Appl. Math. Inf. Sci.10, No. 2, 657-662 (2016) %N =¥\ 657

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.18576/amis/100225

Some Statistical Quantities of a Quantum System
in Hypergeometric and Negative Hypergeometric
Distributions

Ali Algarni * and S. Abdel-Khalek *

1 statistics Department, Faculty of Science, King Abdulahiiversity, Jeddah, Saudi Arabia
2 Mathematics Department, Faculty of Science, Taif Univgr3iaif, Saudi Arabia

Received: 22 Aug. 2015, Revised: 9 Nov. 2015, Accepted: 10 R@il5
Published online: 1 Mar. 2016

Abstract: In this paper we introduce a quantum system of the intenatiween a two-level atom and input field initially prepaired
hypergeometric and negative hypergeometric distribstid¥e study the dynamics of nonlocal correlation measuredbhyNeumann
entropy or the field entropy. The statistical propertieshef tonsidered field will be discussed through the evolutiowehrl space
entropy. The relationship between Wehrl space entropy amanglement will be explored. The effects of the field disition
parameters on the evolution of statistical quantities dlexamined. It is shown that when the field is closed to thesidal state
no quantum correlation can be found and the system retuts separable state.
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1 Introduction Entanglement is one of the most peculiar features of
guantum mechanics and the heart of quantum information
theory. It is an important kind of quantum correlations

The probability distribution (PD) plays a central role in between two or more system][The concept of entropy
guantum optics and quantum information processing. In'S used for detecting the squeezing and entanglengent [
the class of atom-field interaction PD is acts the10,11]. The nonlocal nature of entanglement has been
distribution of the electromagnetic field elements which is Used as essential resources to perform different tasks in
change with time. In this way, the binomial states (BSs)duantum information processing such as quantum
are intermediate number coherent states in the sense thgfyPtography 12,13, quantum teleportation 14 and

they reduce to the number and coherent states in tw@uantum estimation15). These quantum information
different limits. Complementary to the BSs, the negativetasks depend on finding the quantum states in which
binomial states (NBSs) are also introduced andeéntanglement can be created or enhanced. One of these
investigated 1,2,3,4], they interpolate between the important states is the non-Ga}u33|an quantum states
Susskind-Glogower phase states and coherent s@jtes [ which used to perform certain continuous-variable

. . ., quantum information tasks, such as quantum error
o e oh B s S goTecton 16, Gantum ntanglemert iilato 1
. ! nd universal quantum computatidrg].
interpolation state between the even and odd coheren
states and the even and odd quasi-thermal states It has been noted that ignoring the effect of time
depending on the values of the parameters involved. Irdependence in any quantum system gives an incomplete
this regard the quasi probability distributions of the af th picture of the phenomena connected with such a system.
even and odd NBSs such as Wigner FunctionsThe Jaynes-Cummings model (JCM) for moving atom or
(W-function) and tomograms have been discussdd [ time dependent coupling becomes more realistic model.
Furthermore quantum statistical properties of the everrherefore it will be important to consider the effect of
and odd NBSs. time dependence when studying physical models. It is not
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an easy task to obtain general solutions for The HGS can be reduced to the BS in certain limit and

nonconservative quantum systerh9], however, some the BS to the number and coherent state. The NHGSs is
solutions can be obtained for some particular systems odefined as27]
under certain conditions. Therefore, some explicit

expressions for the time-dependent dynamical operators M
may be obtained in such cas@§] In a previous paper a IB,M,5) = 5 QM (B,s)|n)

bimodal time-dependent JCM assuming that the n=0

instantaneous position of the particle within the cavity M \/<n+s> (%—n—s— 1) (%)1@

depends on time have considered. Consequently the =2 n M—n M

effects of both the velocity and the acceleration have been n=0

taken into account during the _interaction proceas].[ where is real number and s a non-negative integer

Also, the problem of the interaction between a three-level " MB M . :

atom and a quantized bimodal cavity field when the Salistyings < =5 < 175. The NHGSs is also claimed to -

Coup”ng parameter between the atom and the field |§)e a intermediate BS-NBS state. One can see that it is

taken to be time dependent by taking the atomic motionequivalent to the PS and the generalized non-classical

into consideration was considere2?]. It was found that ~ State. Using the following identities

both of the velocity and detuning parameters play an

essential role in the dynamics of the system entanglement n+s (n+9),

and geometric phase. ( n ) =0
Here, we investigate the statistical properties and

nonlocal correlation between a two-level atom systemand, m__ o 4 (% — s)

optical field initially prepared the HGSs and NHGSs. The ( 1-p ) =" /Mmn

statistical properties of the field will be studied through M-n (M —n)!

the evolution of the Wehrl space entropy while the |t s found that the NHGS and PS are equivalent. Thus the

nonlocal correlation or entanglement will be discussedthree intermediate BS-NBS states, the PS, the generalized

through the evolution of the von Neumann (field) entropy. non-classical state related to Hahn polynomials and the

The influence of the initial state of the input field mode NHGS are equivalent. In Section 3 of this article, we will

parameters and the two-level atom motion will be discuss the dynamical properties of the Wehrl space

n!

examined. entropy and entanglement of the single two-level atom
system and optical field initially prepared in the HGS and
NHGS.

2 Hypergeometric and negative Model and its dynamics

The field-atom interaction is a main application in
guantum information and quantum statistic. In this regard
the important and simplest model is known as JC24],
Recently three quantum states, Polya states (Bgsje  ypich 3escribes intera%tion between a two-level aGtIg]nE and
generallged non-classical _states related o Hahrbptical radiation field. JCM have important significance
polynomialsp4], apd negative hy_pergeometnc States pecause JCM is experimentally realized and it have many
(NHGSs)p9] are introduced as different intermediate yheoretical investigations2p]. Stimulated by the JCM
BS-NBS states. The phase properties of the HGSs ané]uccess, more researchers have paid special attention to

NHGSs based on the Hermitial—phase—operatorformalisr‘qhe eneralizations by considering new quantum effects
are studied 26]. It is found that the number of peaks of g y g g

phase probability distribution depicts one peak for the
HGSs and M peaks for the NHGSs. The (HGSs) whichjnensity-dependent JCM of a two-level atom interacting
are complementary to the NHGSs are defined&7]. resonantly with a single mode of the radiation field in a
The hypergeometric states (HGSSs) which arecqyity via multi-photon process where the coupling is
complementary to the NHGSs are defined as intensity dependent; this coupling preserves the energy of
the system. Under the rotating-wave approximation, the
interaction Hamiltonian of the system reservoir is given

M ~1/2 ~1/2
L L—nL L
L5 (M) (W) () m
n—=

hypergeometric states

Here, the model under consideration is an

(1) Hin = G(t)(va'aal0) (1| +a'va'a1) (0]).  (4)
where L is a real number  satisfying )
L >max{M/n,M/(1-n)}, and Here, |0) (|1)) is the upper (lower) state of a two-level

atom, d'(d) is the creation (annihilation) operator of the
field mode,G(t) is the time dependent coupling between
(x) _ X(x=1) (x—n+1) and (x) 1@ the two-level atom and field. In the case of neglecting the

n) n! 0 atomic motion effeciG(t) = g = const. When the time
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dependent couplingG(t) is taken into account, the entropy is defined as the coherent-state representation of

transient regime where the coupling varies rapidly with the density matrix32,36] via

timet. The generalization from the constant couplin

arbitrary time dependent couplinG(t) enables us to SN(t):—/QF (B,1)INQr (B,t)dzll (9)

model several new physical situations not discussed

before. A realization of particular interest whé&ift) may  whereQr (B,t) is given by ) andd?g = |B|d|B|dO.

be the time-dependent alignment or orientation of thewe can specialize things by recourse to the Wehrl phase

atomic/molecular dipole moment using laser pul8& [ distribution (Wehrl PD), defined to be the phase density

and motion of the atom through the cavity. So, we assumef the Wehrl entropy37,39), i.e.,

that the coupling is modeled approximately to be

sinusoidalG(t) = gsiré(t).

The initial state is given by |@(0)) So(t) = —/QF (B,)InQr (B,1)|B|d|B] (10)

= |Ya(0)) ® |ge(0)), where|a(0)) is the initial state of

the two-level atom andiyr (0)) is the initial state of the where® = arg(B).

input field. The combined two-level atom-field system It is well known that the nonlocal correlation or

can be written as entanglement between the two-level atom and field state
can be quantified by the von Neumann entrof9,40],
which is generally defined in terms of the reduced field

1w(0)) = 10) ® |gr(0)) _ (atom) density matrix as
IL,M,n,0) for the HGSs given by Eqlj
Y ®
—) s QM(B,s)|n,0) forthe NHGSs given by Eq3] - S=-Tr(pelnpg)=— ZD)\J- INAj (11)
n=0 i=
(5)
The wave function can be obtained as wherepe = Tra (par) is the reduced density operator of

field F, andA;j are its eigenvalues.

o) =exp|-i [ HDar]lwo). @

All information about the system is carried by either 2
the wave function ) or the total (atom-field) density azf
matrix p(t) = par(t) = |Y))(Y(t)|. Therefore, we o
evaluate the field reduced density matpi(t) via the ve
relation <

Pr (t) =Tra{p(t)}, )

24F

where the subscri) means that the trace is taken over the 22!
two-level atom basis. We close this section by evaluating
the Husimi Q functiorQr of the field mode in terms of the

diagonal elements of the density operator in the coheren ok
state basis. We get os}

Qr (B.5) = = (B1x (1)1 ) ®

wherepg is the field’s reduced density operator.

gt

3 Statistical propertiesWehrl space entropy

and nonlocal correlation Fig. 1: The time evolution of the: a) Wehrl space entrdpy and
b) von Neumann (field) entrot of a stationary two-level atom

interacting with field initially prepared in HGD fdvl = 10, and

In this section we turn our attention to the concept of the, .- N = 0.5 (solid line) and — 0.9 (dashed line).

classical-like (semiclassical) Wehrl entrop82], as a
very useful measure for describing the time evolution of a
quantum system in phase-space. The atomic Wehrl

entropy is used for detecing the entanglement in quantum

systems 33,34,35]. The Wehrl entropy, introduced as a 4 Numerical results and discursion

classical entropy of a quantum state yields additional

insights into the dynamics of the system, as compared tdn this section, we discuss a atom-field system whose
other entropies 32|. This semiclassical information dynamics is described by the JC-model with and without
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Fig. 22 The same as Fig.1 but for moving two-level atom case Fig. 4. The same as Fig.3 but for moving two-level atom case
where the atomic motion is considered throw@fft) = gsir?(t). where the atomic motion is considered thro@@fi) = gsir?(t).

a)
3,4 are the same as Figs. 1,2 but the field starts from
NHGSs.
Fig. 1 depicts the dynamical behavior of the Wehrl

entropy Sy (t) of the field initially prepared in HGS for

M = 10. The dashed red line line is fgr= 0.9 and the
solid blue line is forn = 0.5. Generally, the Wehrl
entropy increases with increasing time and stabilizes at
the maximal values after long time, indicating that the

t
? ? field becomes more quantum mechanical in this limit.
0s From another side§y (mm) = 1+ In(77) detect the field is
05 more classical fon = 0.5, but in the case of high values
04 of the parameten (e.g.n = 0.9) the initial value ofSy at

t = mrrincrease to be .8. As the parameteq increases
the field being more quantum. A saturation behavior of
Sy is obtained through the time interva)4 < t < 3rmt/4.
A growth of Sy is observed O< gt < /4 and the
o decreasingt/4 < gt < 31/4.

To describe the dynamical behavior of the

Fig. 3: The time evolution of the: a) Wehrl space entr&y and
b) von Neumann (field) entrot of a stationary two-level atom
interacting with field initially prepared in NHGD fdvl = 10 and
with 8 = 0.5 (solid line) and3 = 0.9 (dashed line).

entanglement in this model, it is useful to investigate the
variation of the field entropy as shown in Fig. 1(b). It is
observed that the field entropy has a different order as a
function of the scaled time in the stationary two-level

atom case. Interestingly, after an initial change with dapi

oscillatory, in a periodic manner through every periodic

intervalmrm < gt < (m+ 1)7t. Also, the system returns to
time-dependent coupling effect. To explore the influenceits separable state (zero value of field entropy) which
of the different parameters on the dynamical behavior ofcorresponding to minimum value of Wehrl entropy and
the quantum entanglement, nonclassical properties anthe classicality of the field. These results resported that
Wehrl entropy of the system under consideration, we havehe strong correlation between the field entropy and Wehrl
plotted in Figs 1 and 2 the time evolution of the field entropy. On the other hand through the comparison
entropy, S and Wehrl entropySy as a function of the between the solid curve and dashed curve it is clear that
scaled timegt when the time-dependent coupling is Wehrl entropy is very sensitive to the initial field
neglected (i.e.G(t) = g = cond.) and considered distribution parameter so it is gives a good description for
(G(t) = gsir(t)) for various values of the HGSs. Figs. the statistical properties of the field.
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entanglement can be enhanced as the field tends to t%g] Eél\/lasécg;de, H. Waither and G. Mulléthys. Rev. Lett. 54,
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