Appl. Math. Inf. Sci.9, No. 2, 981-988 (2015)

%N =) 981

Applied Mathematics & Information Sciences
An International Journal

A Uniqueness Theorem for a

http://dx.doi.org/10.12785/amis/090249

Sturm-Liouville Equation

with Spectral Parameter in Boundary Conditions

Khanlar R. Mamedov* and F. Ayca Cetinkaya

Department of Mathematics, Science and Letters FacultysiM&niversity, 33343, Mersin, Turkey

Received: 20 Jun. 2014, Revised: 18 Sep. 2014, Acceptede2(2814

Published online: 1 Mar. 2015

Abstract:

In this work a Sturm-Liouville operator with discontinuoasefficient and a spectral parameter in boundary condit®ns

considered. The orthogonality of the eigenfunctions,nesd and simplicity of the eigenvalues are investigateid. $hown that the

eigenfunctions form a complete system and expansion famwith

respect to eigenfunctions is obtained. Also, the wianh of the

Weyl solution and Weyl function is discussed. Uniquenessittm for the solution of the inverse problem with Weyl fuoietis proved.
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1 Introduction

We consider the boundary value problem

—Y'+qx)y=A%p(x)y, 0<x<T, 1)
U(y) == A%(y(0) — hy(0)) — Y (0) + hay(0) =0, (2)
V(y) == AZ (Y (1) + Hy(m)) — Hay (1) — Hay(m1) = 0(3)

whereq(x) € L2(0,m) is a real valued function) is a
complex parametel, hy,hy,H,Hy,H, are real numbers
and

1, 0<x<a,

a?, a<x<m,

o9~

where O< a # 1.

Inverse problems of spectral analysis for different
spectral datas are examined h4,3,4,5,6] and in other
monographs. The vibration problem of a homogeneou

string with one end is fixed, the other end is eqqupied
numerous problems ofwith piece-wise continuous coefficient and spectral

with a mass and other

mathematical physics can be reduced to boundary valuparameter

Uniqueness theorems for inverse problems are proven
in [11,12,13,14,15,16,17,18]. In [19,20,21,22] almost
isospectral maps between classes of Sturm-Liouville
problems are produced the generalization of norming
constants is given. The inverse problem has been
analyzed by zeros of the eigenfunctions RB3][ They
showed that the potential and the asymptotic boundary
conditions in such a problem are uniquely determined by
a required dense set of nodal points of eigenfunctions.

Numerical methods for inverse problem of
Sturm-Liouville operators with spectral parameter in
boundary conditions are given itg.

Uniqueness of the solutions of inverse problem by
Weyl function for Sturm-Liouville operators with spectral
parameter in boundary conditions is dealed24, 5,26,

27]. Necessary and sufficient conditions for the solution
of the inverse problem for Sturm-Liouville equation with
discontinuous coefficient and boundary conditions which

Sdoesn’t contain eigenvalue parameter is obtaine@&h [

In this work we discussed a Sturm-Liouville equation

in both boundary conditions.

problems with spectral parameter in boundary conditionOperator-theoretic formulation for the problem is given in

(see[,8,9],etc.).
In [10] and [8] operator-theoretic formulation for this

L»(0, M) @ C? Hilbert space. Simplicity and asymptotic
formulae of the eigenvalues are shown, expansion

type of problems is given. These problems are studied iformula with respect to eigenfunctions is obtained. Also,

Hilbert spaced »(0, ) @ CX, wherek is the number of
eigenvalue containing boundary conditions.

uniqueness of the solution of the inverse problem by Weyl
function is proven.
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2 Preliminaries

Letd(x,A) andy(x,A) be the solutions of equatiot)(
satisfying the initial conditions

$(0,A)=h1 =A% ¢'(0,A)=h—A%h, (4
W(mA)=H1— A%, @' (mA)=A’H—Hy. (5)
For the solution of equatiori), the following integral

representation gg* (x) = +x/p(x) + a(lzp \ /p(x)) is
obtained similar to§] for all A:

e(x,A) = % <1+ :(X)> A0,

T Bt (%) .
P (PR N PV <X>+/ K (x,t)e?dt,
2 X (0

where K(x,-) € Li(—p™(x),u"(x)). The kernelK(x,t)
has the partial derivativeky belonging to the space
Ly (—p™(x),ut(x)) for everyx € [0, 1] and the properties
below hold:

Kx,t)=0, Jt|>1]x, 0<x<a, (6)
Kxt)=0, [t|>[ut (x|, a<x<m (7)
K(x,—x) =0, (8)

d Lo 1 1

d . d .
K OH () +0) = 2K (X (x) —0) =

1 1
= | 1—-—— . (10
Wn(x)( p(x))qw (10)

Using the representation of the solutie(x,A) and
formula (X A)—e(x A)
e(x,A) —e(x,—

we obtain the integral representation of the solution

A(Xt) = K(x,t) + K(x, —t)
satisfy the propertiesy - (10).

We define
AA) = (d(%A).Y(x.A)) =
= ¢(X,)\)Lﬂ’(x,)\)—¢’(X,/\)L[J(X,)\), (12)
which is independent from € [0, 71]. Substitutingx = 0
andx = minto (12) we get,

AA) =-U(y)=V(¢)
The function A(A) is entire and has zeros at the
eigenvalues of the probleni)¢(3).

In the Hilbert spacéd, = L, (0, 1) & C? let an inner
product be defined by

(F.G) = /On':l(X)T(X)P(X)dXﬂL RG, | FGs

where

Fi(x) G1(x)
F= F €Hp, G= Gy € Hp,
(5] (%)

0 :=hhy—hy,>0, &:=HH;—H,>0.
We define the operator
—F/(X) +a(x)F1(x)
L(F):= [ hiF{(0)—hyF1(0)
HlF]/_(T[) + HzFl(T[)
with
D(L):{ _FeHp R e_WZZI[O,n], }
F> = F{(0) — hF1(0),F3 = F{ () + HF(m)
where 1

The boundary value problem)¢(3) is equivalent to the
equatiorLY = A2Y. WhenA = A, are the eigenvalues, the
eigenfunctions of operatdrare in the form of

( ¢(X7/\n)
O(x,An) = Bn:= | ¢(0,An) — (0, An) n=1,2.

¢/(7Ta)\n)+H¢(7Ta)\n)) ’

Lemma 1.The operator L is symmetric.

B(xA): Proof.LetF,G € D(L). Since,
P(X,A) = po(X,A)+ (11) (LF,G)—(F,LG) = /OHLFl(x)Gl(x)p(x)der

+ (A% /Ou . A(x,t)cosAtdt + n LF§1(5_2+ LF§2G_3

Pt . inAt m

+ (hz_)\zh)/o A(x,t)%dt, _/0 F1(X)LG1(X)p(X)dx —

where FRLG, FRLGs
A(Xat) = K(th)_K(Xa _t)a a 61 a 62
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by two partial integration, we get
LG) = [R(NGL) ~ F{(Gi(x)|

e (FL(0)G;(0) - F{(0)G1(0) )| -

(LF,G) — (

T

_|_

:hhl (F{(O)T(O) — F1(0)G(0) } n

+ o+
S e Sl &1 e O e

HH (F{(mGi(m) — Fy(m Gy () | +

Ha (Fu(m Gy () — F{(mGa(1)) |

If we use the domain of the operatoandd; > 0,5, >0
we see that,

(LF,G) — (F,LG) =0.
SolL is symmetric[]

Corollary 1.The eigenfunctions ¢®; and @, corresponding
to different eigenvalues A, # A, are orthogonal, i.e.

/0 " 6 (x M) B (X Ag)dx

(¢ (0,A1) —h@(0,A1)) (¢'(0,A2) —h(0,A2))+

,9

( ¢' (A1) +H (A1) (¢'(1.A2) + H (11, A2)) =

For any eigenvalug,, the solutions4), (5) satisfy the
relation

W(Xv/\n) = kﬁ¢(xv/\n)a (13)
where
kn _ W/(Oa)\n) ;lhw(oa)\n) (14)
%

T HO(m AN + 9/ (TL )

and the normalized numbers of the boundary value

problem ()-(3) are in the following form:

—/¢xx\

+a(¢/( n) —h$(0,An))" +

+ é(¢/(n,An)+H¢(n,/\n))2. (15)

Lemma 2.The eigenval ues of the boundary value problem
(D-(3) aresimple, i.e.

A(X) = 2Anknin. (16)
Proof.Since
—0" (% An) +d(X)® (X, An) = AZP(X)§ (%, An),
—¢" (%) +AM)PxA) = A2p(X)P(xA),

we get

S PEAWA) XA A)) =

= (AZ =A%) (X (X, An) (X, A).
With the help of 2),(3) we get

A0 =80 = (W =12) ["(xA)p(xA)p(x1dx.

S (80.20) = (0.0) (W/(0.2) ~ hip(0.1)) +

82D (171 n) + HB (16 A0)) (8 (EA) +HW(12)

both sides of the last equation and using the relations
(13),(15) we have

A(An) =ARA) = (An+2) (An = A) knain.

ForA — An, we reach16) . O

3 Asymptotic Formulas of the Eigenvalues

The solution of the equatiorl) satisfying the initial
conditions &) wheng(x) = 0 is in the following form:

Bo(xA) = (hy—A )cos)\x+(h2—)\2h)sm)\x.

17)
The eigenvaluesA? (n=0,¥1,¥2,---) of the

boundary value problemi)-(3) can be found by using the
equation

Ao(A) = (A®H —Hg) po(T,A) — (H1 — A%) ¢g(1T,A) = 0
and can be represented in the following way

A =n+ygn), n=0,F17F2 -, (18)
WherESlrJ1p|LIl(n)| < o0,

The following lemma can be proved in a similar way
to [4,29]:

Lemma 3.Roots A2 of the function Ag(A) are seperated,
i.e,

inf[AJ—A2| =1>0.

n#£k

Lemma 4.The eigenval ues of the boundary value problem
(1)-(3) arein the form of

)\n:)\0+%+@

30t >0 (19)
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pt(m

where (dy) isa bounded sequence + {hl— ()\,?Jrsn)z} / A(Tr,t)cos (A2 + &) tdt+
0
hy—1 /< 1 ) q(t)sin (ASp—(m)) . 0
I S 1— dt — 0 2 1 [HT(m) sn(Ag+en)t
4N0A(A9) Jo o(t) p(t) + [hz— (An +&n) h}/o A(n,t)Wdt—O.
0,,—
_ M/n 1+ 1 q(t)cos(Apu~(m)) dt Hence, as — o taking into the equalitydo(A2) =
4AA(AQ) Jo p(t) p(t) 0 and relationsingnut (1) ~ enu* (1), cosenu™ (1) ~ 1
q | integrating by parts and using the properti€s (10) of
and {nn} € l2. the kernelsA(x,t) andA(x,t) we have
Proof.From (11), it follows that d n
n n
P(A) = $o(1TA) + (20) o e A9
o (KM
+ (=2 )/O A(,t)cosAtdt + where
IJJF(T[) . : u+ T .
+ (hz_/\Zh)/ A(n,t)%)\tdt. Nn = (hl_l)/o Ac(TT,t)sSinARtdt +
0

+(m)

[ (
Expressions ofA(A) and Ap(A) let us to calculate 4 (hh—h /“ T 0)c0sA Ot
A(A) —Ao(M) as, (h2—h) A A (T, t)cosA,

A(A) — Ap(A) = Let us show thatj, € I5. It is obvious that
n—1
— A4 —— JA(mu" sA ut () — p (m)
(‘” 2a ) (4 (m)) cosA ™ () (hl—l)/ A(TT,t)SinA Otdlt+
0
43 m—1\ ~ " . I
A h(a+—20 )A(n,u () SinA ™ (1) + - it i
+ 1 ()\))\4, (21) +(h2 — )/O Ay (TT,t)cosAtat
where can be reduced to
wim Wrm
I(A) = H/ A(TT,t)cosA tdt — / Ryt
0 —pt(m
pt(m g glmA |t (m)
- /0 A t)cosAtdt + O E I whereR(t) € Ly(—u* (1), u*(11)). Now, take
ici p(m .
Therefore, for sufficiently large, on the contours Z) ::/ ) )R(t)e‘“dt.
—pt(m

T
= {2:A1= A%+ }.
Itis clear from B] (p. 66) that{{n} = {(An) € |2. By virtue
we have of this we have{nn} € I2. Lemma is proved.]
|A(A) = Do(A)] < |Ao(A)]-

By the Rouche theorem, we obtain that, the number of . .
zeros of the function 4 Expansion Formula with Respect to

Eigenfunctions
{AA) —Do(A)}+A0(A) =A(A)
Assume thaf\ ? is not a spectrum point of the operator

inside the contoufy, coincides with the number of zeros .
L. Then, there exists resolvent operator

of the functionAg(A). Furthermore, applying the Rouche
theorem to the circlgn(3) = {A 1 [A —A2| < 5} we get
that, for sufficiently largen there exists one zerky, of the
functionA(A) in yn(6). Owing to the arbitrariness @f> 0

Ryz(L) = (L—A%1)"L.

Let us find the expression &%2(L).

we have
M=A04 &, & =0(1), N 22) \knet?mglfe-rrr?g resolvent R,2(L) is the integral operator
Substituting 22) into (20) we get,
G EA) = — {¢(tt,/}\)l£(xaﬁ), EEX (23)
AR+ &n) = Bo(Ag + &n) + AQQ) | YEA)D(XA), t=x
@© 2015 NSP
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Proof.To construct the resolvent operatorlgfwe need to
solve the boundary value problem

=y +a(X)y = A?p()y+p(x)f (), (24)
A2 (Y (0) — hy(0)) — hyy'(0) + hay(0) = f1, (25)
A2 (Y (m)+Hy(m)) — Hyy (1) — Hay(m) = fp,  (26)

wheref(x) € D(L). By applylng the method of variation

of constants, we seek the solution of the probled)+(26)

in the following form
y(X,)\):Cl(X,)\)(,U(X,)\)+CZ(X,)\)¢(X,)\), (27)

and we get the coefficients(x,A) andcy(x,A ) as

m/oxqm, )it
/ Wt 1) FOp(t)dt

Substituting equat|on§8), (29) into (27) and taking
into account the boundary conditior, (26) we have

C1(X,A) =c1(0,A )p(t)dt, (28)

C(X,A) = . (29)

A(A)

fa
+ A(A)qb(x)\)

y(XA) /Gxt/\)()p()dt— (XA)

(30)

whereG(x,t;A) is as in €3). O

Theorem 1.The eigenfunctions @(x,An) of the boundary
value problem (1)-(3) form a complete system in
LZ,P (Oa 7T) D CZ'

Proof.With the help of (3) and ({L6), we can write

Y(X,An) = %

nOn

¢ (X, An). (31)

Using @3) and B0) we get

90 [t A fp()at -
1 fa
_ —ZAnanqb(X,)\n) (fl kn)

Now let f () € Lz 5(0, 71) © C? and assume

(@ /cpr L0 p(X)dx+

An) —hg(0,An)) F2
&
)+H(mAn)) f5
%

Resy(x,A) = —
Resy(xA)

(32)

(33)

+

(¢/(7T7/\n

+ -0,

Then from g2,

Consequently, for fixed € [0, ] the functlony(
entire with respect td . Let us denote that

we have R&y(x A) = 0.

A)is

Gs={A:[A=A%| =6, n=0,¥17F2 -}
whered is sufficiently small positive number. It is clear
that the relation below holds:
IAA)| > CA[*™MIET(M ) e Gy, C=cons. (34)
From @0) it follows that for fixed 8 > 0 and
sufficiently largeA * > 0 we have

|y(x,/\)|§%, AeGs, |A|=A" C=cons

Using maximum principle for module of analytic
functions and Liouville theorem, we get(x,A) =
From this and the expression of the boundary value
problem @4)-(26) we obtain thatf (x) = 0 a.e. on|0, ).
Thus we reach the completeness of the eigenfunctions
@ (X,An) in L2p(0,7) & C2. O

Theorem 2.If f(x) € D(L), then the expansion formula

=Y and(x.An) (35)
isvalid, where

2 — % / "ot A (D),

and the series converge uniformly with respect to
x € [0,m]. For f(x) € Lop(0,m), the series converge in
L2,0(0, ), moreover the Parseval equality holds:

/ 100 X)X = 3 anfanl”

Proof.Since ¢ (x,A) and ¢(x,A) are the solutions of the
boundary value probleni)-(3), we have

Y(xA) = —‘”‘fm { [ 4"0.0) )40 f(t)dt}
P A) [ X[~ (LA +aw(t, )] (1)
- A()\) {/n 22 dt}
f

Integrating by parts and taking into account the
boundary conditions?), (3) we obtain

yO,A) = —A—lzf(x) )\12 [Z1(X,A) +Zo(X,A)] —
fl fz

(@© 2015 NSP
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A(A)
A(l/\ x)\/¢t)\ (t)dt +
+A(1 x)\/wt)\ () (t)ct.

If we consider the following contour integral whefg
is a counter-clockwise oriented contour

In(x) = /\y(x A)dA,

2m

and then taking into consideration equati8g)(we get

[oe]

z )\yx)\

(38)

1 T
fo=— / B (t.An)f(D)p(t)dlt
an Jo
On the other hand, with the help &%) we get

00 = 100~ gt f Za(60) + Zetx A0+ (39)
2 Anfa 2 Anf2
2 A0 PO T 2 A P

Comparing 88) and 39) we obtain

The validity of

lim max |&(x)| =0
N—rexe[0, ]

can be easily seen frord@ and @1). The last equation
gives us the expansion formula

and (X, An).

Since the system of®(x,An) is complete and
orthogonalinL; , (0, m) © C?, the Parseval equality

[ 11070000 = 5 cnlen”

holds.d

5 Weyl Solution, Weyl Function

We consider the statement of the inverse problem of the
reconstruction of the boundary value probleb)(3) from
the Weyl function.

Let the functionsc(x,A) and s(x,A) denote the
solutions of the equationl) satisfying the conditions
c(0,A) =1, c(0,A) =0, s(0,A) =0 ands(0,A) =
respectively andp(x,A) and ¢/(x,A) be the solutions of
equation L) under the initial conditions4), (5).

Further, let the functio®(x,;A) be the solution of1)

satisfyingU (®) = 1 andV (@) = 0. We set
_ _$@02)
M= Sonam)

The functions®(x,A) andM(A) are called the Weyl
solution and the Weyl function for the boundary value
problem (@)-(3).The Weyl function is a meromorphic
function having simple poles at poindg eigenvalues of
the boundary value problem df)¢(3).

The Wronskian

W(x) 1= (®@(x,A),0(x,A))

does not depend on Takingx = 0, we get

> and(X,An) = —f(X) + &n(X),
n=1 W(O) = (D(O,)\)¢/(O,)\) - (D/(Ov)‘)(p(oa)\) =
where Hence
1 W(X) = (D(X,A),9(X,A)) = 1. 42
&n(x)=— [Zl(x A)+2Zo(x,A)]dA. ) () = (®(xA),#(x.A)) (42)
2mi In view of (4) and 6), we get forA # A,
The relations below hold for sufficiently large’ > 0
ylarge DP(XA) = _"’A(’((}\A)>. (43)
mex [Zo(xA)| < 2. A€Gs, |A|<AT, (40) | |
xe[0,71 Al Using @3) we obtain
C . A%(A)
maxe)\ —, AeGs, [AI<AT. (41 - _
e |21 A)l < AP s 1Al (41) M) = ~Z07
(@© 2015 NSP
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whereA®(A) = —(0,A) is characteristic function of the

boundary value problerny:
ly=A%, 0<x<m,
y(0)=0, V(y)=0.
Itis clear that

Bx.A) = ~ 57 (S0 M )B(xA)).  (44)

Theorem 3.The boundary value problem of (1)-(3) is
identically denoted by the Weyl function M(A ).

[Pik(x,A)] k=12

D(x,A) )
'(x,A) )"
(45)

Proof.Let us denote the matriR(x,A) =
as

F(xA) P(xA) P(xA)
P(X’A)(Mx,)\) é/(xA)) (¢/(x,)\)

Then we have

¢(X7/\) = Pll(xv)‘)é(xv/\)_FPlZ( v)‘)é/(xv/\)v (46)
D(XA) = Pri(x,A)DP(X,A) + Pra(x,A) @' (x,A)

or
Pll(xa)‘) = ¢(X7/\)d3/(xv)\) - ¢/(X,/\)~®(X,)\), (47)
Pio(x,A) = (X A)P(XA) — (X, A)D(X,A).

Taking @3) into consideration in47) we get
Pii(x,A) = 1+F1)\) (%A) [9' (X A)— ' (xA)] +

1 / /
+ m¢(xv/\)[(p (X,/\)—lﬂ(X,/\)}, (48)

Pia(x,A) = ﬁ B AWXA) ~ X A)B(x.A)].

From the estimates 48| — o

¢’ (xA)—¢"(xA)| _ QI | (%)
’ ™) ‘ O<|)\| ’

Y(xA)—=P'(xA) :O< e\lm)\\( () p+<x))>
A2 ’

A(X)
we have from 48) that
\/\l\ILn Or<n;(':1<x [Pri(x,A) —1| = erm Or<na<xn|P12(x A=
(49)

for A € Gs.
Now, if we take consideration equatiof) into (47),
we have

- g(x)\) , S(X,/\)
Pll(X,)\)—(p(X/\)(p(o )\) ¢(X7A)¢(O,)\)+
+W[M(A) M(2)],
§(X /\) S(X,)\)
N M[M(A)—M(M]

¢(0,4)

Therefore ifM(A) = M(A), one has
A)—

PLi(A) = e A)S(x,A) —s(xA)€ (x,A),
Pia(X,A) = C(%,A)8(X,A) = S(X, A )E(X,A).

Thus, for every fixedk functionsPi1(x,A) andPia(x,A)
are entire functions foA . It can easily be seen from
equation 48) that Pii(x,A) = 1 and Pia(x,A) = 0.
Consequently, we get ¢(x,A) = H(x,A) and
P(x,A) = P(x,A) for everyx andA. Hence, we arrive at
q(x) = G(x). O

Acknowledgement

This work is supported by The Scientific and
Technological Research Council of Turkey(BITAK).

References

[1]N. A. Naimark, Linear Differential Operators, 2nd. Ed.,
Nauka, Moscow, English transl. of 1st. Ed., Parts I, I, Unga
New York, 1968.

[2] M. J. Ablowitz and H. Segur, Solitons and the Inverse
Scattering Theory, SIAM, 1981.

[3] B. M. Levitan and I. S. Sargsjan, Sturm-Liouville and &ar
Operators, Kluwer Academic Publishers, 1991.

[4] G. Freiling and V. Yurko, Inverse Sturm-Liouville Prashs
and Their Applications, Nova Science Publishers Inc., 2008

[5] K. Chadan and P. Sabatier, Inverse Problems in Quantum
Scattering Theory, Springer Verlag, 2011.

[6] V. A. Marchenko, Sturm-Liouville Operators and Their
Applications, AMS, Providence, 2011.

[71A. N. Tikhonov and A. A. Samarskii, Equations of
Mathematical Physics, Dover Books on Physics and
Chemistry, Dover, New York, 1990.

[8] C. T. Fulton, Two-point Boundary Value Problems with
Eigenvalue Parameter Contained in the Boundary Conditions
Proc. R. Soc. EdinbZ77, 293-308, (1997).

[9IN. Yu. Kapustin, E. I. Moisseev, A Remark on
the Convergence Problem for Spectral Expansions
Corresponding to Classical Problem with a Spectral
Parameter in the Boundary Condition, Diff. EquatioBg,
1677-1683, (2001).

[10] J. Walter, Regular Eigenvalue Problems with Eigensalu
Parameter in the Boundary Condition, Math. Z33, 301-
312, (1973).

[11]A. Benedek and R. Panzone, On Inverse Eigenvalue
Problem for a Second Order Differential Equation with
Equation with Parameter Contained in Boundary Conditions,
Notas Algebra Analysi®, 1-13, (1980).

[12] P. J. Browne and B. D. Sleeman, A Uniqueness Theorem
for Inverse Eigenparameter Dependent Sturm-Liouville
Problems, Inverse Problents3, 1453-1462, (1997).

[13] P. A. Binding, P. J. Browne and B. A. Watson, Inverse
Spectral Problems for Sturm-Liouville Equations with
Eigenparameter Dependent Boundary Conditions, J. Lond.
Math. Soc. 62, 161-182, (2000).

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

Kh. R. Mamedov, F. A. Cetinkaya: A Uniqueness Theorem foruar8iLiouville Equation...

[14] V. Yurko, The inverse Spectral Problem for Differemtia
Operators with Nonseperated Boundary Conditions, J. Math.
Anal. Appl., 250, 266-289, (2000).

[15] Kh. R. Mamedov, Uniqueness of the Solution to the
Inverse Problem of Scattering Theory for the Sturm-
Liouville Operator with a Spectral Parameter in the Bougidar
Condition, Math. Notes74, 136-140, (2003).

[16]C. M. McCarthy and W. Rundell, Eigenparameter
Dependent Inverse Sturm-Liouville Problems, Numer.
Funct. Anal. Optim.24, 85-105, (2003).

[171N. J. Guliyev, Inverse Eigenvalue Problems for Sturm-

Kh. R. Mamedov
is a Professor in Department
of Mathematics in Mersin
University. He received his
PhD degree in mathematics,
upon the subject of spectral
analysis of difference
equations. His research
interests are in the areas
of applied mathematics and

Liowville Equations with Spectral Parameter Linearly mathematical physics including inverse problems. He has

Contained in One of the Boundary Conditions, Inverse Probl. Published many research articles in reputed international
21, 1315-1330, (2005). journals. He is referee and editor of mathematical

[18] Kh. R. Mamedov, On an Inverse Scattering Problem for journals.

a Discontinuous Sturm-Liouville Equation with a Spectral
Parameter in Boundary Condition, Bound. Value Probl.,
2010, Article ID 171967, (2010).

[19]1P. A. Binding, P. J. Browne and B. A. Watson,
Transformations Between  Sturm-Liouville  Problems
with Eigenvalue Dependent and Independent Boundary
Conditions, Bull. London Math. Soc33, 749-757, (2001).

[20] P. A. Binding, P. J. Browne and B. A. Watson, Sturm-
Liouville Problems with Boundary Conditions Rationally
Dependent on the Eigenparameter I, Proc. Edinburgh Math.
Soc.,45, 631-645, (2002).

[21] P. A. Binding, P. J. Browne and B. A. Watson, Sturm-

F. A. Cetinkaya
is a research assistant in
Department of Mathematics
in Mersin University.
She received her MsC degree
in mathematics on spectral
theory. She has published
a research article in a reputed
international journal. Her
research interests are applied

Liouville Problems with Boundary Conditions Rationally Mathematics, spectral theory, inverse problems.

Dependent on the Eigenparameter Il, J. of Compt. Appl.
Math., 148, 147-168, (2002).

[22] P. A. Binding, P. J. Browne and B. A. Watson, Equivalence
of Inverse Sturm-Liouville Problems with Boundary
Conditions Rationally Dependent on the Eigenparameter,
JMAA, 291, 246-261, (2004).

[23] P. J. Browne and B. D. Sleeman, Inverse Nodal Problems fo
Sturm-Liouville Equations with Eigenparameter Dependent
Boundary Conditions, Inverse Prokl2, 377-381, (1996).

[24] A. Chernozhukova and G. Freiling, A Uniqueness
Theorem for the Boundary Value Problems with Non-Linear
Dependence on the Spectral Parameter in the Boundary
Conditions, Inverse Problems in Science and Engineetifg,
777-785, (2009).

[25] R. Kh. Amirov, A. S. Ozkan and B. Keskin, Inverse
Problems for Impulsive Sturm-Liouville Operator with
Spectral Parameter Linearly Contained in Boundary
Conditions, Integral Transforms and Special Functi@&®s,
607-618, (2009).

[26] S. A. Buterin, On Half Inverse Problem for Differential
Pencils with Spectral Parameter in Boundary Conditions,
Tamnkang Journal of Mathematiet, 355-364, (2011).

[27] Kh. R. Mamedov and F. A. Cetinkaya, Inverse Problem for a
Class of Sturm-Liouville Operator with Spectral Paramater
Boundary Condition, Bound. Value Pro013:183, (2013).

[28] E. N. Akhmedova and H. M. Huseynov, The Main Equation
of the Inverse Sturm-Liouville Problem with Discontinuous
Coefficients, Proceedings of IMM of NAS of Azerbaijan, 17-
32, (2007).

[29] E. N. Akhmedova and H. M. Huseynov, On Eigenvalues and
Eigenfunctions of One Class of Sturm-Liouville Operators
with Discontinuous Coefficients, Trans. Acad. Sci. Azerb.
Ser. Phys.-Tech. Math. ScKXI11, 7-18, (2003).

(@© 2015 NSP
Natural Sciences Publishing Cor.



	Introduction
	Preliminaries
	Asymptotic Formulas of the Eigenvalues
	Expansion Formula with Respect to Eigenfunctions
	Weyl Solution, Weyl Function

