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Abstract: Ebola hemorrhagic fever, also known as Ebola virus disease (EVD) is a viral infection, usually with high fatality

rate whenever there is a breakout. EVD has multiple transmission pathways, ranging from human-human, animal-human, human-

environment and environment-human. With these multiple pathways, lots of preventive mechanisms have to be observed whenever there

is a break-out so that the number of new cases can be minimized. Of such mechanisms are case detection, environmental sanitation,

vaccination and other precautionary motives. Thus, a new mathematical model for EVD was proposed by incorporating case detection at

each stage, with environmental contamination and vaccination impact on EVD transmission also considered. The aim of these measures

is to check their effectiveness in reducing the number of EVD secondary cases. The model was qualitatively examined by establishing

the region of feasible solution, which was found to exist and bounded. The non-negativity of solution for the model system of equation

was established by using appropriate theorem. Equilibrium points of the system was analyzed at steady state, which was found to exist

as disease free (DFE) and endemic equilibrium (EE). Basic reproduction number (R0) of the model was computed by using the next

generational matrix approach. Local stability analysis of the model was computed to show the region of solution for both the DFE and

EE points. The global stability analysis was obtained by constructing a unique and appropriate Lyapunov function. The result shows that

the DFE is stable globally (G.A.S) if R0 < 1. Sensitivity analysis of the model was carried out to establish the effect of each parameter

of the model on the (R0). It was discovered from the sensitivity index table that contact rate is the most sensitive parameter in disease

transmission because of its large positive value. Numerical simulation for the sensitivity analysis was obtained graphically by varying

the values of each parameter. The study concluded that case-detection, quarantining and proper disposal (burial) of dead infective are

effective measures in reducing the number of new case(s) of the infection.
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1 Introduction

The Ebola virus disease (EVD) causes an acute and
serious illness which is often fatal if left untreated.
According to World Health Organization (WHO), EVD
first appeared in 1976 in two simultaneous outbreaks in
South Sudan and Democratic Republic of Congo (DRC).
However, the 2014− 2016 outbreak in West Africa was
the largest Ebola outbreak ever, as 28,616 confirmed
cases and 11,310 deaths were reported in Guinea, Liberia,
and Sierra Leone [6]. It is thought that fruit bats of the
Pteropodidae family are natural Ebola virus hosts. Ebola

is introduced into the human population through close
contact with secretions, the blood, organs or other bodily
fluids of infected animals (like fruit bats, chimpanzees,
gorillas, monkeys, forest antelope or porcupines). Ebola
then spreads through human-to-human transmission via
direct contact (through broken skin or mucous
membranes) with: (i) Blood or body fluids of a person
who is sick with or has died from Ebola, and (ii) Objects
that have been contaminated with body fluids (like blood,
feces, vomit) from a person sick with Ebola or the body
of a person who died from Ebola. The incubation period
for this infection is from 2 − 21 days before clinical
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symptoms will persist. Health-care workers have
frequently been infected while treating patients with
suspected or confirmed EVD. This occurs through close
contact with patients when infection control precautions
are not strictly practiced. Indeed, the nurse that attended
to the first confirmed case of EVD in Nigeria died as a
result of the disease. This necessitate the need for proper
and adequate precautionary measures against this highly
infectious disease. Early symptoms of EVD includes (but
not limited to) fever, fatigue, headache and sore throat
while acute symptoms can include rash, vomiting and
diarrhea. Some of the strategies put in place to prevent the
spread of EVD include outbreak containment measure
like safe and dignified burial of the dead infective, and
contact tracing, reducing the risk of wild-life to human
transmission by reducing the hunting of carrier animals
for food and reducing human-human transmission
through regular washing of hand and social distancing.
Several researchers have worked extensively on dynamics
of transmission of EVD, in order to proffer both curative,
preventive and other measures to eradicate EVD.
Mathematical modeling has been a viable tool used in
studying the dynamics of disease transmission, so as to
offer an insight into future prevalence, elimination and
control measures that can be adopted. Mathematical
modeling simply implies mathematical representation of
issues arising on daily basis. This has proven to be an
important tool by which physical, biological, ecological
and economical problems are solved. By interpreting and
representing epidemiological issues as a form of
mathematical equations (difference, differential, algebraic
etc.), applied mathematicians proffer solution(s) to
challenges encountered by biologists and public health
workers, by using mathematical model as a potent tool to
gain better insight to factors influencing the infectivity of
epidemic diseases and provide good mechanism that
minimizes the spread of such infections. The properties of
these models are investigated qualitatively using the
concept of stability analysis while other methods are
employed to quantitatively find an approximate solution
to the model equation(s), since most non-linear problems
do not have exact solution.
Over the years, many mathematical models on EVD have
been developed, analyzed and recommendations were
drawn to reduce the prevalence of EVD infection. [7]
developed a SEIR mathematical model for Ebola spread.
Their result indicate that increase in immunity reduces
new infections. Also, [16] presented an extended SEIR
Ebola epidemic model. They computed the threshold
parameter R0 and used it to established the stability
analysis of the model. They numerically solved the model
using the non-standard finite difference (NSFD) and
compared their result with Runge-Kutta order 4 (RK4).
Their result showed that NSFD converges faster than RK4
when large step size is used. Many other models on EVD
exist with their peculiar result (check [25], [12] and [15]).
[?] developed a nonlinear fractional order EVD model
with a novel piecewise hybrid technique to study the

behaviour of Ebola within a mixed population. Their
study investigated the effects of classical Caputo
piecewise operator on the behavior of the model, and their
findings showcased the advantages of fractional operators
over the classical integer order, in enhancing the accuracy
of the model to capture the intricate dynamics of the
disease. [30] also adopted fractional order model to study
the impact of immunization, prompt identification,
sanitation and isolation, among others preventive
measures, on the dynamics of EVD transmission. They
adopted Laplace-Adomian decomposition method to
simulate the system of fractional differential equations
from their model. [2] discuss the transmission dynamics
of EVD with vaccine, condom usage, quarantine,
isolation and treatment drug. They concluded that
effective implementation of those measures resulted in
significant reduction of new EVD cases within 60 days.
[4] considered a simple mathematical model for Ebola in
Africa by incorporating the indirect transmission route
like consumption of contaminated bush meat,
environmental contamination and funeral practices for
dead infective. Their results show that only one endemic
equilibrium exist, which is locally asymptotically stable
in the absence of shedding or manipulation of deceased
individuals. However, no control measure was introduced
to cater for their discovery.

2 Model Formulation

In this work, we proposed an extension to the models of
[25] and [15] by including vaccination, exposed and
quarantined classes to study the : (i) efficacy of the
developed vaccine; (ii) effect of case detection at
asymptomatic stage on overall prevalence of EVD within
a population; and (iii) impact of the preventive measures
(quarantining) on the dynamics of EVD. Total human
population N(t) is divided into 8 mutually exclusive
groups (otherwise called compartments) denoted as
susceptible (S(t)), exposed (E(t)), quarantined (Q(t)),
infected (I(t)), hospitalized (H(t)), Vaccinated
(V (t)),fully recovered (R(t)), deceased (D(t))
individuals. Thus,

N(t)= S(t)+V(t)+E(t)+Q(t)+I(t)+H(t)+R(t)+D(t)
(1)

Similarly, the concentration of Ebola virus in the
environment is denoted as P(t). The dynamics of EVD is
such that human-human and human-environment
transmission is possible. Thus, there is multiple mode of
spread of the disease within the affected community.
Existence of susceptible human interaction with the
environment and infected human/animal bring a new case
of EVD, this interaction is denoted as β . Generally,
recruitment is assumed into the susceptible class at the
rate π , and natural mortality occurs across all the classes
at the rate µ . Due to diagnosis of EVD status at the I,H
and D compartments, a modification parameter denoted

c© 2024 NSP

Natural Sciences Publishing Cor.



Sohag J. Math. 11, No. 2, 11-21 (2024) / www.naturalspublishing.com/Journals.asp 13

as c is introduced to cater for the reduced rate of new
cases of infection from those classes. Further precautions
are taken when dealing with the hospitalized and EVD
deceased patients at the rate η1 and η2 respectively. Thus
the force of infection is denoted as χ and given as:

χ = β [P+ c(I +η1H +η2D)] (2)

The system of equations governing the model is given as:

dS

dt
= π − µS−αS+ωV − χS

dE

dt
= χS+ρχV − (µ +θ1 +θ2)E

dI

dt
= θ2E − (γ1 + µ + δ1 + τ2)I

dQ

dt
= θ1E − (τ1 + µ)Q

dH

dt
= τ1Q+ τ2I − (γ2 + µ + δ2)H

dR

dt
= γ2H + γ1I − µR

dD

dt
= (µ + δ2)H +(µ + δ1)I−φD

dV

dt
= αS−ρχV − (µ +ω)V

dP

dt
= σ1I+σ2D− εP

(3)

The flow diagram for the above system of equation (3) is
given below:

Figure A:Transfer diagram of the model.

It is important to mention some of the assumptions made
when formulating this model, such as (i) only individuals
in I and D sub-population are assumed to shred the Ebola
virus (EV) into the environment. This implies that either
the shedding rate of the virus by those at isolation centres
H(t) are assumed negligible or are properly disposed, (ii)
Only unvaccinated susceptible individuals are recruited
into the population and so on.

The parameters in the model and the value used for
simulation is presented in table 1 below:

Table 1: Table of Parameter and Values

Symbol Symbol Meaning Value Source

π Recruitment rate 27 [12]

µ Natural death
1

365×57.7
[29]

τ1 Q-class Hospitalization 0.4 [5]

τ2 I-class Hospitalization 0.64 [5]

ω Vaccine waning 0.001 [4]

α Vaccination rate 0.5 Guess

θ1 Quarantine rate 0.7 [4]

θ2 E to I Progression 0.4 [4]

γ1 I-class Recovery 0.096 Guess

γ2 H-class Recovery 0.56 Guess

σ1 I-Class shedding 0.003 [5]

σ2 D-class shedding 0.003 [5]

η1 H-class Modification 0.04 Guess

η2 D-class Modification 0.07 Guess

ε EV environmental decay 0.75 Guess

c I-classes Modification 0.0001 [12]

ρ Vaccine rate failure 0.44 [4]

β EVD contact rate 0.0003 [8]

φ D-class safe disposal 0.04 [8]

δ2 H-class EVD-death 0.365 [8]

δ1 I-class EVD-death 0.4 Guess

3 Basic Properties of the Model

Qualitative analysis of the model shall be discussed in this
section. For ease of computation, let k1 = µ +α, k2 =
µ +ω , k3 = µ +θ2 +θ1,k4 = µ +τ1, k5 = γ1 +µ +δ1+
τ2, k6 = γ2 + µ + δ2,k7 = µ + δ1, k8 = µ + δ2 in system
(3)

3.1 Feasibility Region of the Model

Theorem 1: Suppose
{S(0),V(0),E(0), I(0),Q(0),H(0),R(0),D(0) ∈ R

8
+}

denote the initial conditions for all state variables in
system (3), and let every other solution set
{S(t),V(t),E(t), I(t),Q(t),H(t),R(t),D(t)} ∈ Ω as
t → ∞ . Then, the feasible solution which is a positively
invariant set of the model is given by:

Ω =

{

(S,V,E, I,Q,H,R,D) ∈ ℜ8
+ : N(t)≤

π

µ

}

(4)

Proof: Using equation (1), the dynamics of the model is
such that

dN

dt
=

dS

dt
+

dV

dt
+

dE

dt
+

dI

dt
+

dQ

dt
+

dH

dt
+

dR

dt
+

dD

dt

= π − µN −φD

≤ π − µN

dN

dt
+ µN ≤ π































(5)
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solving (5) by integrating factor method and applying the
initial condition N(0) = N0 ≥ 0 to obtain

N(t)≤
π

µ
+ ke−µt

N(t)≤
π

µ
+

(

N0 −
π

µ

)

e−µt















(6)

As t →∞, it is obvious from the second function of (6) that
N(t)≤ π

µ . Thus for any time t, 0 ≤ N(t)≤ π
µ , implies the

trajectories of the model equation (3) are bounded in the
region Ω as given in (4), which complete the proof.

3.2 Non-negativity of Solution

Non-negativity properties of a mathematical model is
used to establish the existence of a positive solution for
the model at any time t, given a positive initial
population. The following theorem shall be used to
establish the positivity of solution of (3)
Theorem 2: Suppose the initial population of the system
in (3) is

{S(0),V(0),E(0),Q(0), I(0),H(0),R(0),D(0)≥ 0} ∈ Ω

Then the solution set
{S(t),V(t),E(t),Q(t), I(t),H(t),R(t),D(t) ≥ 0} for all
time t.
Proof: Using each equation in system (3), starting with
the first one, it is assumed:

dS

dt
= π − µS−αS+ωV − χS

≥ π − (µ +α)S+ωV, β ∈ [0,1]

Integration and further simplification yields:

S(t)≥ S(0)e−(µ+α)t ≥ 0 (7)

Since an exponential ex ≥ 0 ∀ x ∈ ℜ. Similarly, using the
second equation:

dE

dt
= χS+ρχV − (µ +θ1 +θ2)E ≥−(µ +θ1 +θ2)E

E(t)≥ E(0)e−(µ+θ1+θ2)t (8)

Apparently, solving for V (t),Q(t), I(t),H(t),R(t),D(t) in
system (3) yield a positive bounded solution for each in set
(4). This completes the proof.

3.3 Disease Free Equilibrium

The solution of (3) at steady state such that
Ωd = Ωd(S∗,V∗,E∗,Q∗, I∗,H∗,R∗,D∗,P∗) denotes the
disease free equilibrium (DFE) point gives:

Ωd =

(

k2π

k1k2 −ωα
,

απ

k1k2 −ωα
,0,0,0,0,0,0,0

)

(9)

3.4 Computation of Basic Reproduction (R0)

This important factor in epidemiology established the
occurrence of secondary infection. To compute R0, we
adopt the next generational method (NGM), by
categorizing the system of equations (3) into two, namely
an infected compartments (E, I,H,D,Q,P) and
non-infected compartments. F matrix denotes the
appearance of new infection while V matrix is the
movement in/out of the infected compartments.
Reproduction number is obtained from the spectral radius
(ρ(FV−1)) of the interaction between the two categories.
Thus, using NGM approach as adopted by [12] and [19]
R0 for system (3) was computed as follows:

F =















0 0 B0c B0cη1 B0cη2 B0B0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















where B0 = β (S∗+ρV∗)

V =















k3 0 0 0 0 0
θ1 k4 0 0 0 0
θ2 0 k5 0 0 0
0 −τ1 −τ2 k6 0 0
0 0 −k7 −k8 φ 0
0 0 −σ1 0 −σ2 ε















R0 =
β (k2 +αε)[cε(φθ2k4k6 +φη1A0 +η2A1)+A2]

µ(α +ω + µ)k3k4k5k6φε
(10)

where

A0 = k4τ2θ2 + k5τ1θ1, A1 = k8A0 + k4k6k7θ2,

A2 = σ2A1 + k4k6σ1φθ2

3.5 Local Stability of DFE

Theorem: The disease free equilibrium Ωd is locally
asymptotically stable whenever R0 < 1
Proof: The Jacobian matrix of (2) at Ωd is locally
asymptotically stable if R0 < 1 and unstable otherwise

J =























−k1 ω 0 0 D1 D1η1 D1η2 −β S∗
α −k2 0 0 D0V∗ D0η1V∗ D0η2S∗ −β ρS∗
0 0 −k3 0 B0c B0cη1 B0cη2 B0

0 0 θ1 −k4 0 0 0 0
0 0 θ2 0 −k5 0 0 0
0 0 0 τ1 τ2 −k6 0 0
0 0 0 0 k7 k8 −φ 0
0 0 0 0 σ1 0 σ2 −ε























(11)
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Where D0 = −β cρ ,D1 = −β cS∗. The characteristics
equation of (11) is written in compact form as

[(λ + k1)(λ + k2)−αω ][M−λ I6×6] = 0 (12)

where

M =















−k3 0 B0c B0cη1 B0cη2 B0

θ1 −k4 0 0 0 0
θ2 0 −k5 0 0 0
0 τ1 τ2 −k6 0 0
0 0 k7 k8 −φ 0
0 0 σ1 0 σ2 −ε















(13)

From (12),

(λ + k1)(λ + k2)−αω = 0

λ 2 +(k1 + k2)λ1 −αω = 0 (14)

Since all parameters values are non-negative,

k1 + k2 > 0

k1k2 −αω = µ(α +ω + µ)> 0

Thus, by Routh Huthwis criterion, (14) will give two
negative eigenvalues.
Obviously −M = [mi j] is a 6×6 matrix such that mi j 6= 0,
for i 6= j, i, j = 1,2, · · · ,6 and mii > 0, ∀ i = 1,2, · · · ,6.

z =

(

1,
θ1

k4

,
θ2

k5

,
A0

k4k5k6

,
A1

k4k5k6φ
,

A2

k4k5k6εφ

)T

(15)

Such that

Mz = (k3(1−R0),0,0,0,0)
T

if R0 < 1 (16)

and

|−Mz|= k3k4k5k6εφ(1−R0)> 0 if R0 < 1 (17)

Then by matrix theory, M is stable. Hence, the real part of
all eigenvalues of J(Ωd) are negative provided R0 < 1 and
so Ωd is locally asymptotically stable for R0 < 1

3.6 Global Stability of Ωd

Theorem: The disease free equilibrium Ωd is globally
asymptotically stable if and only if R0 < 1 and unstable
otherwise
Proof: Let L be a Lyapunov function

L = v1E + v2Q+ v3I + v4H + v5D+ v6P (18)

where

v1 =
R0[k1k2 −αω ]

(k2 + εα)π

v2 =
β τ1[cε(φτ1 + k8τ2)+ k8σ2]

εφk4k6

v3 =
β

εφk5k6

[cε(φk6 +φτ1)τ2+

(k6k7 + k8τ2)τ2 +σ2(k6k7 + k8τ2)]

v4 =
β [ε(φτ1 + k8τ2)+ k8τ2]

εφk6

v5 =
β [cεφτ2 +σ2]

εφ
v6 =

β

ε

(19)

Differentiating (18) with respect to time

L̇0 = v1Ė + v2Q̇+ v3İ + v4Ḣ + v5Ḋ+ v6Ṗ

L̇0 = v1[χ(S+ εV)− k3E]+ v2[φ1E − k4Q]+

v3[φ2E − k5I]+ v4[τ1Q+ τ2I − k6H]+

v5[k7I + k8H −φD]+ v6[σ1I+σ2D− εP]











(20)

Simplifying (20) to get

L̇0 = [v2θ1 + v3θ2 − v1k3]E+

[v1β c(S+ εV)− v3k5 + v4τ2 + v5k7 + v6σ1]I

+[η1v1β c(S+ εV)− v4k6 + v5k8]H+

[v1β cη2(S+ εV )− v5φ + v6σ2]D

+[v1β (S+ εV)− ε]P



























(21)

Since S+ εV ≤ (k2+εα)π
k1k2−αω , (21) becomes

L̇0 ≤ [v2θ1 + v3θ2 − v1k3]E+
[

πv1β c(k2 + εα)

k1k2 −αω
− v3k5 + v4τ2 + v5k7 + v6σ1

]

I

+

[

η1v1β c(k2 + εα)π

k1k2 −αω
− v4k6 + v5k8

]

H+

[

πv1β cη2(k2 + εα)

k1k2 −αω
− v5φ + v6σ2

]

D

+

[

πv1β (k2 + εα)

k1k2 −αω
− ε

]

P































































(22)
Substitute (19) into (22) to get

L̇0 = β [ρ + c(I1 +η1H +η2D)](R0 − 1) (23)

Now L̇0 < 0 of R0 < 1 and L̇0 = 0 of R0 = 1 or
I1 = H = D = 0. The largest compact invariant set in
{(S,V,E,Q, I,H,R,D,P) ∈ Ω : L̇0 = 0} is the singleton
{Ωd}. Therefore, by Lasalle invariant principle, every
solution to system (3) with initial conditions in Ω
approaches Ωd as t → ∞. Thus, since the region Ω is
positively-invariant, then the disease free equilibrium Ωd

is globally asymptotically stable in Ω of R0 < 1
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3.7 Existence of Endemic Equilibrium

The solution of (3) steady state such that Ωe denotes the
endemic equilibrium point gives

S∗ =
π(ρχ∗+ k2)

A∗
, V ∗ =

πα

A∗
, E∗ =

πχ∗B∗

k3A∗
,

Q∗ =
πθ1χ∗B∗

k3k4A∗
, I∗ =

πθ2χ∗B∗

k3k4k5A∗
,

H∗ =
πA1χ∗B∗

k3k4k5k6A∗
, R∗ =

πχ∗B∗(γ2A0 + ak4k6θ2γ1)

k3k4k5k6A∗

P∗ =
πA3χ∗B∗

k3k4k5k6εφA∗
, D∗ =

πA1χ∗B∗

k3k4k5k6φA∗
.

(24)
where

χ∗ = β [P∗+ c(I∗+η1H∗+η2D∗)] (25)

A∗ = ρχ∗2 + χ∗(ρk1 + k2)+ k1k2 −αω (26)

B∗ = ρχ∗+ρα + k2 (27)

Substitute (24) into (25) to obtain

b0χ∗2 + b1χ∗+ b2 = 0 (28)

where

b0 = k3k4k5k6ρεφ , b1 = k3k4k5k6εφ(ρk1 + k2)−

β ρcε(φθ2k4k6 +φη1A0 +η2A1)−β ρA2

b2 = k3k4k5k6εφ(k1k2 −αω)(1−R0)

It is clear that b0 > 0 since all parameters values are non
negative and b2 < 0 for R0 > 1. Hence, (3) has a unique
positive root by Descarte’s rate of sign. This implies that
the following result is established.
Lemma 1 The model (3) has a unique positive (endemic)
equilibrium if and only if R0 > 1

3.8 Threshold and Sensitivity Analysis of Model

Parameters to R0

Threshold analysis of the basic reproduction number with
respect to a parameter in the model gives the trend
(upward or downward) to which R0 will follow when the
parameter value either decreases or increases. Most of the
time it gives the sign in the deviation of R0 as the
parameter in question changes. It is measured by
obtaining the partial derivative of the basic reproduction

number with respect to the parameter, that is, T
R0

Xi
= ∂R0

∂Xi

where Xi denote the model parameter under
consideration. The threshold analysis of each parameter

has an increasing effect on R0 if
∂R0

∂Xi
> 0 and a decreasing

effect if
∂R0

∂Xi
< 0.

The result obtained for the threshold analysis of each

parameters with respect to the basic reproduction is easy
to understand using numerical value rather than the exact
expression. For instance, the expression obtained for
threshold analysis for the clearance rate of dead infectives
(c), shedding rates σ1 and σ2 respectively are given as:

∂R0

∂c
=

β (k2 +αε)[ε(φθ2k4k6 +φη1A0 +η2A1)]

(k1k2 −αω)k3k4k5k6φε

∂R0

∂σ1

=
β (k2 +αε)

(k1k2 −αω)k3k5φε

∂R0

∂σ2
=

β (k2 +αε)(k5k6αεθ2 + k4τ2θ2 + k5k8)

(k1k2 −αω)k3k4k5k6φε

(29)

The sensitivity index of a variable R0 with respect to a
parameter is the ratio of the relative change in R0

compared to a change in the parameter. It uses the
threshold analysis of the basic reproduction number to
compute the ”‘actual” effect expected by the change in
the parameter value to the overall effective number. The
formula for the normalized forward sensitivity index of
R0 with respect to the parameters for the model system is
thus given as:

ϒ
R0

Xi
=

∂R0

∂Xi

×
Xi

R0

(30)

Some of the expressions obtained for sensitivity analysis
of the model is given as:

ϒ R0
σ1

= σ1k4k6/cε [φ (k4k6θ2 +φ (k4τ2θ2 + k5τ1θ1)η1+

(k5k6k7θ2 +(k4τ2θ2 + k5τ1θ1)k8η2))]+

k4k6σ1 (k5k6k7θ2 + k4τ2θ2 + k5τ1θ1)k8σ2

ϒ R0
σ2

= (k5k6k7θ2 +(k4τ2θ2 + k5τ1θ1)k8)σ2/cε [φ (k4k6θ2+

φ (k4τ2θ2 + k5τ1θ1)η1+ (k5k6k7θ2+

(k4τ2θ2 + k5τ1θ1)k8η2))]

+ k4k6σ1 (k5k6k7θ2 + k4τ2θ2 + k5τ1θ1)k8σ2

(31)

Using the parameter value in table 1, the basic
reproduction number was obtained as 3.5668. The
numerical result obtained for the threshold and sensitivity
analysis is given in the Table 2 below:
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Table 2: Numerical Result for Threshold and Sensitivity

Analysis

Parameter Threshold Analysis Sensitivity Value

β 11889.2896 1

η1 0.006843 0.00007674

δ1 0.001627 0.366038

θ1 −0.53787738 −0.1055611

θ2 0.9416703 0.105604325

δ2 0.004264 0.095924

τ1 0.00056175 0.000062998

τ2 −0.52083268 −0.0934546

α −0.018890672 −0.002648

σ1 32.118199989 0.02701439

σ2 1153.897253 0.970535

γ1 −1.47320036 −0.0396511

γ2 −2.7054575 −0.424767

µ −75112.183776 −0.999918

ω 9.01717998 0.002528

From the table, every parameter with a positive value
increases the basic reproduction number while those with
negative value decreases R0.
By varying the value of a parameter, while others are kept
constant, the following graphical solutions based on
reproduction number R0 were obtained.
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Figure 1: Sensitivity indices of the model parameters

Figure 2: Variation of β to R0

Figure 3: Variation of µ to R0

Figure 4: Variation of γ2 to R0

Figure 5: Variation of ε to R0
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Figure 6: Variation of η1 to R0

Figure 7: Variation of ω to R0

Figure 8: Variation of φ to R0

Figure 9: Variation of σ2 to R0

Figure 10: Variation of θ1 to R0

4 Numerical Simulation & Discussion of

Result

Threshold and sensitivity analyses of a model forms an
integral part of qualitative analysis to be done in making
the right recommendation on disease eradication from the
society. While threshold will pinpoint the direction of
flow of a parameter towards disease eradication,
sensitivity will give the appropriate effect of such
parameter. The graphs in figure 2− 10 depicts the effect
of varying a parameter and its effect on the R0. Figure 2
shows an increase in R0 as value of contact rate β
increases. Indeed, the most sensitive parameter to R0 is β
as can be seen in the graph. The rate of increase in R0 as
β increases slightly is significant. Thus, to lower the
spread of EVD within a population, all efforts must be
directed towards reducing the contact with an infective
individual. This necessitate the need for case detection
and quarantining as we presented in our model. Figure 3
depicts the effect of varying µ on the overall R0. Proper
treatment of deceased at burial reduces significantly the
number of new cases that may arise. The effect of
variation of recovery rate γ2 on the reproduction number
R0 was graphically presented in figure 4. This shows that
hospitalization and treatment of detected cases helps in
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reducing the number of new cases. Since there is an
improvement in treatment strategy for EVD, it is
important for anyone with symptoms to get tested and
treated appropriately. It was recommended that treatment
for this disease should be subsidized by the government
for easy accessibility. Figure 5 is that of variation of EV
decay rate (ε) from the environment and its effect on R0.
The curve shows a decline in R0 as the value ε increases.
Thus, proper sanitation and disinfecting the environment
contributes immensely to reduction of new cases of EVD.
In figure 6, variation of η1 (modification parameter
associated with infected class) was plotted against the
reproduction number R0. The graph obtained has a
positive slope, which implies that lack of sensitization
will trigger the spread of EVD in the population. It is
important to state that, if proper education, awareness and
sensitization against the spread of EVD is not well
disseminated, then peoples’ contact with the infection
will increase, thereby trigger the increase in R0. Effect of
vaccine waning rate (ω) against R0 was depicted in figure
7. It has a slight effect on the reproduction number as can
be seen in the graph. In figure 8, the effect of safe
disposal (burial) of dead infective was plotted against R0

and it was observed that it has a downward effect on R0.
In figure 9, shedding rate of D-compartment (σ2) was
plotted against R0 and the result gives a positive slope
curve. This implies that, dead infective gives more Ebola
virus (EV) to the community if not properly handled.
Variation of θ1 (quarantine rate) against R0 is presented in
figure 10. The earlier the removal of an
infectious/exposed individual from the community, the
lower the spread of EVD within the population.
Using S(0) = 43580,V(0) = 6000,E(0) = 170,Q(0) =
80, I(0) = 50,H(0) = 20,R(0) = 92,D(0) = 8,P(0) =
400 as the initial conditions for the state variables,
together with parameter values in table (1), the dynamics
of the model system of equation was plotted at the DFE
point to obtain the following graphs
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Figure 11: DFE simulation for infected classes
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Figure 12: DFE simulation for Deceased class only
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Figure 13: DFE simulation for P− class only

Figure 11 − 13 showed that regardless of the initial
population, the disease free equilibrium point approaches
a common value over a period of time t.

5 Conclusion

In this work, a mathematical model to study the dynamics
of EVD transmission was presented for analysis in the
presence of some of the preventive measures like case
detection, vaccination, quarantining and environmental
sanitation. The region of feasible solution for the model
was computed. The result showed that the model is
bounded for all time t. Basic reproduction number for the
model was computed. This is the parameter that
determines the number of secondary cases that may arise
from the introduction of a single infected individuals into
the population of susceptible people. This threshold
parameter was used to analyze the sensitivity of model
parameters in triggering/reducing the spread of EVD
within a certain population. It was observed that reducing
contact rate, shedding rate and proper preventive
measures can lower the number of new cases of this
infection because their reduction reduces R0 while their
increase also increases R0. The study concluded that case
detection at early stage is effective in reducing β (contact
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with undetected cases at both asymptomatic/symptomatic
stages).
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