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Abstract: In this paper we propose an automated verification approach to cheicitiagsitive noninterference for deterministic
finite state systems. Our approach is based on the counterexamplas\seréication strategy, and is conducted in gradual manner. It
produces counterexamples of minimal length. Further, we reducetinterexamples search to propositional satisfiability. For the case
that there are no counterexamples, we also introduce the window indyctioh method in order to avoid considering unnecessary
iterations, and show that the induction proof can be performed by tHedrodecision procedure. In addition, based on graph-theoretic
properties of systems we propose an over-approximation to the lentjte sinallest counterexample, and the over-approximation can
also be checked by the boolean decision procedure.
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1 Introduction Such a dependency creates an insecure channel called a
covert channel, having the capability of transmitting
One of the typical problems in computer security is thathigh-level information concernindy to any low-level
confidential data needs protecting from undesiredagent observind. In practice, however, many practical
accesses. A well known approach to solving this problemsecurity problems go beyond the scope of simple
is the Multilevel Security, which is a policy for managing noninterference. In particular, the problem of
objects at various levels of secrecy. In multilevel segurit confidentiality in multilevel security systems, where the
systems every object and every user is bound to a secredglation over the set of security levels capturing allowed
level and the information flow1] can be directed only information flows, are not transitive. Noninterference
from low users to high users. The system achieves thizannot cope with intransitive flow policies. Therefore,
aim by implementing access control policies. As intransitive noninterference has been proposed by Rushby
remarked in 2] this solution is still not satisfactory. in the literature §].
Access control policies are defined to serve this task by  Since Rushby’s initial work, many researchers did
specifying which accesses are allowed for which usersmuch work about intransitive noninterference. For
However, access control methods can only restrict direcexample, more  definitions  about intransitive
information flow. Information leakage over covert noninterference have been proposed in the
channels 3] is not controllable by access control literature P-11]. For nondeterministic systems, Mantel
methods. presented a new model in terms of event system for
In [4], Goguen and Meseguer first introduced the intransitive flow fL2]. However, there is few work on the
notion of noninterference as a means to control bothverification of intransitive noninterference because
direct and indirect information flow. intransitive noninterference is a global requirement vehos
Noninterference §-7] captures any causal dependency verification is usually a complex task. At present, the
from a high-level actiorh to a lower-level actiori. By absence of feasible algorithmic verification approaches is
causal dependency we mean that the dependent action cdme  main  problem in  checking intransitive
not occur without the occurrence of the preceding actionnoninterference. Prior to our work, only one rigorous
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algorithm has been proposed by Nejib Ben _Hadj-AIpuane i Nok =kl ‘

in the literature 13, 14] to check intransitive

noninterference based on some necessary and sufficient | ., | =1 ’;e”‘:;‘:‘ed No IIM.INI), is | No |[M.INT)" is
conditions. Other algorithms, for example[8], only use a threshold? satisfiable? a tautology?
sufficient condition as a basis for checking intransitive Yesl chl lYes
noninterference.

~Inthis paper, we focus on using a SAT solver to verify Return True Return a 1 Retum True
intransitive noninterference on deterministic systems. O counterexampla

work is motivated by which the verification methods
based on SAT solversl5-18] have been shown to push
the envelope of functional verification in terms of both ™%
capacity and efficiency, as reported in several academi&’sing a SAT Solver
and industrial case studiesl9-22]. The successful
application of SAT solvers in formal verification is due to
dramatic improvements in SAT solver technology over . L - I
the past decade. At present, several powerful SAT solverd1at involves only individual transitions. The unwinding
can handle propositional formulas with hundreds of@PProach is usually called the traditional verification
thousands of variables. approach. Here, we first recall the unwinding approach,
We present a symbolic algorithmic approach to thetnen compare it with our approach. _

verification of intransitive noninterference. The basic ~ The basic concept of the unwinding approach is to
Concept Of our a|gorithmic approach Consists Of two I’educe_ -Ch.eck"]g IntranSItlve. nonlnterf-erence fOI’ a
aspects: one aspect is to search for a counterexample §eterministic system to determine the existence of some
intransitive noninterference in executions whose length i €quivalence relation called the unwinding relation. The
bounded by some integkr the search works by mapping relationship between the unwinding relation and
the problem of the existence of some counterexample ofhtransitive noninterference has the following classical
|ength k to the propOSitiona| Sansf'ab”'ty prob|em; I‘eSl,!ltSS A detel:mInIStIC SyStem Sat!SfI.eS Intra'nSItlve
another aspect is to use the window induction noninterference, if there exists an unvymdmg rel_atlon for
technique 23] to verify intransitive noninterference, and the system. Henceforth, how to determine the existence of
the induction hypothesis is checked by a SAT solver. Ourthe unwinding relation is a key problem in verifying

algorithmic approach shown in Figure 1 consists of threeintransitive noninterference. However, we note that the
basic steps: existence of the unwinding relation is only a sufficient

) condition, not a necessary condition. And to the best of
1.Check the Bound: Determine whether the boundq knowledge, there is no efficient algorithmic approach
reaches the pre-computed threshold. If so, then claimqg checking whether there exists the unwinding relation.
the system satisfies intransitive noninterference. In addition, the unwinding approach also suffers from the
2.Search for Counterexamples by a SAT Solver: Reducgate explosion problem, i.e. the model size is the major

the existence problem of counterexamples of SOM&acior which affects the performance of decision
length to the propositional satisfiability problem, i.e., procedures.

tﬂgre %XI(s)gt?gnu;}t?g?;ir&ﬁ)\lﬂem ;‘}le%@tlﬁ;;g%;&lg If|f Recently, in L3, 14] for discrete event systems Nejib
M IpNIp] is satisfiable thén clgim that the s.stem Ben Hadj-Alouane et al. proposed an algorithmic
doés no? satisf intra,nsitive noninterferencey andapproach o the \verification of intransitive
return a countere&ample ’ noninterference. The basic concept of their approach is to
: : i . use an observability based on a purge function, called
3.Inductive Proof by a SAT Solver: Reduce the window iP-observability, to capture intransitive noninterference

'nr%%?é'%n-zrofgeto-ntgf Pr:gpg,?g'r?n?goifllsti'%b'sl!tye and reduce the checking ofP-observability to the
problem, 1.€., window induction p IN 12 checking of P-observability, which can be done
of window k succeeds if and only ifM,INI]," is a efficiently

tﬁutology. If[M’.I '}I.I]IKN.'S a ta_u_tology, 'Fhenfclalm thatl We now consider the main differences between above
fetekszyitirg ?g:fr:]efo |g':(raapni;|t|ve honinterierence, es‘?jlpproaches and ours. First, we develc_>p an algorithmic
' ' approach to checking intransitive noninterference, and
can use boolean decision procedures to perform the
algorithm. Boolean decision procedures can make us
2 Related Work verify large systems. Second, our approach combines the
counterexample search strategy and induction proof
Intransitive noninterference is a global requirement. Thetechnique. The counterexample search strategy makes us
direct verification of noninterference is a complex task.find counterexamples quickly. And the counterexample
In [8], Rushby proposed an unwinding approach whichcan guide designers to modify the design of systems.
reduces the global requirement to more local conditionsThird, compared with the unwinding approach, our

Fig. 1 A Framework for Verifying Intransitive Noninterference
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approach is complete. That is our approach can justify
whether or not a system satisfies intransitive
noninterference.

The paper is organized as follows. In Section 2, we
describe intransitive noninterference in detail. In Swetti
3, we present our SAT-based automated verification
technique to check intransitive noninterference. In
Section 4, our experimental results are presented. Some

conclusions and ideas for future research are presented in B ] o
Section 5 Fig. 2 Intransitive noninterference satisfied

3 Intransitive Noninterference

The definition of noninterference is based on transitive
flow policies, i.eH ~ DAD ~ L = H ~ L. Goguen and
Meseguer recognized the inability of transitive flow
policies to model some security policies such as control
policies, and they introduced several extensions to the
basic formulation in their papel2fl]. However, the first
satisfactory formal account of intransitive information
flow has been introduced by Rushb¥],[followed by  Fig. 3 Intransitive noninterference not satisfied
definitons by Pinsky 9] and by Roscoe and
Goldsmith [L0]. Rushby gave a formalization of
intransitive noninterference in terms of input-output
automata. Intuitively intransitive noninterference sthat v
flows from the high domaid to a trusted domaid and
flows fromD to the low domairL are admissible while a
direct flow fromH to L is not allowed. In this section we .
recall the definition of intransitive noninterference In essency € sources(a,u) means ¢|ther thal:_ u
introduced by Rushby. We use a type of state transitiorP" that there is a subsequencecottonsisting of actions
graph called Security Labeled Kripke Structure(SLKS) to Performed by domains wy, wp,---,wh  such  that

v € sources(a,u) A dom(a) ~» v then
sources(ao o,u) = sources(a,u) U {dom(a)}, otherwise
sources(ao o, u) = sources(a, u).

describe the behavior of a security system. Wy~ W~ e v W, V=W andH = Wh.

Definition 3.1. A Security Labeled Kripke Structure We can now define the functiopurge: 2* x D — 2

(SLKS)M is composed of as follows: ipurge(e,u) = ¢ if
dom(a) € sources(a o  a,u), then

—S: a set of states with an initial stagg € S.

-2 : a set of actions.

—R:Sx 2 — Satransition function.

-ID : a set of security domains.

—dom: > — ID a function associating a security domain
with each action.

—0:Sx D — 2°P an observation function, whe/&P is

a set of atomic propositions. Definition 3.3. We call a SLKSM satisfy intransitive

A security policy is specified by a reflexive relation noninterference, denoted bW = INI, if for any
~ onD. We usey~ to denote the complement relation, a € >*,ac D : O(spe a,a) = O(speipurge(a,a),a).
that is-4= (D x D)\ ~», where\ denotes set difference. Consider a three domain syster, = {H,D,L},
We call~~ and+ as the interference and noninterference whereD is a downgrading domain. The non-interference
relations, respectively. A policy is said to be intrangiti’  relation is such that»= {(H,D),(D,L),(D,H), (L,D),
its interference relation has no transitive property. (L,H)}. We consider the systenid; and M, given in

To formally define intransitive noninterference, a Figures 2 and 3 in whictdom(h) = H, dom(l) = L,
function sources on paths is introduced by Rushby. The gom(d) = D. Each states is labeled by the function
purpose of the functiorsources is to identify those Qs L) . It is easy to justify the syster; shown in
actions in a path that should not be deleted. For the actiofrigyre 1 is secure for~, M, shown in Figure 2 is not
sequences @ = 0i---Gn, B = P1---Bm, define  secure for. In My, consider the action sequenkehl.
aoB=ai-onPr-Pm ipurge(hdhl,L) = hdl. It is easy to compute
Definiton  3.2.  We  define the function O(sgpehdhl,L)={ps}, O(speipurge(hdhl,L),L)={ps}.
sources: 3* x D — 2P as followssources(e, u) = {u}; if That isO(spe hdhl, L) # O(speipurge(hdhl,L),L).

ipurge(a o a,u) = a o ipurge(a,u), otherwise
ipurge(aoc a,u) =ipurge(a,u).

Informally, ipurge(a,u) consists of the subsequence
of a with all those actions that should not be able to
interfere withu removed. Thus, security is now defined in
terms of the purge function.
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4 SAT-based Algorithmic Verification of
Intransitive Noninterference

4.1 Symbolic Representation of System

In the remainder of this paper, we restrict our attention to
systems with only three security domai#s= {H,L,D},
governed by the following noninterference relation:
= {(H7 D)a (D7 L)a (La H)? (La D)7 (Da H)} That iS Only

H — L is not allowed. For discussion convenience, we
first modify the definition of SLKS.

Definition 4.1. A SLKS M is a 9-tuple(S, sin, 21, 24, 2p,
2, R AP, O_) where

—Sis a finite non-empty set of states.

—Sp € Sis an initial state.

-2, C 2 is a finite set of actions associated with the
domainL.

-2y C 2 is a finite set of actions associated with the
domainH.

—>p C 2 is a finite set of actions associated with the
domainD.

—> is a finite set of actions witlhl = >, UZH U 3p.

—-R:Sx 2 — Sis a transition function.

—AP is a finite set of propositions.

-0, : S— 2" is defined a®©y (s) = O(s,L).

For simplicity, we definépurge_(o) = ipurge(o,L),
and a predicat®(s, 0,9) iff s =R(s, o). To represent the

) 4
l,d
So S

Fig. 4 A Security Labeled Kripke Structure with Two states

Y(o). The transition relation R(s,0,s) can be
eharacterized by a boolean formula as follows:
R(@™(s),¢ *(0),¢71(8)). For simplicity, we useR
instead of R The labeling functionO.(s) can be
represented as follows:
oL(s) @ (s) AN p oA A P
peOL(s) PEAP\OL(s)
OL(s) # (s’) can be represented as follows:
Ou(s) A

Os) A =(( A pA A —p)
A PA

pcOL(s) PEApP\OL(s)
A
peOL(s)

—p)).
PEAP\OL(S)

In order to illustrate how to represent a SLKS
symbolically, we consider the two states structure shown
in Figure 4. In this case, there are two states. We need one
boolean variables to encode statest = 0 encodings,

A

<~

(

result of executing a sequence of actions, define they =1 encodings, . We introduce one additional boolean

operation e¢Sx 2* — S by see& = s and
se(doa) = R(sea,a). In a SLKS M, a path

mT = %,00,51,01,...,0k;+1 Of M is an alternating
sequence of states and actions subject to the following
foreachk >i > 0,5 € S g € Z andR(s, gj,5+1) holds.

variable V' to encode successor states. There are three
actions in this example. Thus we need a two bit boolean
vector (u,up) to encode actiong1,1) encodingh, (0,1)
encodingl, and(0,0) encodingd. Then we can represent
the transition from statg, to states; enabled by inputting

We now describe how a SLKS can be represented with =vA —u; Auz AV. The boolean formula for the

symbolically. To represent this structure we must describeentire

the setS the setX, the transition relatiorR, and the
labeling function O_. Without loss of generality, we
suppose that there ard"2states for somem > 0, 2"
actions associated with the domainfor somen > 0, 2

actions associated with the domaih, 2" actions
associated with the domaiB, AP = {ps,---,px} for

somek > 0.

Let ¢ : S+ {0,1}™ be a bijection function that maps
each state 0Bto a boolean vector of length. The initial
states, can be represented by a boolean vea(s),
denoted byl(sp). ¢ : Z < {0,1}"2 be a bijection
function satisfying ¢ : 2. < {0} x {1} x {0,1}",
v Xy < {1} x {1} x {0,1}", and
Y 2p + {0} x {0} x {0,1}". ¢ maps each action o

to a boolean vector of lengthn + 2. Let
¢(s) = (b,...,bm). Then, the stats can be characterized
1<i<m 1<i<m

by a boolean formula as follows: /\ bA A ﬁbl,

bi= bi=0
Whereb; is an atomic proposition. For simplicity, we use
¢(s) instead of the above formula. In the same way an
action o can be characterized by the boolean formula

transition relation is
(VAU L AU AV)V (-VA UL AU A =V) V (VA =g A
UWAV)V (VAULAUA V)V (VAUL AU A=V) V (mVA
SUp A =g AV) V (VA =Ug A —Up A V). The labeling
function is represented by
(VA PLA=P2) V (VA P2 A—Py).

given by

4.2 Checking Intransitive Noninterference by
Searching for Counterexamples

Definition 4.2. (Counterexample for Intransitive
Noninterference): LetM be a SLKS. A finite action
sequencec € >* is called a counterexample of
intransitive noninterference iff
OL(sne0) # OL(sneipurge.(0)).

It is easy to justify that a SLK®/1 does not satisfy
intransitive noninterference iff there is a counterexampl
That is we can check intransitive noninterference if we
consider all possible actions sequences. This leads to a
straightforward intransitive noninterference checking
procedure. To check whethéd = INI, the procedure

© 2013 NSP
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checks all action sequences with lengtkh for
k=0,1,2,---. If a counterexample with lengthis found,
then the procedure proves tHdt}~ INI and produces a
counterexample of lengthk. If there are no
counterexamples of lengtkk we have to increment the

value of k indefinitely, and the procedure does not haveipurge (o) = aioazoipurge. (a3

terminate. We now establish a threshold lgrand have
that for all k within the threshold, if there are no
counterexamples of lengthk, we can conclude that
M E INI. We call this threshold theCompleteness
Threshold, and denote it byCT. It is clear, if M |= INI
then the smallesCT is equal to 0, and otherwise it is

equal to the length of the shortest counterexample. Thi

implies that finding the smalle€T is at least as hard as
checking whetheM = INI. Consequently, we should like

to concentrate on computing an over-approximation to th

smallestCT based on graph-theoretic properties.
Definiton  4.3.  (Double  Construction): Let
M =(Ssn, 2L, 2H,2p,2,RAPOL) be a security system,
defineM? = (S, $2, 5|, 54, 5p, =, R%, AP, O?) to be the
system with identical actions,where

- =SxS

—5|2n (Sin,Sin)-

-R? C & x ¥ x § is a transition relation given by: for

ac 3 UZp, ((s1,%).a,(s3,54)) € R if and only if

R(sl a,3) N R(p,as); and for a € 2y,
((s1,%2),a (%54)) € R if and only if
Rg ,a53 Sz,a54) (2 =s4)).

s),0L(t)).

Note that in every transition df12, for a € >y and the

right part of each state, we add an additional transition:

That isdom(aq) € source(o,L). If dom(a1) =L thenitis
clear L € source(o,L). Therefore
dom(a1) € source(o,L). According the definition of the

function ipurge, i purge_
(o) =aioipurge (az---amodoB). In the same way we
.o amo d le) B) f—

--=0aodoipurge.(B).
ForB € (2L U 2p)*, itis easy to check thaburce(S,
L) = {L}. Henceforthjpurge_(B) is the subsequence Bf
by deleting all actions associated with the dontdin

Definition 4.4. (D Reachable): LetVi? be the double

.construction of a SLKSV. We call the statés,s) is D
Seachable from(sn,sn) if and only if s= sy or there

exists a finite action sequencg- - - oy, such thato, € 2p
and ((sin,Sn), 0o, (s1,81)) € R, ((s,8), 0, (S+1, S+1))
cR2forall1<i<n,ands,,1 =s.
Intuitively, if (s,s) is D reachable fron{s,sn), then
there exists an action sequercending with an action in
>p suchthas=spe0.

Definition 4.5. (H,L) Reachable): LemM? be the double
construction of a SLK3$/. We call the statér,t) is (H,L)
reachable from(s,s) if and only if there exists a finite
action sequence o € (5. U Xy)* such that
r=seo,t =seipurge (0).

Lemma 4.2.Let M be a security system model, we have
M [~ INI iffin M2, there are two states, s), (r,t) such that
(s,s) is D reachable frontsin, sin), (r,t) is (H,L) reachable
from (s,s), andOy (r) # OL(t).

Proof. (=) We supposeM [~ INI. Then there exists a
counterexampler Op- - - 0. We consider two cases. On

from each state to itself. The key in checking intransitive €8S€ IS thaU {dom(ai}  {H,L}.i.e. there are no actions

noninterference is to compareO.(sn ¢ o) and
OL(sneipurge (0)). We now consider the computation
of ipurge, (o).

Lemma 4.1.Let 0 = aodo 3, whered € 3p,3 € (I U
2p)*. Thenipurge (o) = aodoipurge (B).

Proof. Leta =ay---am, B = B1--- Bn. We first compute
sources(o) recursively. According the definition of the
function sources, we have that ifdom(B,) = L, then
sources(f3n,L) = sources(e,L) Udom(B,) = {L}, else if
dom(B,) = H, then sources(f3,,L) = sources( €, L) =
{L}. Thus sources(f3,,L) = {L}. In the same way, we

have sources(,-16n,L) = {L},---, sources ( B ,L )
={L}.

For d o B, since dom(d) ~ L,
sources(d o 3, L) sources(f3, L)U{dom(d)} {D,L}.
For om o o 3, since H ~ ~ D,
sources(d o B L) = sources(f,L) U { m(0m)}.
Therefore, if dom(a;) = H with 1 <i < m , then
sources(qi---amodo f3) = {H,L,D}. That is if there

exists a; with 1 <i < m such thatdom(aj) = H, then

assomated Wlth the domaid occurring in g. Without
loss of generality, we assume thdbm(ogp) = - =
dom(gi) = L dom(cr.+1) = ... = dom(ogx) = H. Then
ipurge (o) = 0p--- G. Let (sn,sn) = (s,s). We consider
the run ofM after inputtingo. According to the definition
of R?, we have that((s;,s;),dj, (Sj+1,Sj+1)) € R? with
0 < j < i. For the state (S4+1,S+1), Since
Oir1 € 2H,((S+1,S+1),0i+1, (R(S+1,0i11),S41)) € R2.
In the same way a run of system frofs1,s1) after
inputting oi41---0¢x can be represented &Siy1,S+1)
10i+1, (R(S+l7o—i+l)7s+l)v Oi42,
(R(s1 i (0i110i42)),S+1),

-, (R(s+19(0it1---0k)),S+1). From above analysis, it
is easy to justify
S+1=Sneipurge (0),(S+19(0i41---0k)) =Sne 0. Let
S+1 = S = t,r = R(S41 @ (Giy1---0k)). From the
definition of counterexampl@L (r)#0L(t).

Another case iD € U {dom(g;}.i.e. there exists an

action associated with the domdinoccurring ino. Leti

sources(o) = {H,L,D},otherwisesources(o) = {L,D}. be an integer satisfying; € >p,0; € >4 U 2 with
We now consider the computation @purge_ (o). i < j < k From Lemma 4.1,
From the above computation procedure sofirces, we ipurge (o) = 0p---Gioipurge. (Oi+1--- Ok). Letsp = So.
have that ifdom(a1) = H thensource(o,L) = {H,D,L}.  Then ) o ipurge (o)
© 2013 NSP
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= (s0 e (0p---0i)) e ipurge (Cit1---Ok). Let search to propositional satisfiability. This reduction
S+1 =S¢ (0p---0;)). We now consider the computation enables us to use efficient propositional decision
of 5y 10 ipurgeL(aHl---ok). Since gj € 2y U 2 with procedures to perform intransitive noninterference
i < j <k, the computatiors; eipurge (oi+1---0k) can  checking.
be reduced to the first case. Let = s,1,r = Given a SLKS structuréVl, and a bound, we will
St1e(0it1---0k),t = St eipurge (Git1---0k). Then  construct a propositional formu([®, INI]x. The variables
r = Sneo,t =speipurge (0).From the definition of ,00,...,0k_1,% in [M,INI]x denote an alternating finite
counterexampled (r) £~ O (t). sequence of states and actions on a path. The formula
(«<)For the cass= s, there exists an action sequence [M,INI]x  essentially represents constraints on
o suchthat =sne0,t =speipurge (o). SinceOy (r) # %0, 0o, ---, Ok_1,5% such that[M,INl]y is satisfiable iff
OL(t), o is a counterexample. there exists a counterexample of lendgthTo construct
We now suppose the action sequencg--- oy [M,INIl]x, we first define a propositional formulgv]y
satisfieso, € 2p and((Sin,Sin), 0o , ( S1,S1)) € R2, (s that constrainsyg, 0o, ..., Ok_1,% to be a valid path irv.
S), G, (S¢1,S41 ) eRRforal 1<i<n and Second, we give the translation of a counterexample of
Sw1 = S Consider((s,s),0i,(S11,511)) € R? which lengthk to a propositional formula.
implies that (s,0i,51) € R Henceforth,s = spe 0. Dpefinition 4.8. (Unfolding the Transmon Relation): For a
From definition 4.5, there exists an action sequence
a € (5 UZy)* such thatr = sea,r = seipurge (o).  SLKSM, a positive integek, [M]y = /\ R(s, 0, S+1)-
Thatisr =spe(0oa),t =Spe (aoipurga_(a)). Form

: . We recall that intransitive nonlnterference says that
Lemma 4.1,sheipurge (coa) = se g eipurge (a).

SinceO O (t X i | the purgedH actions are not allowed to lead to any effects
mCL?et |L'\(/Irg|7ée Ergg,rijcr)nilesr%Eg?a[l:sreh);%mlael\./lz it a observable toL. Henceforth, for the action sequence
! i B 0 = 0g---Ok_1, We need to compar®, (spe o) and
states’ is reachable from another staé, thens*is also o, (g e ipurge (0)). Lemma 4.1 F;]as s(hown )how to
12 \yithi 2 o e o
Lemma 4.2 we have that M [~ INI, then there does not  f actions associated with the domanoccurring ino.
exist counterexamples of length no more thaM2. | et m represent the position. If there are no actions
However, it is unsatisfactory because the algorithmggsociated with the domai®, let m = —1. Second,
considers some unnecessary number of iterations before Homputelpurga_(oml -0k_1). We suppose that there
terminates, for a system satisfyihiyl. We would like to  gre | actions associated with the domaih in

consider only loop-free paths between pairs of stateg;, ..., define the following[H]™ to encode the
which more less thafM?2|. This insight leads to €T. d|str|buting of these actions ia.
Definition 4.6. In a SLKSM, we call a finite patts, 0o, mi i-1

, Ok_1,  of M is a loop-free path if and only if for any Hl" =0me ZpAm<ly <kAm<li <kA jé\l(lj <
O<|<J<k37ésJ [P a
Definition 4.7. (Recurrence Diameter):The recurrence lj+1) A /\ (o|J €X)N N (0j€2Zn), whereo_; €
diameter of a SLK9, denoted byd(M) is the length of O<j<k-1
the longest loop-free path (defined by the number of its>D IS always true. . _
edges) inVl between any two reachable states. Then we deflne{M] to encode the execution of the

From the above definition, it is easy to justify that for System after mputtmgpurga_( ).

2

the double constructioll< of the SLKSM, any reachable [M] — (Smi1= )/\ /\ R(S ai 73 )

states are reachable from another state witi(iV?) j+1

steps. Henceforth, in previous algorithms we can restrict  Combining alll Components the encoding of a
the paths to be loop free. For simplicity, we (s8énstead counterexample of lengtkis defined as follows.

of (5,5). Definition 4.9. (General Translation): For a SLKH, a
Theorem 4.1.Let M be a security system model, we have positive integer K,
M [~ INI iff there exists counterexamples of length no k-1 min(k—1-mk-1)
more than 2< rd(M?). [M,INIJk = I(s0) A [Mc A mV 1( iV0

Theorem 4.1 says that when checking whether i mi /
M = INI, we only need to check whether there are (Ml A ML — Ou(so) # OL(s)))
counterexamples of length no more thar &1(M?). Theorem 4.2.For a SLKSM, a positive integek, [M

INI]x is satisfiable if and only if for intransitive
noninterference there exists a counterexample of lekgth
4.3 Reducing Counterexample Search to SAT Theorem 4.2 says that we can check whether there
exists a counterexample of lendttby a SAT solver. We
In the previous subsections, we have showed thanhow consider establishing a propositional formula to
intransitive noninterference can be checked by searchingncode the recurrence diameter. We  define
for counterexamples. We now reduce counterexamplei;oopfree(%,00,..., Ok_1,
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k—1

Q= AREaL)N A (F#F). tiseasyto b h
i=0 o<i<j<k

justify rd(M?) is the minimal integer such that

loopfree(s, oo, ..., Ok_1, §) unsatisfiable. The solution

of using a SAT solver to checking intransitive 5
noninterference is given in pseudo-code below
(Algorithm 1).
Algorithm 1. Checking Intransitive Noninterference
based on SAT

{ hol.d
k=1 -
While loopfree(s3, do, ..., 0k_1,52) is satisfiable do @

if [M,INI]y is satisfiable return the counterexample

(A) (B)

S0, 00, -5 Ok—1, S (5055,)
K=k+ 1 (C:double
End While construction) (5,,5,) (85,5,)
return True
}

Fig. 5 An example showing the failure of the classical induction

4.4 An Example
) . not satisfy intransitive noninterference. For exantulél
In this subsection we use an example to show oUfig 5 counterexamol
. . , ple.
translation procedure. Consider a machMeshown in
Figure 3. InM, there are six states;...,s;. We need
three boolean variableg;,v,,v3 to encode states. And .. .
need to introduce three additional boolean variables® COmbining Induction
Vi,V,, V3 to encode successor states. The machine has ) )
three actionst, |, d. Since these commands belong to In Algorithm 1,2If M [= INI, then the program must
three different domains, we need two boolean variabledterate 2x rd(M#) times. This is not feasible. In this

uz, Uz to encode actions. The detailed encoding is given insection we will discuss how to combine the induction
Table 1. technique and the above counterexample search technique

The recurrence diameter d¥l is 5. We consider Such that the program terminates earlier. In addition, the
whether there are counterexamples of length 2K-et2.  successful usage of the induction makes it possible to
The variabless, 0p,s1, 01,5 denote an a|ternating finite handle Iarger models since the induction step has to
sequence of states and actions on a path. For simplicity, igonsider only paths of length
the boolean variables encoding states(actions), for
0 <i < kwe uses [1](ai[1]) to represent the first boolean We first consider the classical induction. An induction
variable, s[2](ci[2]) to represent the second boolean proof consists of proving the following two subgoals:
variable, s[3] to represent the third boolean variable.

Th M]o = (=s[1] A =0[2] A =0[3])A R(so[1],50[2], :
o3 oo s, SiBl, s A Rl e, Forall satess, ), it 1((sh:5) holds, theroL (<)

=O0L(s)-
51[3], 01[1], 01[2]732[1]752[2]332[3})' .
For the action sequence = 0yoi, according the —For all  paths ()0 (S¢1:5%.1),  f
distribution of actiond and|, i purge, (o) belongs to the OL(st) = Ou(sf) and ok € (Zn U %), then
following action sequence sefg, gy, 01,0001 }. For the OL(st, ) =OL(s,4)-

caseipurge (o) = 0p01, it shows thah does not occur in
o. Therefore, we do not need to consider this case. Wi
use a boolean variablg to encode positions df in g.
The detailed computation ¢H]%" and [M][™ is given in
Table 2.

Consider the following tiny example shown in Figure
. In this example, the systerM consists of two
components: A and B. If is the initial state of the
system, then it is easy to justify that the systdvh
satisfies intransitive noninterference. However, in this
. Thni;?fgi’) we have thaM,INI]> = 1(s) A M2 A cage the classical induction technique can not be used to
’ HIM A MI™ s O O, (S ). It prove M [= INI successfully. The reason of the classical
nré/,l( i\:/o (2" A M L(s2) # L(S'))) induction technique failure is that the technique consider
is easy to justify thafM,INI], is not satisfiable. That is, all states including reachable and unreachable states. For
there are no counterexamples of length 2. Further, we fingexample, in the double constructionMfshown in Figure
that [M,INl], is satisfiable. That is the machil@ does 5, although the statésy,s;) is not reachable from the
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Table 1 Encoding

object S St S S3 Sy S5 h I d
encoding| 000 | 001 | 010 | 011 | 100 | 101 | 11 | 01 | OO

Table 2 Computation ofH]J* and[M]™
m | i | ipurge (o) G M
1)1 ai, o, [ A0, 2 Ao, [ Ao, [2] | so= ARS8
110 £ 0o[1] A op[2] A o1[1] A 01[2)] D=9
oo £ -0p[1] A —00[2] A 01[1] A 012 0=%

initial state, the classical induction technique still deé
prove thatOy (sp) = Oy (s1) impliesOy(s3) = OL(s2). But
this is not true.

Window induction is a modified induction technique

if [M,INI]{"is a tautology return True
k=k+1

End While

return True

}

which has been used to prove a hardware system

design R3]. The advantage of windowed induction over

classical induction is that it provides the user with a way g Experimental results

of strengthening the induction hypothesis: lengthenirmg th
window k. Mathematically, for  intransitive
noninterference windowed induction with window size
k > 0 consists of the following two steps:

—Prove that for all pathés}, 3), 0o, ..., Ok_1, (St, ), if
1((s5,s5)), thenOL (s!) = OL(s?) forall 0< i < k.
—Prove that for all pathgs}, %), 0o, ..., Ok_1, (S, ),
Uk,($+l7§+l), if for all 0 <i <k, O_(s}) = OL(5),

thenOL(SLl) = OL(§+1)-

If the first subgoal can be proved, then there are n
counterexamples of length Therefore, the first step can
be completed by checking whethéf, INI] is satisfiable.
The second step can be completed by checking whether

corresponding propositional formula is a tautology. We
first recaII the definition ofM]x. Then we have thgM?]y

/\RZ (s49), 01, (st ,524)). Let [M,INIIN = (

M1 A /\ (OL(s!) =OL(s7)) = Ou 3&+1 =0 §+1
It is easy to justify thafM, INI]IN is a tautology if and

only if the conclusion we must prove in the second step of

windowed induction is correct. We can then safely

conclude that the system satisfies noninterference. This

solution is given in pseudo-code (Algorithm 2).

Algorithm 2. Checking Intransitive Noninterference
based on Recurrence Diameter and SAT

{

k=1

While loopfree(s3, 0o, ..., 0k_1,5) is satisfiable do

if [M,INI]y is satisfiable return the counterexample
a)? 0-07 b O‘k*l? S‘

0.

The solution we proposed mainly consists of two
components: the counterexample search component
[M,INI]x, and the induction proof componei, INI]}N.

In this section we will evaluate these two components.

We conducted experimental evaluation using a Linux
workstation with a 3.06GHZ Pentium processor and
2048MByte memory. We choosed SATAY as the
propositional prover since it is a very efficient
implementation of the Davis&Putnam procedure. All
benchmarks used in the experiment were taken fr@sh |
They have been converted from communicating state
machines to Security Labeled Kripke Structures.
a In the conversion, for each action we assigned a
security class randomly. We collected three kinds of
assignment satisfying that the length of the minimal
counterexample are 4, 12 and 16 respectively. The
experimental results can be found in Table 3. The times
reported are the average of 5 runs. The columns are

—Problem: The problem name with the size of the
instance in parenthesis.

—States: Number of reachable states in the SLKS.

—Actions: Number of actions in the SLKS.

—k: The time in seconds required by Algorithm 2 to find
a counterexample for the value kaf

In Table 3 N/A means the computation time is too
long and over the pre-set time. The set of experiments we
used is too small to say anything conclusive about the
performance of our methods. There is, however, still an
interesting observation to be made: SAT based

verification of intransitive noninterference is typically
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Table 3 Experiments

Problem States Actions k=4 k=12 k=16
ELEV(1) 158 99 1.13 11.76 20.74
ELEV(2) 1062 299 18.02 314.56 412.76
ELEV(3) 7121 783 411.95 N/A N/A
ELEV(4) 43440 1939 3256.28 N/A N/A
MMGT(2) 817 114 3.06 85.41 159.91
MMGT(3) 7703 172 56.87 765.87 N/A
MMGT(4) 66309 232 363.15 N/A N/A
RING(3) 87 33 0.45 8.86 26.45
RING(5) 1290 55 3.88 47.09 210.19
RING(7) 17000 77 93.82 843.67 N/A
RING(9) 211528 99 625.84 N/A N/A
RW(9) 523 181 4,91 57.24 108.79
RW(12) 4110 313 77.63 963.95 N/A
RURNACE(1) 344 37 0.41 4.23 32.73
FURNACE(2) 3778 65 10.26 119.15 544.45
FURNACE(3) 30861 99 152.94 N/A N/A
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