient is a constant
for exponential utility function and is equal to the exponent
r in equation (2).

There are three different types of curve, which
correspond to three different attitudes toward risk.
1. The Conservation Man: The conservation mans curve
is concave in shape, which is typically observed in
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practice. The conservation man is averse to risk.
2. The Average Player: This persons curve is a straight
line, which means that he/she wishes to play the long-run
averages.
3. The Gambler: This person is the rarest of the three
types, his utility curve is convex in shape and is prone to
take more risk to gain financially.

3 Axioms of Utility Theory

We define decision under certainty as “the decisions taken
under certainty of action results invariably in a specific
outcome (prospect, alternative, etc)” We propose that a
decision is taken under risk if each action of the decision
results in a set of possible specific outcomes, with each
outcome occurring within a known probability. Utility
theory and Utility functions are applicable to decision
making under uncertainty or under risk. The whole
process of decision tree construction and definition of the
problem as the maximization of expected utility rather
than the monetary value constitutes a transformation of
the problem according to the decision makers attitude
towards risk utility or preference theory, which explains
how this transformation is made possible [8]. The utility
function is a tool which to quantifies the decision makers
risk attitude [9].

4 Analysis of Utility Curve

Analysis of Utility Curve involves the following steps:
1. Defining the alternative courses of action.
2. Defining a risk-taking attitude in the form of utility
curve.
3. Choosing a course of action that is optimal, given the
risks and risk-taking attitude of the indivudual.
4. Using that curve to convert economic consequences
into utilities.
5. Selecting that course of action that has the highest
expected utility.

5 Rules for Maximizing utility

Suppose that a customers preference can be represented
by the utility function, U=f(X,Y) where X and Y represent
the amount of goods X and Y used. The objective of the
consumer is to ensure that the utility is maximized within
the constraint that the total expense do not supersede the
income (I).

I = PX
X +PY

Y (3)

To solve this problem, we form the function
V = F(X .Y )+λ (1−PX

X −PY
Y ) . (This function is called a

“legrangian” and the variableλ is known as the

“Legrange multiplier”). In this function, if the values of X
and Y satisfy the constraint,I −PX (X)−PY (Y ) = 0 andλ
is not equal to zero, then the values of V and U are the
same. Maximizing V is equivalent to maximizing U
subject to the income constraint. To maximize utility, all
the partial derivatives of this legrange equation must be
set to zero.

∂V
∂X

=
∂F
∂X

−λPX = 0 (4)

∂V
∂Y

=
∂F
∂Y

−λPY = 0 (5)

∂V
∂λ

= I −PX X −PYY = 0 (6)

Note that this condition fulfills the requirement
imposed by the budget constraint. Assuming that the
second-order conditions for a maximum are fulfilled,
equations (4-5) can be solved for the utility. Maximizing
values of X,Y andλ ,the first equation can be solved forλ
to obtain λ = ∂F/∂X

PX
and from the second equation,

λ = ∂F/∂Y
PX

can be derived. Since both these expression
are equal toλ , therefore, they should also be equal to
each other.

λ =
∂F/∂X

PX
λ =

∂F/∂Y
PX

(7)

The terms in the numerators are the marginal utilities
of goods X and Y, which is the expected condition.
Maximum utility is achieved when the marginal utility
per dollar of each good is the same.

MUX

PX
=

MUY

PY
(8)

Consequently, the equation (6) implies that the
consumers budget must have been exhausted as well.
Results for effectiveness of implementation of VLSI cell
placement are presented. The results demonstrate the
placement of a set of cells on the VLSI layout. The netlist
in the VLSI layout are interconnected with each of the
cell and with the library having the layout information for
each type of cell. Our consumers VLSI circuit design
problem under utility function U=f(X,Y) is to maximize
utilization in each VLSI Cell placement subject to the
constraints and the total expenditures on X and Y are
equal. Hence the demonstrated online VLSI cell
placement technique aims at equalizing the utility value
across all applications while also satisfying restrictions
pertaining to the operations, such that over allocation of
memory is prevented and the number of placement
changes minimized. Among all utility curves, the
conservation man of Maximal utilities of X an Y which
gives the averages risk by legrangian multiplier and the
total expenditures on X and Y are equal.
Example: Given the consumers income, M and prices,PX
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Fig. 4: Maximizing utility

andPY , the consumers problem is to choose the affordable
bundle that maximizes his/her utility. The feasible set
(budget set) maintains that the total expenses made should
not be more than the income, which is represented as

PX X +PYY ≤ M (9)

Since everyone expects more income, equation (9)
must be equal and represent as solution to the consumers
problem.U(x,y) = xy,M = 10,Px = 1,Py = 1 the legrange
expression L = xy + λ [10 − x − y] the first order
conditions are

y−λ = 0 (10)

x−λ = 0 (11)

10− x− y = 0 (12)

First solve the first two equations (10) and (11) for λ
and set the expressions equal to each other.λ = y = x
now solve the other equation (12) ( the budget constraint)
for either x or y in terms of the other. y=10 x. Finally,
substitute this equation into the earlier legrange equation
10 - x = y. By doing so, we get x=5. Substitute the answer
for x into the budget constraint to get y=5. Thus it is
observed that the marginal rate of substitution equals the
price ratio at the point(5,5).

5.1 Decision Utility:

The utility curves for different lottery ranges appears to
have a similar shape. This leads to the hypothesis that the
utility may be described within the range. The hypothesis

Fig. 5: Decision Utility p=D(r)

is tested by linearly transforming all the outcomes and
certainty equivalents to [0,1] interval using

r =
Ce −Pmin

Pmax −Pmin
(13)

where r denotes the relative outcome,Ce denotes the
certainty equivalent,pmax = Max(r) is the maximum
lottery outcome, andpmin = Min(x) is the minimum
lottery outcome. All relative outcomes ‘r’ together with
their respective probability p are then presented on a
single graph. When the points are plotted very closely, an
S-shape curve is obtained, which can be easily estimated.
A decision utility function ‘D’ defined as p=D(r) can be
determined for outcomes expressed in relative terms.

Decision utility is very much different from the kind
of utility assumed by Von Neumaan and Mongestern[5],
although it has been derived using their original method.
It focuses on the description of decisions made under
conditions of risk. It does not focus on the way people
recognize either income or other welfare levels.
Therefore, the decision utility is converted into relative
certainty equivalent

Cer = D−1(P) (14)

such that it can be transformed to its absolute value

Ce = pmin +Cer(Pmax − pmin) (15)

For pmin equation (15) simplifies to

Ce = pmaxD−1(P) (16)

This method bases its presumption on intuition that
allows for fundamental measurements instead of simple
option ordering.
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Fig. 6: Expected Utility

5.2 Utility of Common Ratio effect:

The Common Ratio effect analyzed by Kahnemann and
Tversky [10] can be explained using the decision utility
model.
Problem I: Choose between
A: 4000 with a probability of 0.80 or 0 with a probability
10.20
B: 3000 with a probability of 1.00
Problem II: Choose between
C: 4000 with a probability of 0.20 or 0 with a probability
of 0.80
D: 3000 with a probability 0.25 with a probability of 0.75

Experimental results consistently reveal that most
people choose option B in problem I and option C in
problem II. Expected Utility theory, per contra predicts
that people would choose either (A and C) or (B and D) ,
as the probabilities of winning the main prize in the
second pair of choices differ by a common ratio factor of
4 compared with the first pair. These options are
represented on the utility axis in Figure 6.

The solution of this problem demonstrates how a
single decision utility applied to different lottery ranges
predict inconsistent choices (Fig.7). The shape of both the
utility curves is the same as they are restated decision
utility functionaries. The range of the red curve is
[0,4000] as this corresponds with options A and C, which
has a maximum outcome of 4000. The range of the blue
curve is [0,3000] as this corresponds with options B and
D, which has a minimum outcome of 3000. For greater
probabilities, option B is better than option A. In the case
of lower probabilities, option C is better than D. This
model is compared with utility function (curves) based on
the channel router concept. The each mark A, B, C, D
suggested by them help us to estimate the parameters. We
divide the channel routing problem domain in VLSI
placement to give more effective and efficient techniques

Fig. 7: Decision Utility

to handle existing difficulties and design complexities.
We have to adopt combination of Common Ratio effect
Methodologies on the strengthen avoid weakness in
single VLSI Cell placement. The above decision utility
model to determine the best location of each cell .So as to
minimize the total area of the layout and the length of the
nets connecting the cells together. Finally in decision
utility (Figure 5.7) option B prevails over option A, C is
better option than D. The best location of VLSI cell
placement by Common Ratio effect is ’C’ and the length
of the nets connecting the cells together.

6 Conclusion and Future work:

We analyze the utility properties of utility curves, rules
for Maximizing utility curve, Decision utility and
Common ration effect. Also we have investigated the
efficiency of selection of three types of utility curves,
such as Conservation Man, Average player and the
Gambler which gives the expected value and Risk average
of the decision maker A,B,C and D which occupy in
VLSI cell placement. Further, the utility theory has been
analyzed for its efficiency to solve cell placement
problem. Similar results based on utility idea in VLSI
Circuit problems can be obtained using Max-Min
approach partitioning and minimize the expected utility.
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