A Class of Extended One-Step Methods for Solving Delay Differential Equations

F. Ibrahim¹,²,*, A. A. Salama³ and S. Turek¹

¹ Institut für Angewandte Mathematik, LS III, TU Dortmund, Vogelpothsweg 87, 44227 Dortmund, Germany
² Department of Mathematics, Faculty of Science, South Valley University, Qena 83523, Egypt
³ Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

Received: 9 May 2014, Revised: 8 Aug. 2014, Accepted: 10 Aug. 2014
Published online: 1 Mar. 2015

Abstract: In this paper, we derive a class of extended one-step methods of order \(m \) for solving delay-differential equations. This class includes methods of fourth and fifth order of accuracy. Also, the class of these methods depends on two free parameters. A convergence theorem and convergence factor of these methods are given. Stability regions for such methods are determined in terms of the time-lag \(\tau \). Some numerical examples are given to illustrate the effectiveness of the numerical schemes.

Keywords: Delay-differential equations, Stability, Convergence, Numerical solutions

1 Introduction

Delay differential equations (DDEs) have a wide range of applications in science and engineering: for example population dynamics, chemical kinetics, physiological and pharmaceutical kinetics. For example, one may think of modelling the growth of a population where the self-regulatory reaction in case of overcrowding responds after some time lag. More examples are discussed in Driver [7], Gopalsamy [28] and Kuang [29]. First order DDE can be written as

\[
\begin{align*}
\frac{dy}{dx} &= f(x, y(x), y(\alpha(x))), \quad a \leq x \leq b, \\
y(x) &= g(x), \quad x \leq a.
\end{align*}
\]

Here \(f \), \(\alpha \) and \(g \) denote given functions with \(\alpha(x) \leq x \) for \(x \geq a \), the function \(\alpha \) is usually called the delay or lag function and \(y \) is unknown solution for \(x > a \). If the delay is a constant, it is called the constant delay, if it is a function of only time, then it is called the time dependent delay, if it is a function of time and the solution \(y(x) \), then it is called the state dependent delay.

The most obvious of the above methods for solving problem (1) numerically is that the \(s \) – Runge-Kutta methods with \(\alpha(x) = x - \tau \) in the form

\[
\begin{align*}
y_{n+1}^i &= y_n + h \sum_j a_{ij} f(x_n + c_j h, Y_{n+1}^j, y(x_n + c_j h - \tau)), \\
y_{n+1} &= y_n + h \sum_j b_{ij} f(x_n + c_j h, Y_{n+1}^j, y(x_n + c_j h - \tau)).
\end{align*}
\]

* Corresponding author e-mail: Fatma.Ibrahim@math.tu-dortmund.de

© 2015 NSP
Natural Sciences Publishing Corp.
\[i = 1, 2, \ldots, s. \] The \(b_j \) are often referred to as the weights of the method, while the \(c_i \) are referred to as abscissae, they belong to \([0, 1]\) and satisfy the conditions:

\[c_i = \sum_{j=1}^{s} a_{ij}. \]

There are many concepts of stability of numerical methods for DDEs based on different test equation as well as the delay term. \cite{3} has considered the below scalar equation for \(\lambda = 0 \) and \(\mu \in \mathbb{C} \) and also considered the case, where \(\lambda \) and \(\mu \) are complex using the linear DDEs

\[\begin{align*}
\dot{y}(x) &= \lambda y(x) + \mu y(x - \tau), \quad x \geq 0 \\
y(x) &= g(x), \quad -\tau \leq x \leq 0
\end{align*} \tag{2} \]

It is known that from \cite{1} that if \(g(x) \) is continuous and if

\[|\mu| < -\text{Re}(\lambda), \tag{3} \]

then the solution \(y(x) \) of (2) tends to zero as \(x \to \infty \).

It is well known that the maximum order of an A-stable linear multistep methods (LMMs) is two. This difficulty has been solved by coupling two LMMs to give an A-stable extended one step method of order three, which had constructed by Usmani and Agarwal \cite{27}. After noting that the maximum order of extended one step method is three, Kondrat and Jacques \cite{15} gave extended two-step fourth order A-stable methods for solving ordinary differential equations. Later Chawla et al. \cite{25} had constructed a class of extended one-step methods generalizing the method of Usmani and Agrawal \cite{27} and the maximum attainable order for methods of this class is five which are A- and/or L-stable.

The purpose of this paper is to study an extension the work of Chawla et al. \cite{23,25} for solving DDEs. This class includes methods of fourth and fifth order of accuracy. Furthermore there exists two-parameter sub-family of these methods which are P-stable.

The paper is organized as follows: In the following section 2, we explain the general approach for solving DDEs. The details of the computations for different value of \(m \) will be described in Section 3. The Analysis of stability regions for these methods presents in section 4. For three representative examples, section 5 contains a documentation of numerical results illustrating the performance of our methods. Some concluding remarks are given in the final section 6.

2 The general approach

In this section, we extend the work of Chawla et al. \cite{1994,1995} to derive a class of extended one-step methods of order \(m \) for solving DDEs. We start with the following discretization for solving problem (\ref{eq:2}):

\[y_{n+1} = y_n + h \left[\alpha_0 f_n + \alpha_1 f_{n+1} + \sum_{j=2}^{m-1} \alpha_j \hat{f}_{n+j} \right], n = 0, 1, \ldots, N - 1, \tag{4} \]

where \(\hat{f}_{n+j} = f(x_{n+j}, y_{n+j}, y^h(\alpha(x_{n+j}))) \) and \(\alpha_j, \ j = 2, 3, \ldots, m - 1 \) are real coefficients. The function \(y^h \) is computed from

\[
\left\{ \begin{array}{l}
y^h(x) = g(x) \quad \text{for} \quad x \leq a \\
y^h(x) = \beta_{j0} y_k + \beta_{j1} y_{k+1} + h \left[\gamma_{j0} f_k + \gamma_{j1} f_{k+1} \right] \\
y^h(k) = y_k \\
x_k < x \leq x_{k+1} \\
k = 0, 1, \ldots
\end{array} \right. \tag{5} \]

where \(\beta_{j0}, \beta_{j1}, \gamma_{j0}, \gamma_{j1} \) and \(\gamma_j \) are real coefficients. The function \(\tilde{y}_{n+j} \) are computed from (5) when \(x = x_{n+j} \).

In this paper, we will use \(\tilde{\gamma} \) for the coefficients of \(\tilde{y}_{n+j} \) as in the following form:

\[\tilde{y}_{n+j} = \tilde{\beta}_{j0} y_n + \tilde{\beta}_{j1} y_{n+1} + h \left[\tilde{\gamma}_{j0} f_n + \tilde{\gamma}_{j1} f_{n+1} + \sum_{i=2}^{j-1} \tilde{\gamma}_{ji} \hat{f}_{n+i} \right] \tag{6} \]

We display this class of extended one-step methods in the following Table.

<table>
<thead>
<tr>
<th>(\alpha_0)</th>
<th>(\alpha_1)</th>
<th>(\alpha_2)</th>
<th>\ldots</th>
<th>(\alpha_{m-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_{20})</td>
<td>(\beta_{21})</td>
<td>(\gamma_1)</td>
<td>(\gamma_2)</td>
<td>(\ldots)</td>
</tr>
<tr>
<td>(\beta_{30})</td>
<td>(\beta_{31})</td>
<td>(\gamma_1)</td>
<td>| \gamma_2)</td>
<td>| \ldots)</td>
</tr>
<tr>
<td>(\beta_{m-1.0})</td>
<td>(\beta_{m-1.0})</td>
<td>(\gamma_{m-1.0})</td>
<td>| \gamma_{m-1.2})</td>
<td>| \gamma_{m-1.m-2})</td>
</tr>
</tbody>
</table>

3 Derivation of some methods for \(m = 4, 5 \)

In this section, we describe derivations of some methods for various values of \(m \).

3.1 Case I, \(m = 4 \)

In this case, we describe the derivation of the present methods of fourth order of accuracy. In order to determine the coefficients \(\alpha_0, \alpha_1 \) and \(\alpha_j \), we rewrite (4) in the exact
form
\[y(x_{n+1}) = y(x_n) + h[α_0 f(x_n, y(x_n), y(α(x_n))) + \sum_{j=2}^{m} α_j f(x_{n+j}, y(x_{n+j}), y(α(x_{n+j})) + t(x_{n+1})]. \]
\[\tag{7} \]
We expand the left and right side of (7) in the Taylor series about the point \(x_{n+1} \), equate the coefficients up to the terms \(O(h^4) \) and solve the resulting system of equations, we obtain
\[α_0 = \frac{3}{8}, \quad α_1 = \frac{19}{24}, \quad α_2 = -\frac{5}{24}, \quad α_3 = \frac{1}{24} \]
and
\[t(x_{n+1}) = -\frac{19}{720} h^5 y^{(5)}(x_{n+1}). \]
\[\tag{9} \]
By the same way, in order to determine the coefficients \(β_{j0}, β_{j1}, γ_{j0}, γ_{j1} \), we rewrite (5) in the exact form
\[y(x) = β_{j0} y(x_{j0}) + β_{j1} y(x_{j1}) + h\left[γ_{j0} f(x_j, y(x_j), y(α(x_j))) + γ_{j1} f(x_{j+1}, y(x_{j+1}), y(α(x_{j+1})) \right] + t_j(x_{j+1}). \]
\[\tag{10} \]
We expand the left and right side of (10) in the Taylor series about the point \(x_{n+1} \), equate the coefficients up to the terms \(O(h^4) \) and solve the resulting system of equations, we obtain
\[\begin{cases} β_{20} = 2γ_{20} + δ_{20}^2(x) \\ β_{21} = 1 - 2δ_{20}^2(x) - 2γ_{20} \\ γ_{20} = γ_{20} + δ_{1}(x) + δ_{1}^2(x) \end{cases} \]
\[\tag{11} \]
with \(γ_{20} \) free, where
\[t_2(x_{k+1}) = \frac{h^3}{6} (\delta_1^2(x) + δ_2^2(x) - γ_{20}) y^{(3)}(x_{k+1}) + \frac{h^4}{24} (δ_1^2(x) - δ_2^2(x) + 2γ_{20}) y^{(4)}(x_{k+1}), \text{ for } j = 2, \]
\[\tag{12} \]
here \(δ_1(x) = \frac{1}{h}(x - x_{k+1}) \), for \(x_k < x \leq x_{k+1}, x = α(x_{n+2}), \)
\[k = 0, 1, \ldots. \]
and
\[\begin{cases} β_{30} = 2γ_{31} + 4γ_{32} - 2δ_2(x) - δ_2^2(x) \\ β_{31} = 1 + 2δ_2(x) + δ_2^2(x) - 2γ_{31} - 4γ_{32} \\ γ_{30} = -δ_2(x) - δ_2^2(x) + γ_{31} + 3γ_{32} \end{cases} \]
\[\tag{13} \]
with \(γ_{31}, γ_{32} \) free where
\[t_3(x_{k+1}) = \frac{h^3}{6} (δ_1^2(x) + 2δ_2^2(x) + δ_2(x) - γ_{31} - 8γ_{32}) y^{(3)}(x_{k+1}) + \frac{h^4}{24} (δ_1^2(x) - 3δ_2^2(x) - 2δ_2(x) + 2γ_{31} + 4γ_{32}) y^{(4)}(x_{k+1}), \text{ for } j = 3, \]
\[\tag{14} \]
\[\frac{δ_2(x)}{h} = \frac{1}{h}(x - x_{k+1}), \text{ for } x_k < x \leq x_{k+1}, x = α(x_{n+3}), k = 0, 1, \ldots. \]
The approximations \(\hat{y}_{n+2} \) and \(\hat{y}_{n+3} \) is determined from (5) and the coefficients in this case take the form
\[\begin{cases} \hat{β}_{20} = 1 + 2\hat{γ}_{20} \\ \hat{β}_{21} = -2\hat{γ}_{20} \\ \hat{γ}_{20} = 2 + \hat{γ}_{20} \end{cases} \]
\[\tag{15} \]
with \(γ_{20} \) free, where
\[t_2(x_{n+1}) = \frac{h^3}{6} (2 - 2\hat{γ}_{20}) y^{(3)}(x_{n+1}) + \frac{h^4}{12} \hat{γ}_{20} y^{(4)}(x_{n+1}) \text{ for } j = 2, \]
\[\tag{16} \]
and consider the discretization (4) for \(m = 4 \) made into one step defined by
\[y_{n+1} = y_n + h[α_0 f_n + α_1 f_{n+1} + α_2 f_{n+2} + α_3 f_{n+3} + T_{n+1}]. \]
\[\tag{17} \]
and
\[w_1(x_{n+1}) = \frac{\partial f(x,y(x),y(\alpha(x)))}{\partial y(\alpha(x))} |_{x_{n+1}}. \]

In order that \(T_{n+1} \) in (20) be \(O(h^5) \), we must have
\[
\gamma_{31} = 8 + 5\gamma_{20} - 8\gamma_{32},
\]
\[
\gamma_{32} = 5\gamma_{20} + \delta_3(\alpha(x_{n+3})) + \delta_2(\alpha(x_{n+3}))
+ 2\delta_2^2(\alpha(x_{n+3})) - 8\gamma_{32} - 5\delta_2^2(\alpha(x_{n+2}))
- 5\delta_3^2(\alpha(x_{n+2})).
\]

By consider \(\gamma_{20} = \gamma_2 \) and \(\gamma_{32} = \gamma_{32} \), we have a two-parameter family of extended one-step fourth order methods given, which we will refer it by \(PM_4(\gamma_2, \gamma_{32}) \).

3.2 Case II, \(m = 5 \)

We describe the derivation of a scheme of the fifth order of accuracy. As in Case I, we rewrite (4) in the exact form and expand the left and right sides of this equation in the Taylor series about the point \(x_{n+1} \), equate the coefficients up to the terms \(O(h^5) \) and solve the resulting system of equations, we obtain
\[
\alpha_0 = \frac{251}{720}, \quad \alpha_1 = \frac{232}{360}, \quad \alpha_2 = -\frac{11}{30}, \quad \alpha_3 = \frac{53}{360}, \quad \alpha_4 = -\frac{19}{720}
\text{and}
\frac{t(x_{n+1})}{h^6} = \frac{3}{160}y^{(6)}(x_{n+1}). \quad (19)
\]

By the same way, in order to determine the coefficients \(\beta_{ji}, \beta_{j1} \) and \(\gamma_{ji}, j = 0,1, \ldots, j - 1 \), we rewrite (5) in the exact form and expand the left and right sides of this equation in the Taylor series about the point \(x_{k+1} \), equate the coefficients up to the terms \(O(h^5) \) and solve the resulting system of equations, we obtain
\[
\begin{align*}
\beta_{20} &= 2\delta_3^3(x) - 3\delta_1^2(x) + 1, \\
\beta_{21} &= 3\delta_2^3(x) - 2\delta_1^2(x), \\
\gamma_{20} &= \delta_1^3(x) - 2\delta_2^2(x) + \delta_1(x), \\
\gamma_{21} &= \delta_1^3(x) - \delta_2^2(x)
\end{align*}
\quad (20)
\]

where
\[
t_2(x_{k+1}) = \frac{h^4}{24}(\delta_1^3(x) - 2\delta_2^2(x) + \delta_1(x)y^{(4)}(x_{k+1})
+ \frac{h^3}{120}(\delta_1^3(x) - 3\delta_3^2(x) + 2\delta_2(x)y^{(5)}(x_{k+1}),
\text{for } j = 2,
\]
\[
\delta_1(x) = \frac{1}{h}(x - x_{k+1}), \text{for } x = \alpha(x_{n+2}); k = 0,1, \ldots,
\]

and
\[
\begin{align*}
\beta_{10} &= 2\delta_3^3(x) - 3\delta_2^2(x) - 12\gamma_{32} + 1, \\
\beta_{11} &= 12\gamma_{22} - 2\delta_3^2(x) + 3\delta_2^2(x), \\
\gamma_{10} &= \delta_3^3(x) - 2\delta_2^2(x) + \delta_1(x) - 5\gamma_{32}, \\
\gamma_{11} &= \delta_3^3(x) - \delta_2^2(x) - 8\gamma_{32}
\end{align*}
\quad (21)
\]

with \(\gamma_{32} \) free, where
\[
\begin{align*}
t_3(x_{k+1}) &= \frac{h^4}{24}(\delta_1^4(x) - 2\delta_1^2(x) + \delta_2^2(x) - 12\gamma_{32})y^{(4)}(x_{k+1})
+ \frac{h^3}{120}(\delta_1^4(x) - 3\delta_2^2(x) + 2\delta_3^2(x) - 52\gamma_{32})y^{(5)}(x_{k+1}),
\text{for } j = 3,
\]
\[
\delta_2(x) = \frac{1}{h}(x - x_{k+1}), \text{for } x = \alpha(x_{n+3}); k = 0,1, \ldots
\]

and
\[
\begin{align*}
\beta_{30} &= 2\delta_3^3(x) - 3\delta_2^2(x) - 12\gamma_{32} - 36\gamma_{33} + 1, \\
\beta_{31} &= 3\delta_2^3(x) - 2\delta_1^2(x) + 12\gamma_{32} + 36\gamma_{33}, \\
\gamma_{30} &= \delta_3^3(x) - 2\delta_1^2(x) + \delta_1(x) - 5\gamma_{32} - 16\gamma_{33}, \\
\gamma_{31} &= \delta_3^3(x) - \delta_2^2(x) - 8\gamma_{32} - 21\gamma_{33}
\end{align*}
\quad (22)
\]

with \(\gamma_{32}, \gamma_{33} \) free, where
\[
t_4(x_{k+1}) = \frac{h^4}{24}(\delta_1^4(x) - 2\delta_1^2(x) + \delta_2^2(x) - 12\gamma_{32}
- 60\gamma_{33})y^{(4)}(x_{k+1}) + \frac{h^3}{120}(\delta_1^4(x) + 2\delta_3^2(x) - 3\delta_1^3(x)
- 52\gamma_{32} - 336\gamma_{33})y^{(5)}(x_{k+1}),
\]
\[
\delta_3(x) = \frac{1}{h}(x - x_{k+1}), \text{for } x = \alpha(x_{n+4}); k = 0,1, \ldots
\]

The approximations \(\tilde{y}_{k+2}, \tilde{y}_{k+3} \) and \(\tilde{y}_{k+4} \) determined from (5) and the coefficients in this case take the form
\[
\begin{align*}
\tilde{\beta}_{20} &= 5, \tilde{\beta}_{21} = -4, \tilde{\gamma}_{20} = 2, \gamma_{20} = 4, \\
t_2(x_{n+1}) &= \frac{1}{6}h^4y^{(4)}(x_{n+1}) + \frac{2}{15}h^5y^{(5)}(x_{n+1}) \quad \text{for } j = 2;
\end{align*}
\quad (23)
\]

and
\[
\begin{align*}
\beta_{30} &= 28 - 12\gamma_{32}, \\
\beta_{31} &= -27 + 12\gamma_{32}, \\
\gamma_{30} &= 12 - 5\gamma_{32}, \\
\gamma_{31} &= 18 - 8\gamma_{32}
\end{align*}
\quad (24)
\]

with \(\gamma_{32}, \gamma_{33} \) free, where
\[
\begin{align*}
t_3(x_{n+1}) &= \frac{3}{2} - \frac{1}{2}\gamma_{32}h^4y^{(4)}(x_{n+1}) + \left(\frac{3}{2} - \frac{1}{30}\gamma_{32} \right)h^5y^{(5)}(x_{n+1})
\text{for } j = 3;
\end{align*}
\quad (21)
\]

and
\[
\begin{align*}
\tilde{\beta}_{40} &= 81 - 12\gamma_{42} - 36\gamma_{43}, \\
\tilde{\beta}_{41} &= -80 + 12\gamma_{42} + 36\gamma_{43}, \\
\gamma_{40} &= 36 - 5\gamma_{42} - 16\gamma_{43}, \\
\gamma_{41} &= 48 - 8\gamma_{42} + 21\gamma_{43}
\end{align*}
\quad (24)
\]

with \(\gamma_{42}, \gamma_{43} \) free, where
\[
\begin{align*}
t_4(x_{n+1}) &= (6 - \frac{1}{2}\gamma_{42} - \frac{5}{2}\gamma_{43})h^4y^{(4)}(x_{n+1})
+ \left(\frac{3}{5} - \frac{13}{30}\gamma_{42} - \frac{4}{5}\gamma_{43} \right)h^5y^{(5)}(x_{n+1})
\text{for } j = 4;
\end{align*}
\quad (21)
\]
By the same way as in case I, we can prove that the global error of fifth order. Thus, with consider \(y_2 = y_1 \) and \(y_3 = y_3 \), we have a two-parameter family of extended one-step fifth order methods, which will refer it by \(PM_5 = (y_2, y_3) \).

4 Stability definitions and results

The stability investigations are based on the linear equation (4) and the concept of \(P \)-stability introduced by Barwell [3]

Definition 1.1. \((P\)-stability region\) Given a numerical method for solving (2), the \(P \)-stability region of the method is the set \(S_P \) of the pairs \((X, Y)\), \(X = \lambda h \) and \(Y = \mu h \), such that the numerical solution of (2) asymptotically vanishes for step-lengths \(h \) satisfying

\[
h = \frac{\tau}{m} \quad (25)
\]

with \(m \) is positive integer.

Definition 1.2. \((P\)-stability\) A numerical method for (2) is said to be \(P \)-stable if

\[
S_P \supseteq \mathbb{R},
\]

where

\[
\mathbb{R} = \{ (X, Y) : Y < -X \}.
\]

4.1 Case I, \(m = 4 \)

In order to solve the Problem (2), the present methods with \(m = 4 \) are written as follows

\[
[24 - 12\lambda h(1 + y_2) + 2(\lambda h)^2(1 + 4y_2)
+ y_2 y_20) - y_2(\lambda h)^2(2 + y_20)]y_{n+1} =
\]

\[
[24 + 12\lambda h(1 - y_2) + 2(\lambda h)^2(1 - 2y_2 + y_2 y_20)
+ y_2 y_20(\lambda h)^2]y_n + \mu h [(9 + 9\lambda h(2 - 5y_2)
+ y_2 y_20(\lambda h)^2)\gamma(x_n - \tau) + (19 - 2\lambda h(1 + 4y_2)
+ y_2(\lambda h)^2(2 + y_20))\gamma(x_{n+1} - \tau)
-(5 - \lambda h y_2)\gamma(x_{n+2} - \tau) + y(x_{n+3} - \tau)]
\]

with a constant step size \(h \) satisfying the constraint (25). The characteristic polynomial associated with (26) takes the form

\[
W_m(z) = [24 - 12X(1 + y_2) + 2X^2(1 + 4y_2)
+ y_2 y_20) - X^3 y_2(2 + y_20)z^{m+1}
- [24 + 12X(1 - y_2) + 2X^2(1 - 2y_2 + y_2 y_20)
+ X^3 y_2 y_20]z^m - Y [9 + X(2 - 5y_2) + X^2 y_2 y_20
+ (19 - 2X(1 + y_2) + X^2 y_2(2 + y_20))z
-(5 - X y_2)z^2 + z^3] = 0, \quad m = 1, 2, \ldots \quad (27)
\]

It is clear that \((X, Y) \in S_P\) if and only if all roots of the polynomials \(W_m \) are inside the unit disc for \(m = 1, 2, \ldots \). Let

\[
P(z) := [24 - 2X(1 + y_2) + 2X^2(1 + 4y_2 + y_2 y_20)
- X^3 y_2(2 + y_20)]z^{m+1} - [24 + 12X(1 - y_2)
+ 2X^2(1 - 2y_2 + y_2 y_20) + X^3 y_2 y_20]z^m,
\]

\[
Q(z) := -Y [9 + X(2 - 5y_2) + X^2 y_2 y_20
+ (19 - 2X(1 + 4y_2) + X^2 y_2(2 + y_20))z
-(5 - X y_2)z^2 + z^3],
\]

and \(z^* \) denotes the only nonzero root of \(P(z) \). It follows from Rouche’s theorem, see Marden [17], that \((X, Y) \in S_P\) if \(|z^*| < 1\) and \(|P(z)| > |Q(z)|\) on the unit circle. Furthermore, on the unit circle we have

\[
|P(z)| \geq |24 - 12X(1 + y_2) + 2X^2(1 + 4y_2 + y_2 y_20)
- X^3 y_2(2 + y_20)| - |24 + 12X(1 - y_2)
+ 2X^2(1 - 2y_2 + y_2 y_20) + X^3 y_2 y_20|,
\]

\[
|Q(z)| \leq |Y||[9 + X(2 - 5y_2) + X^2 y_2 y_20
+ (19 - 2X(1 + 4y_2) + X^2 y_2(2 + y_20))z
-(5 - X y_2)z^2 + z^3]|.
\]

Therefore, \((X, Y) \in S_P\) if the following set of inequalities is satisfied

\[
||24 - 12X(1 + y_2) + 2X^2(1 + 4y_2 + y_2 y_20)
- X^3 y_2(2 + y_20)| - |24 + 12X(1 - y_2)
+ 2X^2(1 - 2y_2 + y_2 y_20) + X^3 y_2 y_20| \geq
\]

\[
|Y||[9 + X(2 - 5y_2) + X^2 y_2 y_20 + (19 - 2X(1 + 4y_2)
+ X^2 y_2(2 + y_20)] | + | - 5 + X y_2] + 1),
\]

\[
(28)
\]

and

\[
\frac{24 + 12X(1 - y_2) + 2X^2(1 - 2y_2 + y_2 y_20) + X^3 y_2 y_20}{24 - 12X(1 + y_2) + 2X^2(1 + 4y_2 + y_2 y_20) + X^3 y_2 y_20} < 1.
\]

(30)

It can be seen that \(X \in S_A \) where \(S_A \) is the \(A \)-stability region of the present methods for solving ordinary differential equation if and only if (31) is satisfied, we refer to Hairer et al. [9] for more details concerning the \(A \)-stability concept. It is easy to see that (31) is satisfied if

1. \(y_2 = 0 \), with \(y_2 \) free to choose or
2. \(y_2 > 0 \) and \(y_2 \geq -1 \)

Moreover, the \(P \)-stability region for various values of free parameters is determined by solving the system of inequalities (30) and (31). Thus we establish the following.

Theorem 1. For the present methods, the region of \(P \)-stability satisfies the relation

\[
S_P \cap R = \{ (X, Y) : |Y| < -X and |Y| < \phi(X) \}
\]

© 2015 NSP
Natural Sciences Publishing Cor.
where
\[
\phi(X) = \begin{cases}
-12X + 17 & \text{for } X \geq -\frac{9}{2} \\
-6X + 4 & \text{for } X < -\frac{9}{2}
\end{cases}
\]
for \(\gamma_2 = 0\) and \(\gamma_3\) free to choose.

Proof. The proof follows immediately from inequality (30). From among values for the case (2), the choice \(\gamma_0 = 0\) and \(\gamma_2 = \frac{1}{3}\) give the large stability region, so we will present only the theorem of this choice as the following:

Theorem 2. For the present methods the region of P-stability satisfies the relation

\[
S_p \cap R = \{(X, Y) : Y < -X \text{ and } |Y| < \phi(X)\},
\]

where
\[
\phi(x) = \begin{cases}
-2X^3 - 12X^2 + 48X + 68 - 14X + X^2 & \text{if } X \geq -4 \\
-2X^3 + 12X^2 - 24X + 96 & \text{if } X < -4,
\end{cases}
\]
for \(\gamma_0 = 0\) and \(\gamma_2 = \frac{1}{3}\).

Proof. The proof follows immediately from inequality (27).

The Fig. 1 shows the different regions of the P-stability with respect to different values of \(\gamma_0\) and \(\gamma_2\).

4.2 Case II, \(m = 5\)

By the same way for \(m=5\), we obtain the following characteristic polynomial

\[
W_m(z) = [720 - 8X(48 + 57\gamma_3) + 4X^2(21 + 57\gamma_3)
+ 57\gamma_3\gamma_5 - 2X^3(4 + 19\gamma_3 + 11\gamma_3\gamma_5
+ 76X^4\gamma_3\gamma_5 z^m + 720 + 12X(28 - 38\gamma_3)
+ 6X^2(10 - 38\gamma_3 + 38\gamma_3\gamma_5 + 2X^3(2 - 19\gamma_3
- 38\gamma_3\gamma_5\gamma_2 + Y[251 + X(50 - 171\gamma_3)
+ X^2(4 - 38\gamma_3 + 95\gamma_3\gamma_5) + (646 - X(76 + 361\gamma_3
+ 2X^2(4 + 19\gamma_3 + 76\gamma_3\gamma_2) - 76X^3\gamma_3\gamma_2 z
(264 - X(2 + 95\gamma_3) + 19X^2\gamma_3\gamma_2 z^2 + 106
- 19X\gamma_3)^3 - 19z^4] = 0, \ m = 1, 2, \ldots
\]

It is clear that \((X, \ Y) \in S_p\) if and only if all roots of the polynomials \(W_m\) are inside the unit disc for \(m = 1, 2, \ldots\)

\[
P(z) := 720 - 8X(48 + 57\gamma_3) + 4X^2(21 + 57\gamma_3
+ 57\gamma_3\gamma_5 - 2X^3(4 + 19\gamma_3 + 11\gamma_3\gamma_5
+ 76X^4\gamma_3\gamma_5 z^m + 720 + 12X(28 - 38\gamma_3)
+ 6X^2(10 - 38\gamma_3 + 38\gamma_3\gamma_5 + 2X^3(2 - 19\gamma_3
- 38\gamma_3\gamma_5\gamma_2 + Y[251 + X(50 - 171\gamma_3)
+ X^2(4 - 38\gamma_3 + 95\gamma_3\gamma_5) + (646 - X(76 + 361\gamma_3
+ 2X^2(4 + 19\gamma_3 + 76\gamma_3\gamma_2) - 76X^3\gamma_3\gamma_2 z
(264 - X(2 + 95\gamma_3) + 19X^2\gamma_3\gamma_2 z^2 + (106
- 19X\gamma_3)^3 - 19z^4]
\]

and \(z^4\) denotes the only nonzero root of \(P(z)\). It follows from Rouche’s theorem, see Marden [17], that \((X, \ Y) \in S_p\) if \([z^4] < 1\) and \(|P(z)| > |Q(z)|\) on the unit circle. Furthermore, on the unit circle we have

\[
|P(z)| \geq ||720 - 8X(48 + 57\gamma_3) + 4X^2(21 + 57\gamma_3
+ 57\gamma_3\gamma_5 - 2X^3(4 + 19\gamma_3 + 11\gamma_3\gamma_5
+ 76X^4\gamma_3\gamma_5 z^m + 720 + 12X(28 - 38\gamma_3)
+ 6X^2(10 - 38\gamma_3 + 38\gamma_3\gamma_5 + 2X^3(2 - 19\gamma_3
- 38\gamma_3\gamma_5\gamma_2 + Y[251 + X(50 - 171\gamma_3)
+ X^2(4 - 38\gamma_3 + 95\gamma_3\gamma_5) + (646 - X(76 + 361\gamma_3
+ 2X^2(4 + 19\gamma_3 + 76\gamma_3\gamma_2) - 76X^3\gamma_3\gamma_2 z
(264 - X(2 + 95\gamma_3) + 19X^2\gamma_3\gamma_2 z^2 + (106
- 19X\gamma_3)^3 - 19z^4])\]
\]

and

\[
|Q(z)| \leq |Y|(251 + X(50 - 171\gamma_3) + X^2(4 - 38\gamma_3
+ 95\gamma_3\gamma_5) + (646 - X(76 + 361\gamma_3) + 2X^2(4
+ 19\gamma_3 + 76\gamma_3\gamma_2) - 76X^3\gamma_3\gamma_2 z^2) + |X| - 264
+ X(2 + 95\gamma_3) - 19X^2\gamma_3\gamma_2 z^2) + 106
- 19X\gamma_3 | + 19)
\]
Therefore, \((X,Y) \in S_P\) if the following set of inequalities are satisfied
\[
\begin{align*}
|720 - 8X(48 + 57\gamma_3) + 4X^2(21 + 57\gamma_3 + 57\gamma_3\gamma_3) & - 2X^3(4 + 19\gamma_3 + 11\gamma_3\gamma_3) + 76X^4\gamma_3\gamma_3| - |720 + 12X(28 - 38\gamma_3) + 6X^2(10 - 38\gamma_3 + 38\gamma_3\gamma_3) + 2X^3(2 - 19\gamma_3) - 38X^4\gamma_3\gamma_3| \\
& \geq |Y|(|251 + X(50 - 171\gamma_3) + X^2(4 - 38\gamma_3 + 95\gamma_3\gamma_3)| + |646 - X(76 + 361\gamma_3) + 2X^2(4 + 19\gamma_3 + 76\gamma_3\gamma_3) - 76X^3\gamma_3\gamma_3| + |106 - 19X\gamma_3| + 19)
\end{align*}
\]
and
\[
\left|\frac{A_1}{A_2}\right| < 1
\]
where
\[
A_1 = 720 + 12X(28 - 38\gamma_3) + 6X^2(10 - 38\gamma_3 + 38\gamma_3\gamma_3) + 2X^3(2 - 19\gamma_3) - 38X^4\gamma_3\gamma_3
\]
and
\[
A_2 = 720 - 8X(48 + 57\gamma_3) + 4X^2(21 + 57\gamma_3 + 57\gamma_3\gamma_3) - 2X^3(4 + 19\gamma_3 + 11\gamma_3\gamma_3) + 76X^4\gamma_3\gamma_3
\]
It can be seen that \(X \in S_A\) where \(S_A\) is the A-stability region of the present methods for solving ordinary differential equation if and only if (36) is satisfied, we refer to Hairer et al. [9] for more details concerning the A-stability concept. It is easy to see that (35) is satisfied if
1. \(\gamma_3 = 0,\) with \(\gamma_2\) free to choose or
2. \(\gamma_2 = 0\) and \(\gamma_3 \geq -\frac{1}{19}.
\]
Moreover, the P-stability region for various values of free parameters is determined by solving the system of inequalities (35) and (36). Thus we establish the following.

Theorem 3. For the present methods, the region of P-stability satisfies the relation
\[
S_P \cap R = \{ (X,Y) : |Y| < -X \text{ and } |Y| < \phi(X) \}
\]
where
\[
\phi(X) = \begin{cases}
-3X^3 + 6X^2 - 720 & \text{for } X \geq -6 \\
-3X^3 + 36X^2 - 12X + 360 & \text{for } X < -6
\end{cases}
\]
for \(\gamma_3 = 0\) and \(\gamma_2\) free to choose.

Proof. The proof follows immediately from inequality (35).

The Fig. 2 shows the different regions of the P-stability with respect to different values of \(\gamma_2\) and \(\gamma_3.\) In the next part of this section, we state the error estimate for the present methods (4), (5) and (6). Our error estimate is given by the following theorem:

\[\begin{align*}
\text{Fig. 2: The } P\text{-stability region for } PM_5(0, \frac{4}{11}) \text{ and } PM_5(0, -\frac{1}{19}) \text{ (Top-Bottom).}
\end{align*}\]

Theorem 4. Let \(y_n\) be obtained by the methods (4), (5) and (6). Then, at each mesh point \(x_n,\) we have the following error estimate:
\[
e_n = |y(x_n) - y_n| \leq C_1h^m, \quad n = 1, 2, \ldots \tag{37}
\]
where \(m = 4, 5\) and \(C_1\) is independent of \(n\) and \(h.\)

Proof. see (Ibrahim et al. [24])

5 **Numerical tests**

In this section, we present some numerical results using \(PM_4(\gamma_2, \gamma_3)\) and \(PM_5(\gamma_2, \gamma_3)\) with different values of free parameters and also compare the results with Runge-Kutta method. We apply these methods to three examples for each \(h = \frac{1}{N}\) where \(N = 4, 8, 16, 32, 64\) and 128.

Example 1
\[
\begin{align*}
y'(x) &= \frac{1}{2}e^{\frac{x}{2}}y(x) + \frac{1}{2}y(x) \quad 0 \leq x \leq 1 \\
y(0) &= 1
\end{align*}
\]

The exact solution is \(y(x) = e^x.\)

Example 2
\[
\begin{align*}
y'(x) &= 1 - y^2\left(\frac{x}{2}\right) \quad 0 \leq x \leq 1 \\
y(0) &= 0
\end{align*}
\]

© 2015 NSP
Natural Sciences Publishing Corp.
The exact solution is \(y(x) = \sin(x) \).

Example 3: Paul [26]

\[
\begin{align*}
y_1'(x) &= y_1(x-1) + y_2(x), \quad x \geq 0 \\
y_2'(x) &= y_1(x) - y_1(x-1) \\
y_1(x) &= e^x, \quad x \leq 0 \\
y_2(0) &= 1 - e^{-1}
\end{align*}
\]

The exact solution is
\[\begin{align*}
y_1(x) &= e^x, \quad y_2(x) = e^x - e^{-1}, \quad x \geq 0.
\end{align*} \]

Table 1: Comparison of class extended one-step methods with Runge-Kutta method for Example 1.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7.80E-02</td>
<td>3.83E-03</td>
<td>(s=2)</td>
<td>(s=3)</td>
</tr>
<tr>
<td>8</td>
<td>2.29E-02</td>
<td>1.77E-04</td>
<td>5.19E-04</td>
<td>2.88</td>
</tr>
<tr>
<td>16</td>
<td>6.28E-03</td>
<td>1.87E-05</td>
<td>8.01E-05</td>
<td>2.93</td>
</tr>
<tr>
<td>32</td>
<td>1.64E-03</td>
<td>1.93E-06</td>
<td>8.73E-06</td>
<td>2.96</td>
</tr>
<tr>
<td>64</td>
<td>4.2E-04</td>
<td>1.97E-06</td>
<td>1.11E-06</td>
<td>2.98</td>
</tr>
<tr>
<td>128</td>
<td>1.06E-04</td>
<td>1.98E-07</td>
<td>1.39E-07</td>
<td>2.99</td>
</tr>
</tbody>
</table>

A class of extended one-step methods

\[
\begin{align*}
PM_{s=2}(0, \frac{1}{2}) & \quad PM_{s=3}(0, \frac{1}{7})
\end{align*}
\]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1.04E-05</td>
<td>1.39E-06</td>
<td>(s=2)</td>
<td>(s=3)</td>
</tr>
<tr>
<td>8</td>
<td>6.06E-07</td>
<td>4.11E-08</td>
<td>4.05E-08</td>
<td>5.10</td>
</tr>
<tr>
<td>16</td>
<td>3.66E-08</td>
<td>4.05E-09</td>
<td>1.23E-09</td>
<td>5.05</td>
</tr>
<tr>
<td>32</td>
<td>2.25E-09</td>
<td>4.03E-09</td>
<td>3.77E-11</td>
<td>5.02</td>
</tr>
<tr>
<td>64</td>
<td>1.39E-10</td>
<td>4.01E-12</td>
<td>1.17E-12</td>
<td>5.01</td>
</tr>
<tr>
<td>128</td>
<td>8.66E-12</td>
<td>4.01E-14</td>
<td>4.06E-14</td>
<td>4.85</td>
</tr>
</tbody>
</table>

Table 2: Comparison of class extended one-step methods with Runge-Kutta method for Example 2.

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4.95E-03</td>
<td>1.64E-03</td>
<td>(s=2)</td>
<td>(s=3)</td>
</tr>
<tr>
<td>8</td>
<td>1.21E-03</td>
<td>2.03E-04</td>
<td>1.91E-04</td>
<td>3.10</td>
</tr>
<tr>
<td>16</td>
<td>3.38E-04</td>
<td>1.84E-05</td>
<td>2.30E-05</td>
<td>3.05</td>
</tr>
<tr>
<td>32</td>
<td>9.17E-05</td>
<td>1.88E-06</td>
<td>2.80E-06</td>
<td>3.04</td>
</tr>
<tr>
<td>64</td>
<td>2.35E-05</td>
<td>1.96E-07</td>
<td>3.45E-07</td>
<td>3.02</td>
</tr>
<tr>
<td>128</td>
<td>5.94E-06</td>
<td>1.99E-08</td>
<td>4.28E-08</td>
<td>3.01</td>
</tr>
</tbody>
</table>

A class of extended one-step methods

\[
\begin{align*}
PM_{s=2}(0, \frac{1}{2}) & \quad PM_{s=3}(0, \frac{1}{7})
\end{align*}
\]

<table>
<thead>
<tr>
<th>(N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
<th>(E^N)</th>
<th>(R^N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3.46E-06</td>
<td>2.77E-07</td>
<td>(s=2)</td>
<td>(s=3)</td>
</tr>
<tr>
<td>8</td>
<td>2.23E-07</td>
<td>3.96E-09</td>
<td>7.88E-09</td>
<td>5.13</td>
</tr>
<tr>
<td>16</td>
<td>1.42E-08</td>
<td>3.98E-10</td>
<td>2.35E-10</td>
<td>5.07</td>
</tr>
<tr>
<td>32</td>
<td>8.92E-10</td>
<td>3.99E-12</td>
<td>7.18E-12</td>
<td>5.03</td>
</tr>
<tr>
<td>64</td>
<td>5.39E-11</td>
<td>3.99E-13</td>
<td>2.22E-13</td>
<td>5.02</td>
</tr>
<tr>
<td>128</td>
<td>3.50E-12</td>
<td>4.00E-15</td>
<td>7.10E-15</td>
<td>4.96</td>
</tr>
</tbody>
</table>

6 Conclusion and perspective

We have described a class of numerical methods of order four and five for solving delay differential equations by extending the work of Chawla et al. (1994, 1995). These methods depend on two free parameters, so we can obtain for every method on a family of methods for different value of a free parameters. The region of \(P \)-stability for the present methods have been investigated for different values of a free parameters. The large -stability region for the present method of order four occurs at \(\gamma_0 = 0 \) and \(\gamma_2 = \frac{1}{2} \), see Fig. 1. Further the large\(P \)-stability region for the present method of order five occurs at \(\gamma_2 = 0 \) and \(\gamma_3 = \frac{2}{7} \), see Fig. 2. In the last cases, the present methods are \(L \)-stable for solving ordinary differential equations. All the obtained numerical results clearly indicate the effectiveness of our methods.

References

References

Fatma Ibrahim received her Ph.D at Department of Mathematics, Augsburg university. Her main focus are numerical techniques for optimal control problems and delay differential equations (DDES)

Abdelhady A. Salama is a Professor at Department of Mathematics, Faculty of Science, Assiut University. His main focus are numerical techniques for partial differential equations (PDEs), ordinary differential equation (ODE) and delay differential equations (DDES)
Stefan Turek is a Professor at TU Dortmund and Dean of Department of Mathematics, TU Dortmund. He holds the chair of Applied Mathematics and Numerics (LS3) at the Department of Mathematics of the TU Dortmund. His main focus are numerical techniques for partial differential equations (PDEs), high performance computing and scientific computing with respect to engineering sciences (fluid and structural mechanics). Prof. Dr. Stefan Turek main research topics include finite element discretizations, enhanced and adapted to the special characteristics of convection-diffusion equations and saddle point problems like the Navier-Stokes equations. He is also interested in the design and implementation of fast multigrid and domain decomposition solvers which combine and supersede his own solver variant ScAR (Scalable Recursive Clustering). Exceeding these mathematical aspects he focus on (numerically and implementationally) efficient FEM software, in particular by pursuing hardware-oriented approaches. While maintaining and steadily improving the legacy FEM software packages FEAT2D/3D and FEATFLOW, he is currently working on the successor packages as a part of the FEAST project which will yield a high performance FEM toolbox. His software is used worldwide to solve complex problems in the field of fluid mechanics that have an industrial background. Models are usually based on variants of incompressible Navier-Stokes equations with extensions like non-linear viscosity (granular flow, non-Newtonian flow, viscoelasticity), fluid-structure-interaction, multiphase flows with chemical reactions, and free boundary value problems emerging in solidification processes. Typically, some of them are put to use in industrial projects as well.