
Appl. Math. Inf. Sci.7, No. 5, 1825-1835 (2013) 1825

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/070521

Algorithmic Verification of Intransitive Noninterference
for 3-domain Security Policies with a SAT Solver

Liu Zhifeng1,2,∗, Zhou Conghua 1, Ge Yun 2 and Zhang Dong 2

1 School of Computer Science and Telecommunication Engineering,Jiangsu University, China
2 School of Electronic Science and Engineering, Nanjing University, China

Received: 14 Jan. 2013, Revised: 17 May. 2013, Accepted: 18 May. 2013
Published online: 1 Sep. 2013

Abstract: In this paper we propose an automated verification approach to checkingintransitive noninterference for deterministic
finite state systems. Our approach is based on the counterexamples search verification strategy, and is conducted in gradual manner. It
produces counterexamples of minimal length. Further, we reduce the counterexamples search to propositional satisfiability. For the case
that there are no counterexamples, we also introduce the window inductionproof method in order to avoid considering unnecessary
iterations, and show that the induction proof can be performed by the boolean decision procedure. In addition, based on graph-theoretic
properties of systems we propose an over-approximation to the length ofthe smallest counterexample, and the over-approximation can
also be checked by the boolean decision procedure.
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1 Introduction

One of the typical problems in computer security is that
confidential data needs protecting from undesired
accesses. A well known approach to solving this problem
is the Multilevel Security, which is a policy for managing
objects at various levels of secrecy. In multilevel security
systems every object and every user is bound to a secrecy
level and the information flow [1] can be directed only
from low users to high users. The system achieves this
aim by implementing access control policies. As
remarked in [2] this solution is still not satisfactory.
Access control policies are defined to serve this task by
specifying which accesses are allowed for which users.
However, access control methods can only restrict direct
information flow. Information leakage over covert
channels [3] is not controllable by access control
methods.

In [4], Goguen and Meseguer first introduced the
notion of noninterference as a means to control both
direct and indirect information flow.
Noninterference [5–7] captures any causal dependency
from a high-level actionh to a lower-level actionl. By
causal dependency we mean that the dependent action can
not occur without the occurrence of the preceding action.

Such a dependency creates an insecure channel called a
covert channel, having the capability of transmitting
high-level information concerningh to any low-level
agent observingl. In practice, however, many practical
security problems go beyond the scope of simple
noninterference. In particular, the problem of
confidentiality in multilevel security systems, where the
relation over the set of security levels capturing allowed
information flows, are not transitive. Noninterference
cannot cope with intransitive flow policies. Therefore,
intransitive noninterference has been proposed by Rushby
in the literature [8].

Since Rushby’s initial work, many researchers did
much work about intransitive noninterference. For
example, more definitions about intransitive
noninterference have been proposed in the
literature [9–11]. For nondeterministic systems, Mantel
presented a new model in terms of event system for
intransitive flow [12]. However, there is few work on the
verification of intransitive noninterference because
intransitive noninterference is a global requirement whose
verification is usually a complex task. At present, the
absence of feasible algorithmic verification approaches is
the main problem in checking intransitive
noninterference. Prior to our work, only one rigorous
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algorithm has been proposed by Nejib Ben Hadj-Alouane
in the literature [13, 14] to check intransitive
noninterference based on some necessary and sufficient
conditions. Other algorithms, for example[8], only use a
sufficient condition as a basis for checking intransitive
noninterference.

In this paper, we focus on using a SAT solver to verify
intransitive noninterference on deterministic systems. Our
work is motivated by which the verification methods
based on SAT solvers [15–18] have been shown to push
the envelope of functional verification in terms of both
capacity and efficiency, as reported in several academic
and industrial case studies [19–22]. The successful
application of SAT solvers in formal verification is due to
dramatic improvements in SAT solver technology over
the past decade. At present, several powerful SAT solvers
can handle propositional formulas with hundreds of
thousands of variables.

We present a symbolic algorithmic approach to the
verification of intransitive noninterference. The basic
concept of our algorithmic approach consists of two
aspects: one aspect is to search for a counterexample of
intransitive noninterference in executions whose length is
bounded by some integerk, the search works by mapping
the problem of the existence of some counterexample of
length k to the propositional satisfiability problem;
another aspect is to use the window induction
technique [23] to verify intransitive noninterference, and
the induction hypothesis is checked by a SAT solver. Our
algorithmic approach shown in Figure 1 consists of three
basic steps:

1.Check the Bound: Determine whether the bound
reaches the pre-computed threshold. If so, then claim
the system satisfies intransitive noninterference.

2.Search for Counterexamples by a SAT Solver: Reduce
the existence problem of counterexamples of some
length to the propositional satisfiability problem, i.e.,
there exists counterexamples of lengthk if and only if
the propositional formula[M, INI]k is satisfiable. If
[M, INI ]k is satisfiable, then claim that the system
does not satisfy intransitive noninterference, and
return a counterexample.

3.Inductive Proof by a SAT Solver: Reduce the window
induction proof to the propositional satisfiability
problem, i.e., the window induction proof of the size
of window k succeeds if and only if[M, INI]IN

k is a
tautology. If [M, INI]IN

k is a tautology, then claim that
the system satisfies intransitive noninterference, else
let k = k+1, return to Step 1.

2 Related Work

Intransitive noninterference is a global requirement. The
direct verification of noninterference is a complex task.
In [8], Rushby proposed an unwinding approach which
reduces the global requirement to more local conditions

 reaches the 

pre-computed 

threshold?

k

Input M
1k  No No

No, 1k k !

[ , ]  is 

satisfiable?

kM INI [ , ]  is 

a tautology?

IN

kM INI

Return True Return True
Return a

counterexample

Yes Yes
Yes

Fig. 1 A Framework for Verifying Intransitive Noninterference
Using a SAT Solver

that involves only individual transitions. The unwinding
approach is usually called the traditional verification
approach. Here, we first recall the unwinding approach,
then compare it with our approach.

The basic concept of the unwinding approach is to
reduce checking intransitive noninterference for a
deterministic system to determine the existence of some
equivalence relation called the unwinding relation. The
relationship between the unwinding relation and
intransitive noninterference has the following classical
results: A deterministic system satisfies intransitive
noninterference, if there exists an unwinding relation for
the system. Henceforth, how to determine the existence of
the unwinding relation is a key problem in verifying
intransitive noninterference. However, we note that the
existence of the unwinding relation is only a sufficient
condition, not a necessary condition. And to the best of
our knowledge, there is no efficient algorithmic approach
to checking whether there exists the unwinding relation.
In addition, the unwinding approach also suffers from the
state explosion problem, i.e. the model size is the major
factor which affects the performance of decision
procedures.

Recently, in [13, 14] for discrete event systems Nejib
Ben Hadj-Alouane et al. proposed an algorithmic
approach to the verification of intransitive
noninterference. The basic concept of their approach is to
use an observability based on a purge function, called
iP-observability, to capture intransitive noninterference,
and reduce the checking ofiP-observability to the
checking of P-observability, which can be done
efficiently.

We now consider the main differences between above
approaches and ours. First, we develop an algorithmic
approach to checking intransitive noninterference, and
can use boolean decision procedures to perform the
algorithm. Boolean decision procedures can make us
verify large systems. Second, our approach combines the
counterexample search strategy and induction proof
technique. The counterexample search strategy makes us
find counterexamples quickly. And the counterexample
can guide designers to modify the design of systems.
Third, compared with the unwinding approach, our
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approach is complete. That is our approach can justify
whether or not a system satisfies intransitive
noninterference.

The paper is organized as follows. In Section 2, we
describe intransitive noninterference in detail. In Section
3, we present our SAT-based automated verification
technique to check intransitive noninterference. In
Section 4, our experimental results are presented. Some
conclusions and ideas for future research are presented in
Section 5.

3 Intransitive Noninterference

The definition of noninterference is based on transitive
flow policies, i.e.H D∧D L ⇒ H L. Goguen and
Meseguer recognized the inability of transitive flow
policies to model some security policies such as control
policies, and they introduced several extensions to the
basic formulation in their paper [24]. However, the first
satisfactory formal account of intransitive information
flow has been introduced by Rushby [4], followed by
definitions by Pinsky [9] and by Roscoe and
Goldsmith [10]. Rushby gave a formalization of
intransitive noninterference in terms of input-output
automata. Intuitively intransitive noninterference saysthat
flows from the high domainH to a trusted domainD and
flows fromD to the low domainL are admissible while a
direct flow fromH to L is not allowed. In this section we
recall the definition of intransitive noninterference
introduced by Rushby. We use a type of state transition
graph called Security Labeled Kripke Structure(SLKS) to
describe the behavior of a security system.
Definition 3.1. A Security Labeled Kripke Structure
(SLKS) M is composed of

–S : a set of states with an initial statesin ∈ S.
–Σ : a set of actions.
–R : S×Σ → S a transition function.
–D : a set of security domains.
–dom : Σ → D a function associating a security domain
with each action.

–O : S×D→ 2AP an observation function, whereAP is
a set of atomic propositions.

A security policy is specified by a reflexive relation
 on D. We use6 to denote the complement relation,
that is 6 = (D×D)\ , where\ denotes set difference.
We call and 6 as the interference and noninterference
relations, respectively. A policy is said to be intransitive if
its interference relation has no transitive property.

To formally define intransitive noninterference, a
function sources on paths is introduced by Rushby. The
purpose of the functionsources is to identify those
actions in a path that should not be deleted. For the action
sequences α = α1 · · ·αn, β = β1 · · ·βm, define
α ◦β = α1 · · ·αnβ1 · · ·βm.
Definition 3.2. We define the function
sources : Σ ∗×D→ 2D as followssources(ε ,u) = {u}; if
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Fig. 2 Intransitive noninterference satisfied
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Fig. 3 Intransitive noninterference not satisfied

∃v : v ∈ sources(α,u) ∧ dom(a)  v then
sources(a ◦ α,u) = sources(α,u)∪ {dom(a)}, otherwise
sources(a◦α,u) = sources(α,u).

In essencev ∈ sources(α,u) means either thatv = u
or that there is a subsequence ofα consisting of actions
performed by domains w1,w2, · · · ,wn such that
w1 w2 · · · wn, v = w1, andu = wn.

We can now define the functionipurge : Σ ∗×D → Σ ∗

as follows: ipurge(ε ,u) = ε; if
dom(a) ∈ sources(a ◦ α,u), then
ipurge(a ◦ α,u) = a ◦ ipurge(α,u), otherwise
ipurge(a◦α,u) = ipurge(α,u).

Informally, ipurge(α,u) consists of the subsequence
of α with all those actions that should not be able to
interfere withu removed. Thus, security is now defined in
terms of theipurge function.

Definition 3.3. We call a SLKSM satisfy intransitive
noninterference, denoted byM |= INI, if for any
α ∈ Σ ∗,a ∈ D : O(sin •α,a) = O(sin • ipurge(α,a),a).

Consider a three domain system,D = {H,D,L},
whereD is a downgrading domain. The non-interference
relation is such that: = {(H,D),(D,L),(D,H), (L,D),
(L,H)}. We consider the systemsM1 and M2 given in
Figures 2 and 3 in whichdom(h) = H, dom(l) = L,
dom(d) = D. Each states is labeled by the function
O(s,L) . It is easy to justify the systemM1 shown in
Figure 1 is secure for , M2 shown in Figure 2 is not
secure for . In M2, consider the action sequencehdhl.
ipurge(hdhl,L) = hdl. It is easy to compute
O(s0•hdhl,L) = {p3},O(s0• ipurge(hdhl,L),L) = {p1}.
That isO(s0•hdhl,L) 6= O(s0• ipurge(hdhl,L),L).
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4 SAT-based Algorithmic Verification of
Intransitive Noninterference

4.1 Symbolic Representation of System

In the remainder of this paper, we restrict our attention to
systems with only three security domainsR = {H,L,D},
governed by the following noninterference relation:
 = {(H,D),(D,L),(L,H),(L,D),(D,H)}. That is only
H → L is not allowed. For discussion convenience, we
first modify the definition of SLKS.

Definition 4.1.A SLKS M is a 9-tuple(S, sin, ΣL, ΣH , ΣD,

Σ , R, AP, OL) where

–S is a finite non-empty set of states.
–sin ∈ S is an initial state.
–ΣL ⊂ Σ is a finite set of actions associated with the
domainL.

–ΣH ⊂ Σ is a finite set of actions associated with the
domainH.

–ΣD ⊂ Σ is a finite set of actions associated with the
domainD.

–Σ is a finite set of actions withΣ = ΣL ∪ΣH ∪ΣD.
–R : S×Σ → S is a transition function.
–AP is a finite set of propositions.
–OL : S → 2AP is defined asOL(s) = O(s,L).

For simplicity, we defineipurgeL(σ) = ipurge(σ ,L),
and a predicateR(s,σ ,s′) iff s′ = R(s,σ). To represent the
result of executing a sequence of actions, define the
operation •:S × Σ ∗ → S, by s • ε = s; and
s • (α ◦ a) = R(s • α,a). In a SLKS M, a path
π = s0,σ0,s1,σ1, . . . ,σk,sk+1 of M is an alternating
sequence of states and actions subject to the following:
for eachk ≥ i ≥ 0,si ∈ S,σi ∈ Σ andR(si,σi,si+1) holds.

We now describe how a SLKS can be represented
symbolically. To represent this structure we must describe
the setS, the setΣ , the transition relationR, and the
labeling function OL. Without loss of generality, we
suppose that there are 2m states for somem > 0, 2n

actions associated with the domainH for somen > 0, 2n

actions associated with the domainL, 2n actions
associated with the domainD, AP = {p1, · · · , pk} for
somek > 0.

Let φ : S ↔ {0,1}m be a bijection function that maps
each state ofS to a boolean vector of lengthm. The initial
statesin can be represented by a boolean vectorφ(sin),
denoted byI(sin). ψ : Σ ↔ {0,1}n+2 be a bijection
function satisfying ψ : ΣL ↔ {0} × {1} × {0,1}n,
ψ : ΣH ↔ {1} × {1} × {0,1}n, and
ψ : ΣD ↔ {0}×{0}×{0,1}n. ψ maps each action ofΣ
to a boolean vector of length n + 2. Let
φ(s) = (b1, . . . ,bm). Then, the states can be characterized

by a boolean formula as follows:
1≤i≤m∧
bi=1

b
′

i ∧
1≤i≤m∧
bi=0

¬b
′

i,

whereb
′

i is an atomic proposition. For simplicity, we use
φ(s) instead of the above formula. In the same way an
action σ can be characterized by the boolean formula
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Fig. 4 A Security Labeled Kripke Structure with Two states

ψ(σ). The transition relation R(s,σ ,s′) can be
characterized by a boolean formula as follows:
R̂(φ−1(s),ψ−1(σ),φ−1(s′)). For simplicity, we useR
instead of R̂. The labeling function OL(s) can be
represented as follows:

ÔL(s) = φ−1(s) ∧
∧

p∈OL(s)
p ∧

∧
p∈AP\OL(s)

¬p.

OL(s) 6= OL(s′) can be represented as follows:

ÔL(s) ∧ ÔL(s′) ∧ ¬((
∧

p∈OL(s)
p ∧

∧
p∈Ap\OL(s)

¬p) ↔

(
∧

p∈OL(s′)
p∧

∧
p∈Ap\OL(s′)

¬p)).

In order to illustrate how to represent a SLKS
symbolically, we consider the two states structure shown
in Figure 4. In this case, there are two states. We need one
boolean variablev to encode states:v = 0 encodings1,
v = 1 encodings2 . We introduce one additional boolean
variable v′ to encode successor states. There are three
actions in this example. Thus we need a two bit boolean
vector(u1,u2) to encode actions:(1,1) encodingh, (0,1)
encodingl, and(0,0) encodingd. Then we can represent
the transition from states0 to states1 enabled by inputting
l with ¬v ∧ ¬u1 ∧ u2 ∧ v′. The boolean formula for the
entire transition relation is given by
(¬v ∧ ¬u1 ∧ u2 ∧ v′) ∨ (¬v ∧ u1 ∧ u2 ∧ ¬v′) ∨ (v ∧ ¬u1 ∧
u2 ∧ v′)∨ (v∧ u1 ∧ u2 ∧¬v′)∨ (v∧ u1 ∧ u2 ∧¬v′)∨ (¬v∧
¬u1 ∧ ¬u2 ∧ v′) ∨ (v ∧ ¬u1 ∧ ¬u2 ∧ v′). The labeling
function is represented by
(¬v∧ p1∧¬p2)∨ (v∧ p2∧¬p1).

4.2 Checking Intransitive Noninterference by
Searching for Counterexamples

Definition 4.2. (Counterexample for Intransitive
Noninterference): LetM be a SLKS. A finite action
sequence σ ∈ Σ ∗ is called a counterexample of
intransitive noninterference iff
OL(sin •σ) 6= OL(sin • ipurgeL(σ)).

It is easy to justify that a SLKSM does not satisfy
intransitive noninterference iff there is a counterexample.
That is we can check intransitive noninterference if we
consider all possible actions sequences. This leads to a
straightforward intransitive noninterference checking
procedure. To check whetherM |= INI, the procedure
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checks all action sequences with lengthk for
k = 0,1,2, · · · . If a counterexample with lengthk is found,
then the procedure proves thatM 6|= INI and produces a
counterexample of length k. If there are no
counterexamples of lengthk, we have to increment the
value of k indefinitely, and the procedure does not
terminate. We now establish a threshold onk, and have
that for all k within the threshold, if there are no
counterexamples of lengthk, we can conclude that
M |= INI. We call this threshold theCompleteness
Threshold, and denote it byCT. It is clear, if M |= INI
then the smallestCT is equal to 0, and otherwise it is
equal to the length of the shortest counterexample. This
implies that finding the smallestCT is at least as hard as
checking whetherM |= INI. Consequently, we should like
to concentrate on computing an over-approximation to the
smallestCT based on graph-theoretic properties.

Definition 4.3. (Double Construction): Let
M =(S,sin,ΣL,ΣH ,ΣD,Σ ,R,AP,OL) be a security system,
defineM2 = (S2, s2

in, ΣL, ΣH , ΣD, Σ , R2,AP, O2
L) to be the

system with identical actions,where

–S2 = S×S.
–s2

in = (sin,sin).
–R2 ⊆ S2×Σ × S2 is a transition relation given by: for

a ∈ ΣL ∪ ΣD, ((s1,s2),a,(s3,s4)) ∈ R2 if and only if
R(s1,a,s3) ∧ R(s2,a,s4); and for a ∈ ΣH ,
((s1,s2),a,(s3,s4)) ∈ R2 if and only if
R(s1,a,s3)∧ (R(s2,a,s4)∨ (s2 = s4)).

–O2
L(s, t) = (OL(s),OL(t)).

Note that in every transition ofM2, for a ∈ ΣH and the
right part of each state, we add an additional transition:
from each state to itself. The key in checking intransitive
noninterference is to compareOL(sin • σ) and
OL(sin • ipurgeL(σ)). We now consider the computation
of ipurgeL(σ).

Lemma 4.1.Let σ = α ◦ d ◦β , whered ∈ ΣD,β ∈ (ΣL ∪
ΣD)

∗. ThenipurgeL(σ) = α ◦d ◦ ipurgeL(β ).
Proof. Let α = α1 · · ·αm, β = β1 · · ·βn. We first compute
sources(σ) recursively. According the definition of the
function sources, we have that ifdom(βn) = L, then
sources(βn,L) = sources(ε ,L) ∪ dom(βn) = {L}, else if
dom(βn) = H, then sources(βn,L) = sources( ε , L) =
{L}. Thus sources(βn,L) = {L}. In the same way, we
have sources(βn−1βn,L) = {L}, · · · , sources ( β ,L )
= {L}.

For d ◦ β , since dom(d)  L,
sources(d ◦ β ,L) = sources(β ,L) ∪ {dom(d)} = {D,L}.
For αm ◦ d ◦ β , since H  D,L  D,
sources(d ◦ β ,L) = sources(β ,L) ∪ {dom(αm)}.
Therefore, if dom(αi) = H with 1 ≤ i ≤ m , then
sources(αi · · ·αm ◦ d ◦ β ) = {H,L,D}. That is if there
exists αi with 1 ≤ i ≤ m such thatdom(αi) = H, then
sources(σ) = {H,L,D},otherwisesources(σ) = {L,D}.

We now consider the computation ofipurgeL(σ).
From the above computation procedure ofsources, we
have that ifdom(α1) = H thensource(σ ,L) = {H,D,L}.

That isdom(α1) ∈ source(σ ,L). If dom(α1) = L then it is
clear L ∈ source(σ ,L). Therefore
dom(α1) ∈ source(σ ,L). According the definition of the
function ipurgeL, ipurgeL
(σ) = α1◦ ipurgeL(α2 · · ·αm ◦d ◦β ). In the same way we
haveipurgeL(σ) = α1 ◦α2 ◦ ipurgeL(α3 · · ·αm ◦ d ◦ β ) =
· · ·= α ◦d ◦ ipurgeL(β ).

For β ∈ (ΣL ∪ΣD)
∗, it is easy to check thatsource(β ,

L) = {L}. Henceforth,ipurgeL(β ) is the subsequence ofβ
by deleting all actions associated with the domainH.

Definition 4.4. (D Reachable): LetM2 be the double
construction of a SLKSM. We call the state(s,s) is D
reachable from(sin,sin) if and only if s = sin or there
exists a finite action sequenceσ0 · · ·σn such thatσn ∈ ΣD
and ((sin,sin),σ0,(s1,s1)) ∈ R2, ((si,si),σi, (si+1, si+1))
∈ R2 for all 1≤ i ≤ n, andsn+1 = s.

Intuitively, if (s,s) is D reachable from(sin,sin), then
there exists an action sequenceσ ending with an action in
ΣD such thats = sin •σ .

Definition 4.5. ((H,L) Reachable): LetM2 be the double
construction of a SLKSM. We call the state(r, t) is (H,L)
reachable from(s,s) if and only if there exists a finite
action sequence σ ∈ (ΣL ∪ ΣH)

∗ such that
r = s•σ , t = s• ipurgeL(σ).

Lemma 4.2.Let M be a security system model, we have
M 6|= INI iff in M2, there are two states(s,s),(r, t) such that
(s,s) is D reachable from(sin,sin), (r, t) is (H,L) reachable
from (s,s), andOL(r) 6= OL(t).

Proof. (⇒) We supposeM 6|= INI. Then there exists a
counterexampleσ = σ0 · · ·σk. We consider two cases. On

case is that
k⋃

i=0
{dom(σi} ⊆ {H,L},i.e. there are no actions

associated with the domainD occurring in σ . Without
loss of generality, we assume thatdom(σ0) = · · · =
dom(σi) = L,dom(σi+1) = · · · = dom(σk) = H. Then
ipurgeL(σ) = σ0 · · ·σi. Let (sin,sin) = (s,s). We consider
the run ofM after inputtingσ . According to the definition
of R2, we have that((s j,s j),σ j,(s j+1,s j+1)) ∈ R2 with
0 ≤ j ≤ i. For the state (si+1,si+1), since
σi+1 ∈ ΣH ,((si+1,si+1),σi+1,(R(si+1,σi+1),si+1)) ∈ R2.
In the same way a run of system from(si+1,si+1) after
inputting σi+1 · · ·σk can be represented as(si+1,si+1)
,σi+1, (R(si+1,σi+1),si+1), σi+2,
(R(si+1 • (σi+1σi+2)),si+1),
· · · ,(R(si+1 • (σi+1 · · ·σk)),si+1). From above analysis, it
is easy to justify
si+1 = sin • ipurgeL(σ),(si+1• (σi+1 · · ·σk)) = sin •σ . Let
si+1 = s = t,r = R(si+1 • (σi+1 · · ·σk)). From the
definition of counterexample,OL ( r ) 6= OL (t).

Another case isD ∈
k⋃

i=0
{dom(σi},i.e. there exists an

action associated with the domainD occurring inσ . Let i
be an integer satisfyingσi ∈ ΣD,σ j ∈ ΣH ∪ ΣL with
i < j ≤ k. From Lemma 4.1,
ipurgeL(σ) = σ0 · · ·σi ◦ ipurgeL(σi+1 · · ·σk). Let sin = s0.
Then s0 • ipurgeL(σ)

c© 2013 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1830 L. Zhifeng et al: Algorithmic Verification of Intransitive...

= (s0 • (σ0 · · ·σi)) • ipurgeL(σi+1 · · ·σk). Let
si+1 = s0 • (σ0 · · ·σi)). We now consider the computation
of si+1 • ipurgeL(σi+1 · · ·σk). Since σ j ∈ ΣH ∪ ΣL with
i < j ≤ k, the computationsi+1 • ipurgeL(σi+1 · · ·σk) can
be reduced to the first case. Lets = si+1,r =
si+1 • (σi+1 · · ·σk), t = si+1 • ipurgeL(σi+1 · · ·σk). Then
r = sin • σ , t = sin • ipurgeL(σ).From the definition of
counterexample,OL ( r ) 6 = OL (t).

(⇐)For the cases= sin, there exists an action sequence
σ such thatr = sin •σ , t = sin • ipurgeL(σ). SinceOL(r) 6=
OL(t), σ is a counterexample.

We now suppose the action sequenceσ0 · · ·σn
satisfiesσn ∈ ΣD and((sin,sin), σ0 , ( s1, s1 )) ∈ R2, (( si
,si) , σi , (si+1 , si+1 )) ∈ R2 for all 1 ≤ i ≤ n, and
sn+1 = s. Consider((si,si),σi,(si+1,si+1)) ∈ R2 which
implies that (si,σi,si+1) ∈ R. Henceforth,s = sin • σ .
From definition 4.5, there exists an action sequence
α ∈ (ΣL ∪ ΣH)

∗ such thatr = s • α,r = s • ipurgeL(α).
That isr = sin • (σ ◦α), t = sin • (σ ◦ ipurgeL(α)). Form
Lemma 4.1,sin • ipurgeL(σ ◦ α) = s • σ • ipurgeL(α).
SinceOL(r) 6= OL(t), σ ◦α is a counterexample.

Let |M2| be the number of states inM2. In M2, if a
states2 is reachable from another states

′2, thens2 is also
reachable froms

′2 within |M2| steps. Henceforth, from
Lemma 4.2 we have that ifM 6|= INI, then there does not
exist counterexamples of length no more than 2|M2|.
However, it is unsatisfactory because the algorithm
considers some unnecessary number of iterations before it
terminates, for a system satisfyingINI. We would like to
consider only loop-free paths between pairs of states
which more less than|M2|. This insight leads to aCT .
Definition 4.6. In a SLKSM, we call a finite paths0, σ0,

· · · , σk−1, sk of M is a loop-free path if and only if for any
0≤ i < j ≤ k,si 6= s j.
Definition 4.7. (Recurrence Diameter):The recurrence
diameter of a SLKSM, denoted byrd(M) is the length of
the longest loop-free path (defined by the number of its
edges) inM between any two reachable states.

From the above definition, it is easy to justify that for
the double constructionM2 of the SLKSM, any reachable
states are reachable from another state withinrd(M2)
steps. Henceforth, in previous algorithms we can restrict
the paths to be loop free. For simplicity, we uses2

i instead
of (s1

i ,s
2
i ).

Theorem 4.1.Let M be a security system model, we have
M 6|= INI iff there exists counterexamples of length no
more than 2× rd(M2).

Theorem 4.1 says that when checking whether
M |= INI, we only need to check whether there are
counterexamples of length no more than 2× rd(M2).

4.3 Reducing Counterexample Search to SAT

In the previous subsections, we have showed that
intransitive noninterference can be checked by searching
for counterexamples. We now reduce counterexamples

search to propositional satisfiability. This reduction
enables us to use efficient propositional decision
procedures to perform intransitive noninterference
checking.

Given a SLKS structureM, and a boundk, we will
construct a propositional formula[M, INI]k. The variables
s0,σ0, ...,σk−1,sk in [M, INI]k denote an alternating finite
sequence of states and actions on a path. The formula
[M, INI]k essentially represents constraints on
s0,σ0, ...,σk−1,sk such that [M, INI]k is satisfiable iff
there exists a counterexample of lengthk. To construct
[M, INI]k, we first define a propositional formula[M]k
that constrainss0,σ0, ...,σk−1,sk to be a valid path inM.
Second, we give the translation of a counterexample of
lengthk to a propositional formula.
Definition 4.8. (Unfolding the Transition Relation): For a

SLKS M, a positive integerk, [M]k =
k−1∧
i=0

R(si, σi, si+1).

We recall that intransitive noninterference says that
the purgedH actions are not allowed to lead to any effects
observable toL. Henceforth, for the action sequence
σ = σ0 · · ·σk−1, we need to compareOL(s0 • σ) and
OL(s0 • ipurgeL(σ)). Lemma 4.1 has shown how to
computeOL(s0 • ipurgeL(σ)). First, find the last position
of actions associated with the domainD occurring inσ .
Let m represent the position. If there are no actions
associated with the domainD, let m = −1. Second,
computeipurgeL(σm+1 · · ·σk−1). We suppose that there
are i actions associated with the domainL in
σm+1 · · ·σk−1, define the following[H]m,i

k to encode the
distributing of these actions inσ .

[H]m,i
k = σm ∈ ΣD ∧m < l1 < k∧m < li < k∧

i−1∧
j=1

(l j <

l j+1)∧
i∧

j=1
(σl j ∈ ΣL)∧

j 6∈{l1,··· ,li}∧
0≤ j≤k−1

(σ j ∈ ΣH), whereσ−1 ∈

ΣD is always true.
Then we define[M]m,i

L to encode the execution of the
system after inputtingipurgeL(α).

[M]m,i
L = (sm+1 = s

′

l1
)∧

i∧
j=1

R(s
′

l j
,σl j ,s

′

l j+1
)

Combining all components, the encoding of a
counterexample of lengthk is defined as follows.
Definition 4.9. (General Translation): For a SLKSM, a
positive integer k,

[M, INI]k = I(s0) ∧ [M]k ∧
k−1∨

m=−1
(
min(k−1−m,k−1)∨

i=0

([H]m,i
k ∧ [M]m,i

L → OL(sk) 6= OL(s
′

li
)))

Theorem 4.2.For a SLKSM, a positive integerk, [M,

INI]k is satisfiable if and only if for intransitive
noninterference there exists a counterexample of lengthk.

Theorem 4.2 says that we can check whether there
exists a counterexample of lengthk by a SAT solver. We
now consider establishing a propositional formula to
encode the recurrence diameter. We define
loop f ree(s2

0,σ0, ..., σk−1,
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s2
k) =

k−1∧
i=0

R2(s2
i ,σi,s2

i+1)∧
∧

0≤i< j≤k
(s2

i 6= s2
j). It is easy to

justify rd(M2) is the minimal integer such that
loop f ree(s2

0, σ0, ..., σk−1, s2
k) unsatisfiable. The solution

of using a SAT solver to checking intransitive
noninterference is given in pseudo-code below
(Algorithm 1).

Algorithm 1. Checking Intransitive Noninterference
based on SAT

{
k = 1
While loop f ree(s2

0,σ0, ...,σk−1,s2
k) is satisfiable do

if [M, INI]k is satisfiable return the counterexample
s0,σ0, ...,σk−1,sk

k = k+1
End While
return True
}

4.4 An Example

In this subsection we use an example to show our
translation procedure. Consider a machineM shown in
Figure 3. In M, there are six states:s0, . . . ,s5. We need
three boolean variablesv1,v2,v3 to encode states. And
need to introduce three additional boolean variables
v
′

1,v
′

2,v
′

3 to encode successor states. The machine has
three actions:h, l, d. Since these commands belong to
three different domains, we need two boolean variables
u1,u2 to encode actions. The detailed encoding is given in
Table 1.

The recurrence diameter ofM is 5. We consider
whether there are counterexamples of length 2. Letk = 2.
The variabless0,σ0,s1,σ1,s2 denote an alternating finite
sequence of states and actions on a path. For simplicity, in
the boolean variables encoding states(actions), for
0≤ i ≤ k we usesi[1](σi[1]) to represent the first boolean
variable, si[2](σi[2]) to represent the second boolean
variable, si[3] to represent the third boolean variable.
Thus [M]2 = (¬s0[1] ∧ ¬s0[2] ∧ ¬s0[3])∧ R(s0[1],s0[2],
s0[3], σ0[1],σ0[2], s1[1], s1[2], s1[3]) ∧ R(s1[1], s1[2],
s1[3], σ1[1], σ1[2],s2[1],s2[2],s2[3]).

For the action sequenceσ = σ0σ1, according the
distribution of actiond and l, ipurgeL(σ) belongs to the
following action sequence set:{ε ,σ0,σ1,σ0σ1}. For the
caseipurgeL(σ) = σ0σ1, it shows thath does not occur in
σ . Therefore, we do not need to consider this case. We
use a boolean variablel1 to encode positions ofl in σ .
The detailed computation of[H]m,i

2 and [M]m,i
L is given in

Table 2.
Therefore, we have that[M, INI]2 = I(s0) ∧ [M]2 ∧

1∨
m=−1

(
min(1,1−m)∨

i=0
([H]m,i

2 ∧ [M]m,i
L → OL(s2) 6= OL(s

′

li
))). It

is easy to justify that[M, INI]2 is not satisfiable. That is,
there are no counterexamples of length 2. Further, we find
that [M, INI]4 is satisfiable. That is the machineM does

0s 1s 2s 3s

, ,h l d

, ,h l d ,l d

h , ,h l d

1p 1p 1p 2p

0 0( , )s s

, ,h l d

2 1( , )s s 3 2( , )s s

,l d

h , ,h l d

2 2( , )s s
3 3( , )s s

,l d

h , ,h l d

1 1( , )s s

h

, ,h l d

h

(A) (B)

(C:double

 construction)

h

Fig. 5 An example showing the failure of the classical induction

not satisfy intransitive noninterference. For examplehdhl
is a counterexample.

5 Combining Induction

In Algorithm 1, if M |= INI, then the program must
iterate 2× rd(M2) times. This is not feasible. In this
section we will discuss how to combine the induction
technique and the above counterexample search technique
such that the program terminates earlier. In addition, the
successful usage of the induction makes it possible to
handle larger models since the induction step has to
consider only paths of lengthk.

We first consider the classical induction. An induction
proof consists of proving the following two subgoals:

–For all states(s1
0,s

2
0), if I((s1

0,s
2
0)) holds, thenOL(s1

0)

= OL(s2
0).

–For all paths (s1
k ,s

2
k),σk,(s1

k+1,s
2
k+1), if

OL(s1
k) = OL(s2

k) and σk ∈ (ΣH ∪ ΣL), then
OL(s1

k+1) = OL(s2
k+1).

Consider the following tiny example shown in Figure
5. In this example, the systemM consists of two
components: A and B. Ifs0 is the initial state of the
system, then it is easy to justify that the systemM
satisfies intransitive noninterference. However, in this
case the classical induction technique can not be used to
proveM |= INI successfully. The reason of the classical
induction technique failure is that the technique considers
all states including reachable and unreachable states. For
example, in the double construction ofM shown in Figure
5, although the state(s2,s1) is not reachable from the
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Table 1 Encoding

object s0 s1 s2 s3 s4 s5 h l d
encoding 000 001 010 011 100 101 11 01 00

Table 2 Computation of[H]m,i
2 and[M]m,i

L

m i ipurgeL(σ ) [H]m,i
2 [M]m,i

L
-1 1 σl1 ¬σl1[1]∧σl1[2]∧σ¬l1[1]∧σ¬l1[2] s0 = s

′

0∧R(s
′

0,σl1,s
′

1)

-1 0 ε σ0[1]∧σ0[2]∧σ1[1]∧σ1[2] s0 = s
′

0
0 0 ε ¬σ0[1]∧¬σ0[2]∧σ1[1]∧σ1[2] s0 = s

′

0

initial state, the classical induction technique still needs to
prove thatOL(s2) = OL(s1) impliesOL(s3) = OL(s2). But
this is not true.

Window induction is a modified induction technique
which has been used to prove a hardware system
design [23]. The advantage of windowed induction over
classical induction is that it provides the user with a way
of strengthening the induction hypothesis: lengthening the
window k. Mathematically, for intransitive
noninterference windowed induction with window size
k ≥ 0 consists of the following two steps:

–Prove that for all paths(s1
0,s

2
0),σ0, ...,σk−1,(s1

k ,s
2
k), if

I((s1
0,s

2
0)), thenOL(s1

i ) = OL(s2
i ) for all 0≤ i ≤ k.

–Prove that for all paths(s1
0,s

2
0),σ0, ...,σk−1,(s1

k ,s
2
k),

σk,(s1
k+1,s

2
k+1), if for all 0 ≤ i ≤ k, OL(s1

i ) = OL(s2
i ),

thenOL(s1
k+1) = OL(s2

k+1).

If the first subgoal can be proved, then there are no
counterexamples of lengthk. Therefore, the first step can
be completed by checking whether[M, INI]k is satisfiable.
The second step can be completed by checking whether a
corresponding propositional formula is a tautology. We
first recall the definition of[M]k. Then we have that[M2]k

=
k−1∧
i=0

R2((s1
i ,s

2
i ),σi, (s1

i+1,s
2
i+1)). Let [M, INI]IN

k = (

[M2]k+1 ∧
k∧

i=0
(OL(s1

i ) = OL(s2
i ))→ OL(s1

k+1) = OL(s2
k+1).

It is easy to justify that[M, INI]IN
k is a tautology if and

only if the conclusion we must prove in the second step of
windowed induction is correct. We can then safely
conclude that the system satisfies noninterference. This
solution is given in pseudo-code (Algorithm 2).

Algorithm 2. Checking Intransitive Noninterference
based on Recurrence Diameter and SAT

{
k = 1
While loop f ree(s2

0,σ0, ...,σk−1,s2
k) is satisfiable do

if [M, INI]k is satisfiable return the counterexample
s0,σ0, ...,σk−1,sk

if [M, INI]In
k is a tautology return True

k = k+1
End While
return True
}

6 Experimental results

The solution we proposed mainly consists of two
components: the counterexample search component
[M, INI]k, and the induction proof component[M, INI]IN

k .

In this section we will evaluate these two components.
We conducted experimental evaluation using a Linux
workstation with a 3.06GHZ Pentium processor and
2048MByte memory. We choosed SATO [18] as the
propositional prover since it is a very efficient
implementation of the Davis&Putnam procedure. All
benchmarks used in the experiment were taken from [25].
They have been converted from communicating state
machines to Security Labeled Kripke Structures.

In the conversion, for each action we assigned a
security class randomly. We collected three kinds of
assignment satisfying that the length of the minimal
counterexample are 4, 12 and 16 respectively. The
experimental results can be found in Table 3. The times
reported are the average of 5 runs. The columns are

–Problem: The problem name with the size of the
instance in parenthesis.

–States: Number of reachable states in the SLKS.
–Actions: Number of actions in the SLKS.
–k: The time in seconds required by Algorithm 2 to find
a counterexample for the value ofk.

In Table 3 N/A means the computation time is too
long and over the pre-set time. The set of experiments we
used is too small to say anything conclusive about the
performance of our methods. There is, however, still an
interesting observation to be made: SAT based
verification of intransitive noninterference is typically
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Table 3 Experiments

Problem States Actions k = 4 k = 12 k = 16
ELEV(1) 158 99 1.13 11.76 20.74
ELEV(2) 1062 299 18.02 314.56 412.76
ELEV(3) 7121 783 411.95 N/A N/A
ELEV(4) 43440 1939 3256.28 N/A N/A
MMGT(2) 817 114 3.06 85.41 159.91
MMGT(3) 7703 172 56.87 765.87 N/A
MMGT(4) 66309 232 363.15 N/A N/A
RING(3) 87 33 0.45 8.86 26.45
RING(5) 1290 55 3.88 47.09 210.19
RING(7) 17000 77 93.82 843.67 N/A
RING(9) 211528 99 625.84 N/A N/A
RW(9) 523 181 4.91 57.24 108.79
RW(12) 4110 313 77.63 963.95 N/A
RURNACE(1) 344 37 0.41 4.23 32.73
FURNACE(2) 3778 65 10.26 119.15 544.45
FURNACE(3) 30861 99 152.94 N/A N/A

faster in finding counterexamples; the deeper the
counterexample is, the less advantage our approach has.

7 Conclusions and Future Work

The main contribution of this paper is to present an
algorithmic approach to checking intransitive
noninterference.
The main advantage of our approach includes two
aspects. First, our approach combines the
counterexamples search strategy and the window
induction proof technique. The counterexamples search
strategy makes us find the counterexample of minimal
length rapidly. The window induction proof technique
strengthens the induction hypothesis. Second, our
approach can be implemented using a plain SAT-solver.

Other contributions includes: in order to make the
search procedure terminate as soon as possible, to the
length of minimal counterexamples we propose an
over-approximation which also can be checked by a plain
SAT-solver .

There are many interesting avenues for future
research. Our current work concentrates on two
directions. First, we are extending our approach to other
information flow security properties. Second, we are
modifying the predicate abstraction technique such that
we can abstract the finite state behaviors from infinite
state systems while preserving intransitive
noninterference.
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