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Abstract: In this paper, we adopt the problem of estimation and prediction for Nadarajah and Haghighi (NH) distribution under
the progressive first-failure censoring scheme. The obtained results can be specialized to the first-failure, progressive type-II, type-II,
and complete data. The estimation results are formulated with maximum likelihood (ML) and Bayes methods of the unknown model
parameters. The approximate confidence interval as well as Bayes highest posterior density (HPD) intervals are constructed with the
help of MCMC method. Furthermore, two sample point and interval prediction of the sets of order and record samples are constructed.
The estimation results are assessed and compared with the Monte Carlo study. The set of data are analyzed for illustration purposes.
Finally, some brief comments are summarized.
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1 Introduction

The phenomenon of censoring in life testing experiments is widely used for some time and cost restrictions. Form the
first types of censoring schemes applied in different areas of life, testing experiments are type-I and type-II censoring
schemes. In these types of censoring schemes, the experiment is terminated at some prior time or on the number failure
units. For the availability of the removed units from the experiment other than the final point, two types are generalized
in the progressive censoring scheme, see [1]. The progressive censoring scheme was discussed in the form of, type-
I progressive censoring scheme, type-II progressive censoring scheme, and hybrid progressive censoring scheme. The
experiment under high reliable products tested under the last censoring schemes can take a long period of time. One of
the most significant solutions to this problem is grouping the test units into several sets with the same number of units
and the first failure in each group is recorded, which is called first failure censoring scheme, see [2]. Several authors have
reported some statistical inferences under this type of censoring, see [3], [4], and [5]. Under the first-failure censoring
scheme, the experiment is terminated when recording the first failure in each set. The problem of the removed sets from
the experiment before the final point was defined as a progressive first-failure censoring scheme, which was discussed and
developed by [6]. Some properties of the progressive first-failure-censoring scheme were developed by [7], [8], [9] and
[10].

A random sample is selected from the products with n X k size to be grouped into n sets and each set has k units to
be put in a life testing experiment. When the failure time ﬂfml”lk is observed, rj, i = 1,2,...,m sets and the set in which

first failure is observed is randomly removed from the test. Then, the ordered sample Z:(Tlr;m’”’k, Tzr;m’”’k, T,;;m’”’k)
m

under scheme r = (ry, r, ..., ry) are called progressively first-failure censored sample which satisfies n =m+ Y r;.
=1

=
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For consideration, probability density function (PDF) f(r), cumulative distribution function (CDF) F(¢) and observed
progressively first-failure censored sample 1=(t].,, , ;- tg;m‘”l [ t,;;m‘”l 1)» the joint probability density function is given by

m

Lo, w(t18) = O] f(t)[1 — F ()], (D

i=1

where 0 is the parameters vector, t; = tl.r.m a0 <t <t < ... <ty <o, and

m—1 Jj
Q:nka<n—Zri—i>. (2)
=1 i=1

The plan of the progressive first-failure censored scheme depends on using more units in the test but the only m units
are failure to reduce test time. The progressively first-failure censored scheme is reduced to, first-failure censoring scheme
atr =0, m = n and k # 1, progressive type-II censoring scheme at r #0, and k = 1,type-Il at r =(0, O, ..., 0, n —m) and
k =1 and complete sample atr =0, m =n and k = 1.

Remark : If the progressive first-failure censored sample T=(T{, 1, 15, > - Ty i) 18 distributed with CDF
F(t), data are distributed as progressive type-II censoring sample with CDF given by
G(t)=1—(1—F())F. 3)

For more details, see [11], and [12].

The NH distribution was introduced as it better fits for the data that contain zero values other than gamma, Weibull and
the generalized exponential distributions. The lifetime random variable 7 is called NH random variable if T is distributed
to the PDF and CDF given respectively by

F(1) = ar(1+A0)% Le0=0+20% 15 0 04 > 0, )

and

F(x) = 1—1-(+49%), (5)

Also, the reliability function (RF) R(z) and failure rate function (FRF) H () are respectively given by

R(1) = (1= (1#+20%) )

)

and
H(t) = ad(14+A)% 1 (7)

where the parameters o and A are called the shape and scale parameters, respectively.The NH distribution was
introduced by [13] as a form of the extension exponential distribution. NH distribution is reduced to exponential
distribution at oo = 1 with zero mode and has increasing, decreasing, or constant FRF. Different properties of the NH
distribution were discussed by [14].

The development of estimation procedures for the parameters of the NH distribution under general censoring scheme
is the main objective of this paper. All the developed results in this paper are specialized for the complete sample, type-
IT censoring sample, progressive type-II censoring sample, and first failure censoring sample. The classical maximum
likelihood and Bayes with the help of the MCMC method are discussed for the constructed point and interval estimates
of the parameters of the NH distribution. Also, as we see in [15], [16], [17], [18], the Bayesian prediction of future
observation based on the observed progressively first-failure censored sample are adopted for future order statistic and
future record values.

The paper is summarized into two parts. The first part is dealing with estimation problem as follows. The point and
interval MLEs are constructed in Section 2. The point and interval Bayesian MCMC are constructed in Section 3. In the
second part, the Bayesian prediction for future order statistic and upper record values are provided in Section 4. Monto
Carlo simulation study to compare the ML and the Bayes estimators is provided in Section 5. The data set is analyzed for
the estimation and prediction results in Section 6. Finally, we conclude the paper in Section 7.
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2 Maximum Likelihood Estimation

In this section, we discuss the process of constructing the point and interval MLEs of the unknown parameters of the NH
distribution. Then, we suppose that T=(T7. —— T2 ok Tm o, k) is the set of random progressive first-failure censoring
from the NH distribution with the PDF and CDF given by (4) and (5), respectively. Then, the joint likelihood function
given by (1) is reduced to

m

kY (ri+1)(1—=(1+A8)%)

ﬁ 1+ A6)% ] e i= , (8)

After that, the natural logarithms of the likelihood function without normalized constant is defined by

L(a, Alr) = Qo A™

m

l(a,Alt) =mloga+mlogA+ (ax—1) Zlog (1+At)+ Zr,—i—l (1 —(1+A8)%). 9)

2.1 MLEs

After taking the partial derivative of the log-likelihood function (9) with respect to o and A, the likelihood equations are
obtained under equating derivatives with zero, as follows

ol m
=T Y log(1+AL) —
a—l-i;og( +At) —k

P (ri+ 1)(14+A1;)%log(1+ At;) =0, (10)

™=

i=1

and
ol m a

t
TR G e,

Then, the likelihood equations are reduced to two non-linear equations. Hence, the MLEs of the unknown parameters can
be obtained by using any iterative method, such as the Newton Raphson algorithm.

(ri4+ D1+ A6)% 1 =0, (a1

2.2 Asymptotic confidence intervals

The second derivative of the log-likelihood function given by (9) with respect to parameters o and A is reduced to

2
oAy :—E—kz (ri+ 1) (14 At;)*log? (1 + At;), (12)
Puaiy _ M y 3 =
s =@ DY oy 1+,L ~kae 1) L i+ D (14 A, (13)
and
PRICEINEE Na-1 ,
Fao _lzl(HM) kig‘t, ri+1)(1+26)* " (alog(1 4+ At;) +1). (14)

The interval estimate of unknown parameters needs present the Fisher information matrix @ (o, A), which is defined
by taking the expectation of minus Eq. (12-14). The estimators & and A under some mild regularity conditions, are

approximated with bivariate normal distribution with the mean (o, A) and variance covariance matrix @, : (d,i) , as

(ac, i) %N((a,l),@o’l (a A)) (15)

where @ ! (6{, 7L) is the approximate information matrix.

follows

1

R VTP

— A, — a =

@ (a, ),) — _32€(3,MI) () B |:V21 vz2:| : (16)
Jadk 92 Jat(a )
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Then, the interval estimates of the unknown parameters under the normality distribution of the MLEs & and A with
100(1-y)% confidence level are presented by
{ o Fz %' A/ V11

112%\/1)22

where v and vy, are the elements of the diagonal of variance covariance matrix @, ! (ﬁc,i) with the tabulated value

A7)

2y of the standard normal distribution with a right-tail probability given by %’ .

3 Bayesian Estimation

In this section, we adopted the Bayesian approach to estimate the parameter or any function of the parameters. The
efficiency of this approach depending on the amount of information exist in the prior distributions about the unknown
parameters and the information exists in data. Then, for the unknown NH parameters & and A, the informative independent
gamma prior densities are considered for each parameters, as follows

Si(a) < a® el =P%) 00> 0, a,b>0 (18)
Sy(A) o A el=d4) 1 50, ¢,d>0"
From (18), the joint prior density of @ and A can be written as
S(a,A) oc 1A e (batdA) o 350, a,b,c,d > 0. (19)

The joint posterior distribution of ¢ and A is derived as

C SamL@Al
A ) = s (o, 2 L e, Al dadh 0

Formulated under (19) and (8) by

B A am+a*1)Lm+0*19{7ba7dl+(a71)i)::|log(1+lti)+ki§1(Ri+1)[17(1#%)“}}.

The Bayes estimators of function 1 (o, ) under squared error (SE) loss function is given by

21

”SE:./O /0 1o, ) (e, Ale)dadA. 22)

Bayes estimators (21) with (22) show that the estimation is given in a ratio of two integrals, one from normalized constant
and the other from the estimation properties, which in general can not be obtained in a closed form. Then, the approximate
method is used. One of the important methods that can be used in this case is the MCMC method.
MCMC approximation

The joint posterior distribution (21) of o and A given observed data ¢ can be written as

(o, Alt) o< Gi (|4, 1)Ga (Alr) Z(ex, A1), (23)

where Gy (a|A,t) is distributed as the probability gamma density with the shape parameter (m + a) and scale parameter

m
b+2Y log(14At;), and G, (A]z) is a proper density function of A given by
i=1

{(mm) logA—dA— 3 log(l+7Ll,-)}
e i=1

G (A'|£) o< " mta (24)
(b +2Y log(1+ kti))
i=1
and
3o Y log(14+At;)—k Y. (Ri+])(l+lli)a
Z(a, M) L J 25)
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Then, the importance sampling technique is applied to obtain the Bayes estimates, see [19] and the corresponding HPD
intervals, as follows:

Algorithm

Step 1. Let ) be any function of the parameters (&, A). Then, with the initial guess vector (¥, 1(0)=(&, ), the intial
N =na, )
Step 2. Put/ = 1.

m
Step 3. Generate /) from gamma distribution with the shape parameter (m 4 a), and the scale parameter 5+2 ¥ log(1+

i=1
A=D1, and A from (24) with normal proposal distribution N(A =1, V).
Step 4. Put n) = n(a®, ADyand I =1 +1.
Step 5. Repeat steps 3-4 for N times.
Step 6. Under SE loss function, the Bayes estimate of 7} is given by

fip = ——" = : (26)
v X Z(a.20])
i=M*+1
The posterior variance of 7] is given by
N .
e X (00 (a®,20) - hg22(a®, 20
V(fs) = — - . @7
v L Z(a@,20])
i=Mx+1

Step 7. The HPD credible intervals are adopted for the interval estimation. For more details see [19].

1-The sample n(i) Jd=M"+1,M*+2, ..., N with the help of the importance sampling technique is obtained.
2-Sort the sample in the ascending order n;),i = 1,2, ... ,N — M".
3-Compute the weighted function w(’)

Wl = ————— = (28)
Y Z(al,20]r)
j=M
Then, the sort the weighted sample is in ascending order w;),i =1, 2, ..., N — M"*. Therefore the i—th value w;

corresponds to the the value 7);).
4-Estimate the ythe quantile of the marginal posterior of 1 by

o Ny, ify=0
R — e i 29
1 NGy 1 X wiy <7< L wi @
5-Compute the 100(1 — ot%) credible intervals of 6

(gL/ N=M")) ULH{(1=a)(N=M")]}/(N=M"))) (30)

where L=1,2,...,(N—M*)—[(1 — a)(N—M")].
6-The 100 (1-%) HPD interval is the one with the smallest interval width among all credible intervals.

4 Bayesian Prediction

In this section, we consider the Bayesian two-sample scheme to predict the future order statistic and record values under
the observed progressive first-failure censored sample.
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4.1 Bayesian prediction for future order statistics

Suppose that T\, . ., T3, ks Tropensie 18 M progressive first-failure censored sample is obtained from life testing
experiment with n items whose lifetimes have the NH distribution with parameters o¢ and A. Moreover suppose Y;, Y,
..., Yy is an independent random sample of size s of future NH lifetimes random ordered values. Our objective is
predicting the /-th ordered lifetime value from a future sample of size s, 1 </ < s known with two-sample Bayesian
prediction technique.

The probability density function of the /-th order statistic [20] for given o, A is given by

gilo ) = D[1 = Flyla, A))* ) [F (e, M) fnl et 2), e >0, (31)
where D = [ (;) is a normalizing constant satisfying [ g;(y;|e, 2)dy; = 1. From (4), (5), and (31), we get

gz(y1|06,l) — Dol (] +A’yl)a71 e(fo»l)(lf(H»lyl)a) 1 _e{lf(H»ly[)a} =1 , (32)

Using the binomial expansion, the density function (32) takes the form

-1 o
gl ) = Do (14 2y) %' Y ajels D (=0+200%) [y s g, (33)
=0

where aj = (—1 ) (l;l). Then, the predictive posterior density of future ordered values under the progressive first-failure
sample can be obtained by (21) and (33).

sitila2) = [ [ avlad)n(eal)dadr, (4

The analytical form of (33) is more difficult. Therefore, the consistent estimator for g7 (y;|@, A ) under the MCMC sample
is described. Suppose that { (a9, 1)), i = M*+1,M*+2, ..., N} are the MCMC samples. Then, the consistent estimator
of g; (yi]et,4), is given by
1 N . .
- Y abule® A0, (35)
N-M i=M*+1

g (vila,A) =

where w(!) is given by (28), and M* is burn-in.
Bayes point prediction
From (32), the Bayes point predictor under SEL of /—th order statistic ys, 1 <[/ < s is given by

1
N —M*

o N o
Yo = / vigl vila, A)dy; = Y / vigi(ila?, A D) widy,. (36)
0 i=M+170

Bayesian prediction intervals
A prediction interval (PI) is an interval that uses the results of a past sample and contains the results of a future sample
from the same population with a specified probability. The distribution function of the density function, g;(y;|a, 1), is
given by
-1

G A)y=D —
l(yl|a7 ) j;()aj(sil+.]+1)

[1 — e(x—l+j+1)(17(1+lyz)“)} , (37)

If we want to estimate the predictive distribution of y;, say G (y;|o, A ), a simulation consistent estimator of Gj (y;|a, A )

can be obtained as N

1 . .

" G (yi|a?, A D )w. (38)
N-M i:A;+l

GA?(yl|a7)’) =

Then, the Bayesian predictive bounds of a two-sided equitailed 100(1 — ¥)% interval for ¥; can be obtained by solving the
following two equations for the lower bound L and upper bound U

P(Yiy > L) =1 - Gi(La,2) =11,
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Hence
G (Lo, A) = %’ (39)
and
P(Yy) > Ult) =1 - Gi(U]a ) = 3,
hence

Gi(U|o,A) =1~ (40)

STE

Then, the two non-linear equations (39) and (40) cannot be solved with analytically methods. We can use numerical
techniques for solving these non-linear equations, such as the Newton Rafson method.

4.2 Bayesian prediction for future record values

For given T,,....is Toniir -+ Do the progressive first-failure censored sample of size m can be drawn from the NH
distribution with the parameters o and A. Suppose that, X, X5, ..., X; is an independent future sample of the upper record

values from the same population. The PDF of the X;, / = 1,...,s [21] is given by

[—log(1 — F (x|, 2))]"!

/’l[()C[|OC,7L): (l—])! f(x”OC,k). 41)
The Eqgs (4), (5), and (41) are reduced
ar d , o
hy (x|, A) = —+ Z bi(1 Ay AU D=1 (=(1422)%) 42)

(-1 =

where b; = (—1)/*/~! (l;l). Then, the predictive posterior density of the future record value under the progressively
first-failure sample is given by

hitalad) = [ [ hiale 2w Al dads, @3)
0 Jo
The consistent estimator of 4} (x;|o¢, A ) under the MCMC sample is given by

1

B (o, ) = +——

N o o o
Y (e, 20) w0, (44)

i=M"+1

Bayesian point prediction
Under the SEL functions Bayes point predictors of X, is given by

1
N —M*

o N o
Xu :/ xihy (x;|a, A)dx; = Z / xihy (xl|(x('),l(’))w,~dxl. (45)
0 =M 4170

Bayesian prediction intervals

A prediction interval (PI) is an interval that uses the results of a past sample and contains the results of a future sample
from the same population with a specified probability. The distribution function of the density function, &;(x;|a,A), is
given

-1
bi[C(j+1,1)—T(+1,(14+Ax)%)]. 46

If we want to estimate the predictive distribution of x;, say H,(x;|a, A ), a simulation consistent estimator of H;" (x;|o, A)
can be obtained as

Hl(xl|oc,l):

1 N N
- Hy (x| oD A0, (47)
N-M i:A;+l

Hy (alo, ) =
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It should be noted that the MCMC samples { (o), A()), i =M* 41, M* 42, ..., N} can be used to compute /} (x;|a, 1) or
H [ (x7|a, A) for all X;. Moreover, a symmetric 100y% predictive interval for X; can be obtained by solving the following
two equations for the lower bound, L and the upper bound, U

P(X;>Ljt)=1-H (Lla,A) =1 —g,

Hence

yx _ Y
and

Py >Ul)=1—AU|a,A) = g
Hence
[:I* _ y
(Ul =1-3. (49)

The analytical solution, in this case, is not possible then. We need a numerical technique for solving these non-linear
equations, such as the Newton Rafson method.

5 A Simulation Study

In this section, we analyze the effect of the estimators through a Monte Carlo simulation study. We study the effect
of choosing the true value of the parameters and the combination of censoring parameters (k, m, n, r). The algorithm
presented by [22], and the method of generating progressive first-failure samples mentioned in [23] are applied. All
analysis is done through software R. the parameter with values such as o« =1.0 and A =1.5 and the corresponding hyper-
parameters (a, b, ¢, d) of the prior distributions 0; (¢) and 8, (A) as called, prior; = (a =0.5, b =1.0, ¢ =10.0, d =5.0) are
selected. Also, @ =1.5 and A =1.0 with corresponding hyper-parameters (a, b, ¢, d) of the prior distributions ; (o) and
0>(A) as called,prior (2) = (@ =3.0, b =2.0, ¢ =0.5, d =1.0) are selected. The group size k is selected to be 1 and 3 and
determines two sets of combination for n and m say n = 30, m = 15, 25; n = 50, m = 25, 40 with different r;. In our study,
we used four different censoring schemes (I, 11, I11,V) described in Table 1. In our simulation algorithm, we generated
11,000 MCMC samples, and discarded the first 1000 iterations. The average values (AV) of the MLE and Bayes estimate
of a and A along with their mean squared error (MSE) are computed and summarized in Tables 2 and 3, respectively.
Also, we report the average length (AL) of 99% confidence interval and coverage percentages (CP) in Tables 4 and 5.

Table (1): Different censoring schemes that described simulation study.
scheme | (n,m) | Removals (Ri) | (n,m) Removals (Ri)

1 (30,15) (15,01 (30,15) (5,0°%)

11 (014,15) (0%4,5)

11 (07,15,07) (0'2)5,0'2)

\% (] 15) (] 704)5

I (50,25) (25,0%%) (50,40) (10,0%%)

11 (0%4,25) (0%,10)

11 (012,25,0'%) (012,10,0%%)

Vv (]25) (1,03)10

@© 2022 NSP
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Table (2) The AV and MSEs of the parameters o and A at (o = 1.0,A = 1.5) with priorl.

k (”l,m) CS (ML (')Bayes
o
1] (30,15) | 1 | 1.15(0.39) 1.47(0 65) 0.86(0 i3) 2.02(0 52)
IT | 1.11(0.44) | 1.58(0.73) | 0.79(0.24) 2.07(0.57)
717 | 1.14(0.39) | 1.51(0.66) | 0.84(0.20) 2.03(0.53)
IV | 1.13(0.40) | 1.50(0.65) | 0.82(0.21) 2.05(0.55)
(30,25) | I | 1.12(0.37) | 1.52(0.68) | 0.87(0.15) 1.98(0.50)
IT | 1.10(0.36) | 1.54(0.65) | 0.85(0.18) 2.02(0.53)
717 | 1.13(0.36) | 1.52(0.63) | 0.88(0.15) 1.99(0.50)
IV [ 1.11(0.36) | 1.52(0.66) | 0.86(0.16) 1.99(0.50)
(50,25) | 1 | 1.14(0.36) | 1.46(0.62) | 0.88(0.14) 1.97(0.49)
IT | 1.11(0.42) | 1.60(0.63) | 0.82(0.20) 2.07(0.57)
TIT | 1.08(0.34) | 1.55(0.63) | 0.85(0.17) 1.99(0.50)
IV [ 1.09(0.37) | 1.60(0.67) | 0.84(0.18) 2.03(0.54)
(50,40) | I | 1.12(0.34) | 1.48(0.60) | 0.90(0.13) 1.93(0.46)
T | 1.12(0.36) | 1.51(0.64) | 0.86(0.15) 1.99(0.50)
TIT | 1.14(0.36) | 1.46(0.63) | 0.89(0.13) 1.91(0.45)
IV | 1.11(0.34) | 1.53(0.62) | 0.89(0.13) 1.95(0.47)
31 (30,15) | 1 | 1.06(0.37) | 1.63(0.66) | 0.81(0.23) 2.07(0.58)
IT | 1.05(0.45) | 1.70(0.69) | 0.80(0.27) 2.09(0.61)
TIT | 1.03(0.37) | 1.68(0.69) | 0.79(0.25) 2.08(0.58)
IV | 1.10(0.46) | 1.60(0.73) | 0.77(0.26) 2.08(0.58)
(30,25) | I | 1.08(0.37) | 1.62(0.67) | 0.83(0.20) 2.05(0.56)
IT | 1.14(0.48) | 1.56(0.72) | 0.80(0.22) 2.07(0.57)
717 | 1.08(0.38) | 1.60(0.66) | 0.82(0.21) 2.06(0.56)
IV | 1.06(0.37) | 1.64(0.65) | 0.82(0.21) 2.06(0.57)
(50,25) | I | 1.11(0.40) | 1.56(0.66) | 0.82(0.20) 2.05(0.55)
IT | 1.07(0.46) | 1.66(0.70) | 0.80(0.24) 2.11(0.64)
71T | 1.04(0.36) | 1.65(0.67) | 0.80(0.22) 2.06(0.57)
IV [ 1.10(0.45) | 1.61(0.71) | 0.83(0.22) 2.07(0.61)
(50,40) | I | 1.10(0.37) | 1.57(0.63) | 0.84(0.18) 2.02(0.53)
T | 1.13(0.46) | 1.56(0.70) | 0.80(0.20) 2.06(0.56)
71T | 1.09(0.39) | 1.58(0.65) | 0.83(0.19) 2.03(0.54)
IV [ 1.09(0.39) | 1.58(0.65) | 0.94(0.17) 2.03(0.64)
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Table (3). The AV and MSE of the parameters & and A at (¢ = 1.5, A = 1.0) with prior2.
k (”l, m) CS (ML - (')Bayes
1| (30,15) | I 1.56(0 54) | 1.22(0.62) | 1 68(0 23) 1. 11(0 19)
IT | 1.83(0.81) | 1.06(0.61) | 1.70(0.22) 1.09(0.19)
11 | 1.62(0.62) | 1.21(0.69) | 1.67(0.22) 1.12(0.23)
IV | 1.53(0.62) | 1.26(0.72) | 1.67(0.20) 1.10(0.19)
(30,25) | I | 1.53(0.52) | 1.25(0.66) | 1.66(0.24) 1.13(0.25)
11 | 1.50(0.58) | 1.29(0.61) | 1.67(0.20) 1.12(0.19)
11 | 1.61(0.62) | 1.21(0.69) | 1.66(0.23) 1.11(0.25)
IV | 1.57(0.56) | 1.20(0.64) | 1.66(0.22) 1.10(0.21)
(50,25) | 1 1.59(0.61) | 1.23(0.69) | 1.67(0.23) 1.12(0.25)
11 | 1.77(0.71) | 1.12(0.65) | 1.71(0.23) 1.11(0.18)
IIT | 1.63(0.64) | 1.20(0.68) | 1.66(0.24) 1.11(0.25)
IV | 1.52(0.51) | 1.27(0.71) | 1.66(0.21) 1 13(0.21)
(50,40) | 1 1.52(0.51) | 1.22(0.62) | 1.82(0.47) 0.84(0.31)
I1 | 1.41(0.57) | 1.31(0.72) | 1.84(0.45) 0. 81(0 27)
IIT | 1.59(0.58) | 1.21(0.65) | 1.81(0.60) 0.70(0.38)
IV | 1.51(0.54) | 1.26(0.66) | 1.84(0.57) 0.74(0.36)
31 (30,15) | [ 1.62(0.73) | 1.25(0.74) | 1.69(0.22) 1.11(0.21)
IT | 1.99(0.86) | 0.902(0.55) | 1.70(0.26) 1.06(0.22)
IIT | 1.54(0.66) | 1.23(0.68) | 1.67(0.19) 1.08(0.17)
IV | 1.83(0.82) | 1.09(0.70) | 1.71(0.22) 1.08(0.11)
(30,25) | I | 1.55(0.69) | 1.29(0.71) | 1.68(0.21) 1.13(0.19)
II | 1.66(0.76) | 1.18(0.66) | 1.61(0.23) 1.11(0.20)
111 | 1.48(0.71) | 1.33(0.76) | 1.65(0.18) 1.11(0.17)
IV | 1.53(0.72) | 1.33(0.77) | 1.68(0.20) 1.13(0.11)
(50,25) | I | 1.51(0.69) | 1.36(0.79) | 1.68(0.21) 1.13(0.21)
11 | 1.90(0.72) | 0.92(0.47) | 1.74(0.41) 1.12(0.34)
11 | 1.42(0.64) | 1.31(0.79) | 1.66(0.19) 1.13(0.21)
IV | 1.69(0.81) | 1.22(0.76) | 1.70(0.23) 1.10(0.19)
(50,40) | I | 1.51(0.65) | 1.32(0.75) | 1.66(0.20) 1.14(0.21)
11 | 1.74(0.76) | 1.09(0.57) | 1.71(0.23) 1.10(0.18)
IIT | 1.41(0.67) | 1.30(0.74) | 1.63(0.11) 1.12(0.11)
IV | 1.55(0.67) | 1.28(0.72) | 1.67(0.22) 1.14(0.11)
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Table (4) The AL and CP of ¢ and A at (ot = 1.0,A = 1.5) with priorl.
k (”a m) CS (ML (')Bayes
A A
1| (30,15) | I 6.51(0 99) | 6.14(1.00) 3.10(1 00) | 1.83(1.00)
11 18.6(1.00) | 11.0(1.00) | 3.30(1.00) | 2.14(1.00)
1 | 7.61(0.99) | 5.90(1.00) | 2.94(1.00) | 2.59(1.00)
IV | 9.98(0.99) | 8.07(1.00) | 3.20(1.00) | 2.41(1.00)
(30,25) | I 4.82(0.97) | 4.70(1.00) | 3.18(1.00) | 1.42(1.00)
II | 6.94(0.98) | 6.14(1.00) | 3.38(1.00) | 1.54(1.00)
111 | 5.55(0.96) | 4.48(1.00) | 3.11(1.00) | 1.60(1.00)
IV | 5.51(0.97) | 4.79(1.00) | 3.14(1.00) | 1.56(1.00)
(50,25) | 1 5.49(0.99) | 4.61(1.00) | 3.16(1.00) | 1.47(1.00)
11 13.7(1.00) | 8.61(1.00) | 3.38(1.00) | 1.82(1.00)
IIT | 5.83(0.97) | 4.38(1.00) | 2.77(1.00) | 2.05(1.00)
IV | 7.43(0.98) | 6.08(1.00) | 3.13(1.00) | 1.78(1.00)
(50,40) | 1 3.69(0.97) | 3.53(1.00) | 3.15(1.00) | 0.92(1.00)
I1 | 5.79(0.94) | 5.16(1.00) | 3.35(1.00) | 0.91(0.92)
IIT | 4.13(0.93) | 3.52(1.00) | 2.98(1.00) | 1.04(0.96)
IV | 4.09(0.92) | 3.82(1.00) | 3.04(1.00) | 0.97(1.00)
31 (30,15) | [ 14.0(0.99) | 9.69(1.00) | 3.09(1.00) | 2.28(1.00)
I | 30.2(1.00) | 16.9(1.00) | 3.45(1.00) | 3.04(0.96)
IIT | 14.1(0.99) | 10.1(1.00) | 3.00(1.00) | 3.01(1.00)
IV | 28.4(1.00) | 16.9(1.00) | 3.25(1.00) | 2.90(1.00)
(30,25) | I | 10.28(0.99) | 7.66(1.00) | 3.17(1.00) | 2.27(1.00)
IT | 13.22(1.00) | 9.12(1.00) | 3.38(1.00) | 2.48(1.00)
11 | 9.47(0.97) | 7.36(1.00) | 3.10(1.00) | 2.49(1.00)
IV | 9.99(1.00) | 7.73(1.00) | 3.17(1.00) | 2.49(1.00)
(50,25) | I 9.21(0.99) | 7.51(1.00) | 3.09(1.00) | 2.07(1.00)
I1 | 21.3(1.00) | 12.0(1.00) | 3.49(1.00) | 2.83(0.96)
11 | 9.35(0.99) | 7.88(1.00) | 2.90(1.00) | 3.08(1.00)
IV | 13.7(0.99) | 9.39(1.00) | 3.23(1.00) | 2.74(1.00)
(50,40) | I 7.53(0.97) | 5.71(1.00) | 3.12(1.00) | 1.78(1.00)
11 11.7(1.00) | 7.39(1.00) | 3.39(1.00) | 1.87(1.00)
IIT'| 7.52(0.95) | 5.68(1.00) | 3.01(1.00) | 2.09(1.00)
IV | 8.38(0.97) | 6.22(1.00) | 3.11(1.00) | 2.03(1.00)
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Table (5) The AL and CP of o and A at (ot = 1.5, A = 1.0) with prior2.
k (”l,m) CS (ML (')Bayes
o A
1| (30,15) | I 3.76(0.99) | 6. 44(0 99) | L. 01(0 99) | 2.21(1.00)
IT | 9.45(1.00) | 13.3(1.00) | 2.01(0.97) | 2.26(1.00)
111 | 3.80(0.99) | 6.23(1.00) | 1.20(1.00) | 2.34(1.00)
IV | 5.52(1.00) | 8.34(1.00) | 1.48(1.00) | 2.28(1.00)
(30,25) | I 2.67(0.99) | 4.97(0.99) | 0.95(1.00) | 2.02(1.00)
11 | 3.81(0.99) | 6.48(1.00) | 1.26(1.00) | 2.01(1.00)
11 | 2.73(0.99) | 4.93(1.00) | 1.01(1.00) | 2.08(1.00)
IV | 2.77(1.00) | 5.09(0.99) | 1.01(1.00) | 2.05(1.00)
(50,25) | I 2.75(0.99) | 4.79(0.99) | 0.96(1.00) | 2.04(1.00)
I1 | 7.15(1.00) | 10.3(1.00) | 1.48(1.00) | 2.11(1.00)
IIT | 2.55(0.99) | 4.68(0.99) | 1.07(1.00) | 2.26(1.00)
IV | 3.84(0.99) | 6.50(1.00) | 1.41(1.00) | 2.16(1.00)
(50,40) | I 2.04(0.99) | 3.79(0.98) | 0.97(1.00) | 1.80(1.00)
11 | 3.19(0.99) | 5.17(1.00) | 1.39(1.00) | 1.78(1.00)
IIT | 2.12(0.99) | 3.63(0.98) | 0.98(1.00) | 1.89(1.00)
IV | 2.14(0.99) | 4.03(0.99) | 1.05(1.00) | 1.86(1.00)
31 (30,15) | I 6.60(1.00) | 10.5(1.00) | 1.12(0.99) | 2.34(1.00)
I | 14.7(1.00) | 23.5(1.00) | 2.49(0.82) | 2.39(1.00)
IIT | 6.82(1.00) | 10.9(1.00) | 1.35(1.00) | 2.47(1.00)
IV | 11.3(1.00) | 15.5(1.00) | 1.73(0.99) | 2.41(1.00)
(30,25) | I 5.06(0.99) | 7.95(1.00) | 1.04(1.00) | 2.24(1.00)
IT | 8.68(1.00) | 11.0(1.00) | 1.77(0.98) | 2.23(1.00)
111 | 5.31(0.99) | 7.90(1.00) | 1.08(1.00) | 2.29(1.00)
IV | 5.27(1.00) | 8.34(1.00) | 1.41(1.00) | 2.28(1.00)
(50,25) | I 5.35(0.99) | 7.69(1.00) | 1.03(0.99) | 2.25(1.00)
I1 | 11.0(1.00) | 16.5(1.00) | 2.03(0.93) | 2.30(1.00)
111 | 5.13(1.00) | 7.90(1.00) | 1.20(1.00) | 2.45(1.00)
IV | 8.73(1.00) | 11.7(1.00) | 2.03(0.89) | 2.36(1.00)
(50,40) | I | 3.99.(1.00) | 5.97(1.00) | 1.00(1.00) | 2.11(1.00)
11 | 6.85(1.00) | 9.08(1.00) | 1.50(1.00) | 2.09(1.00)
IIT | 4.13(0.99) | 6.05(1.00) | 1.04(1.00) | 2.22(1.00)
IV | 4.47(0.99) | 6.43(1.00) | 1.92(1.00) | 2.19(1.00)

6 Simulate Data Analysis

In this section, we analyze a simulate data set generated from the NH distribution with parameters values a=1.0 and
A=0.5 using the algorithm described in [22]. The data is generated under k =2, n =30, m =25 and censoring scheme
r— {0“0), 1 <5), 0(10) }. The prior information are selected to be a=0.5, b=1.0, ¢=4.0, d=8.0. Then the generated progressive
first failure data are given by {0.0079, 0.0356, 0.0474, 0.0725, 0.0842, 0.1421, 0.2191, 0.2956, 0.3277, 0.3719, 0.3801,
0.3978, 0.5088, 0.5965, 0.6124, 0.6769, 0.6977, 0.7682, 0.9223, 1.1889, 1.2158, 1.4409, 1.9434, 2.2252, 3.1607 } .Under
the above data, the point and 95% interval estimate of the ML Bayes methods are given in Table (6). The quality of
the convergence of the MCMC method is measured by the plot of the simulation number and corresponding histogram
generated by the MCMC method which are reported in Figures (1-4). For the prediction results, the point and interval
prediction of the future set of order statistic and record values are presented in Table (7).

Table (6): Two-sided 95% confidence and HP intervals of ¢¢ and A.
MLE Bayes(MCMC)
Method | ()ML 95% C.1 Length (B 95% C.Iof A Length h
a 1.185 | (—0.920,3.2914) | 4.2114 | 1.123 | (0.8217,3.3540) | 2.5322
A 0.481 | (—0.6265,1.5890) | 2.2155 | 0.576 | (0.2326,1.07170) | 0.8391
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Table (7): The point and 95% Pls predictions of a future order statistics and record values.
Variables Order statistics Record values
Yis) SEL L 8] Xs) SEL L 8]
Yy 0.0595 | 0.0012 | 0.1819 | X(;) | 1.7558 | 0.0283 3.3680
Yo 0.1205 | 0.0096 | 0.2816 X(2) | 3:5400 | 0.2587 5.0648
Y3 0.1834 | 0.0286 | 0.3750 X(3) | 5:3709 0.6062 6.5806
Y4 0.2500 | 0.0511 | 0.4670 | X(4) | 6.8182 | 0.9774 8.2299
Y5 0.3170 | 0.0759 | 0.5552 | X(5) | 9.4679 | 1.3236 9.9927

7 Conclusion and Brief Comments

The NH distribution presents a suitable model for fitting data, especially the one that contains zero values than weibull,
exponential ,and gamma distributions. This model can be modeling different lifetime products. In this paper, we developed
and discussed two methods of estimation for unknown NH parameters. Also, we discussed problem of the prediction
of a future sample in two case order statistics and record values based on general censoring schemes whose several
censoring scheme is considered as a special case. The results are assessed and compared through the Monto Carlo study
and numerical example. From the numerical results, we observe

1.Tables 2 to 5 show that the proposed methods are more acceptable.
2.The results in tables 2 to 5 show that the Bayes estimators perform better than the MLEs in the terms of MSEs,

especially in the informative prior.
3.The interval estimation Bayes estimators perform better than the MLEs in terms of the mean length and probability

coverage.

4.For the cases that increasing proportion 7, MSEs and withdraw a length of all estimators have been decreasing.
5.The prediction of the future order statistic and record values the proposed methods performs better.
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Fig. 1: Simulation number of o generated by MCMC method and Histogram of & generated by MCMC method.
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Fig. 2: Simulation number of A generated by MCMC method and Histogram of A generated by MCMC method.
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