

Journal of Statistics Applications & Probability Letters An International Journal

http://dx.doi.org/10.18576/jsapl/090103

Improved Exponential Ratio Estimators in Adaptive Cluster Sampling

Rajesh Singh and Rohan Mishra*

Department of Statistics, Institute of Science, Banaras Hindu University, Varanasi-221005, U.P., India

Received: 15 Mar. 2021, Revised: 12 Sep. 2021, Accepted: 4 Nov. 2021

Published online: 1 Jan. 2022

Abstract: In this manuscript, we have proposed two improved exponential ratio estimators using auxiliary information for estimating the unknown population mean in Adaptive Cluster Sampling (ACS) and have found the optimum value of a (the base of the exponent) using a numerical study. The Mean Squared Error for the two estimators has been derived up to first order of approximations and studied along with the nature of their percentage relative efficiencies for each and every positive real value of a except for 1.

Keywords: Adaptive cluster sampling, Improved exponential ratio estimator, Auxiliary variable, Mean squared error, Percentage relative efficiency

1 Introduction

Adaptive cluster sampling (ACS), first proposed by Thompson [1] in 1990 is a type of sampling scheme which is used for sampling rare and hidden clustered population. In ACS, two things have to be defined before conducting the survey: the neighbourhood of a unit (or observation) and the condition of interest. Both of these definitions depends on the researcher but usually the condition of interest C is $y_i > 0$ where y_i represents the i^{th} unit or the i^{th} observation on the variable of interest Y and the neighbourhood which is generally considered in ACS, is the 4-unit first order neighbourhood. In ACS an initial sample of size n is drawn using any probability sampling method (in this article the initial sample of size n is drawn using simple random sampling without replacement (SRSWOR)) from a population of size N. After the initial sample has been drawn, we draw the adaptive sample based on what has been drawn in the initial sample. For all the observations or units in the initial sample which satisfies the condition of interest C, we draw their 4 unit first order neighbourhood which includes that i^{th} unit and its 4 adjacent units in the East, West, North and South directions. If any unit selected in the adaptive sample satisfies the condition of interest $y_i > 0$ then its 4-unit first order neighbourhood is selected as well. This process of drawing the adaptive samples is repeated till there is no unit left satisfying the conditions of interest $y_i > 0$.

There will be some observations in the neighbourhood satisfying the condition of interest C and there will be some observations in the neighbourhood, not satisfying the condition C. Observations satisfying the condition C are called network and those observations which do not satisfy the condition C are called edge units. The edge units are considered as networks of size 1. Selection of any observation or unit from a network leads to the selection on the entire network. These networks and edge units together form a cluster.

The clusters are not necessarily disjoint due to overlapping edge units but the networks are disjoint and thus the entire population can be partitioned into exhaustive sets of networks. So the final sample consists of the initial sample and the adaptive samples.

An auxiliary variable is a variable about which we have full information and is highly correlated (positively or negatively) with the variable of interest and it is well known that the variance of the estimator of population's parameter(s) of interest can be significantly reduced once such auxiliary variable is used in the study. The use of auxiliary variable was first suggested by Cochran (1940) [2] when he proposed the ratio estimator under SRSWOR. Since then, ratio estimators have been widely used and researched upon.

^{*} Corresponding author e-mail: i.rohanskmishra@gmail.com

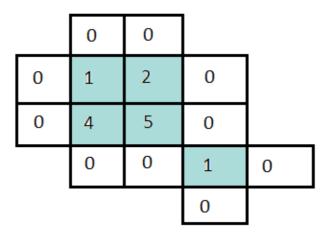


Fig. 1: This is an example of a hypothetical cluster. The condition of interest is $y_i > 0$. The units having y-values 1, 2, 4, 5 and 1 form a network of size 5. The edge units are the units with y values 0, adjacent to the y values 1, 2, 4, 5 and 1. Together they form a cluster.

Exponential ratio estimators have been used and studied a lot by researchers but generally with the base of the exponent as 2.718 approximately, which is, just a particular case of the exponential function, obviously if we vary this base of the exponent, we might find a better estimator to estimate the unknown parameter(s) of interest. This manuscript is driven by this idea.

In SRS (Simple random sampling) for estimating the unknown population mean using auxiliary information and known population parameters, generalized exponential ratio estimator have been studied by Singh et al. (2019) [3]. In ACS no such study has been done to find the optimum a for the exponential ratio estimator. Hanif (2016)[4] using known population median proposed some exponential ratio estimator with the base of the exponent as 2.718 (approximately) only, however, in this manuscript we propose, two generalised exponential ratio estimators for estimating the unknown population mean using the known population coefficient of variation of the auxiliary variable and the study variable and the correlation between the auxiliary and study variable of the transformed population. The expressions of the Mean squared errors (MSE) have been derived up to the first order of approximation for both the proposed estimators and the nature of their MSE and percentage relative efficiencies (PRE) have been studied for each and every value of a > 0(except a = 1) to find the optimum a. The optimum a is that value of a which minimises the MSE. For any population the optimum value of a is $a \approx \exp(\frac{2p_{wxwy}C_{wy}}{C_{wx}})$ which we have confirmed using a numerical study in this manuscript. For the population studied in this manuscript, we calculated the optimum a using the formula presented above and then obtained the empirical value of a which gave the minimum MSE based on four different sample sizes. The value of empirical optimum a from the numerical illustration is very close to the value of optimum a obtained using the presented formula.

2 Estimators in Simple Random Sampling

Let Y denote the variable of our interest and X denote the auxiliary variable. The population size is N and (x_i, y_i) where i = 1, 2..., n be the bivariate observations on Y and X based on a sample of size n obtained using SRSWOR. Ratio estimators are used when the correlation between the auxiliary variable X and the study variable Y is positive and high (0.5 to 1) and the regression line between y and x passes through the origin.

Chochran (1940)[2] proposed the estimator \bar{y}_R for estimating the unknown population mean \bar{Y} as:

$$\bar{y}_R = \bar{y}\frac{\bar{X}}{\bar{x}} \tag{1}$$

where $\bar{y} = \sum_{i=1}^{n} y_i$, $\bar{x} = \sum_{i=1}^{n} x_i$ and \bar{X} is the population mean of auxiliary variable. Mean Squared Error of ratio estimator up to the first order of approximation is

$$MSE(\bar{y}_R) = (\frac{1}{n} - \frac{1}{N})\bar{Y}^2[Cy^2 + Cx^2 - 2\rho_{XY}CyCx]$$
 (2)

where
$$C_y = \frac{S_y}{\bar{Y}}$$
, $C_x = \frac{S_x}{\bar{X}}$, $S_y^2 = \frac{\sum_{i=1}^{N} (Y_i - \bar{Y})^2}{N-1}$

$$S_x^2 = \frac{\sum_{i=1}^N (X_i - \bar{X})^2}{N-1}$$
, $\rho_{XY} = \frac{S_{xy}}{S_x S_y}$ is the correlation between X and Y and

$$S_{xy} = \frac{\sum_{i=1}^{N} (X_i - \bar{X})(Y_i - \bar{Y})}{N-1}$$

The estimator proposed by Yadav and Kadilar (2013)[5] is

$$t_1 = k\bar{y}\exp(\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}}) \tag{3}$$

where k is a constant.

The MSE of the estimator t_1 up to the first order of approximation is given by:

$$MSE(t_1) = \bar{Y}^2(1 + k^2A - 2kB)$$
 (4)

where $A = 1 + f(C_Y^2 + C_X^2 - 2\rho_{XY}C_YC_X)$

$$B = 1 - f(\frac{\rho_{XY}C_XC_Y}{2} - \frac{3C_X^2}{8}),$$

$$k = \frac{B}{A}, f = \frac{1}{n} - \frac{1}{N}$$
.

Generalized exponential ratio estimator t_2 was proposed by Singh et al (2019)[3] as:

$$t_2 = \bar{y}a^{\frac{\bar{X} - \bar{x}}{\bar{X} + \bar{x}}} \tag{5}$$

The MSE of the estimator t_2 up to the first order of approximation is given by:

$$MSE(t_2) = \bar{Y}^2 f(C_Y^2 + \frac{1}{4}C_X^2(loga)^2 - \rho_{XY}C_XC_Xloga)$$
 (6)

where optimum $a = \exp(\frac{2\rho_{XY}C_Y}{C_Y})$

3 Estimators in Adaptive Cluster Sampling

Let the population size be N and the sample size of initial sample selected using SRSWOR be n. Dryver and Chao (2007)[7] have stated that when we consider average of netwroks then ACS can be regarded as Simple Random Sampling. An unbiased estimator for population mean under ACS was proposed by Thompson (1990)[1].

This estimator was a modification of the Hansen-Hurvitz estimator (1943)[6]. Thompson's estimator is given by:

$$t_3 = (\frac{1}{n}) \sum_{i=1}^{n} w y_i \tag{7}$$

where w_{vi} denote the network means of a network containing the i^{th} unit, so

$$w_{yi} = \sum_{j \in \Psi_i} (y_j)$$

where ψ_i is the network containing unit i and m_i be the number of units in the network ψ_i The variance of Thompson (1990) estimator is given by:

$$V(t_3) = (\frac{1}{n} - \frac{1}{N})\bar{Y}^2 C_{wy}^2 = f\bar{Y}^2 C_{wy}^2$$
(8)

where $f = \frac{1}{n} - \frac{1}{N}$, $C_{wy}^2 = \frac{S_{wy}^2}{\bar{Y}^2}$ and $S_{wy}^2 = \frac{1}{N-1} \sum_{i=1}^N (w_{yi} - \bar{Y})^2$.

The usual regression estimator under ACS is:

$$\bar{y}_{Reg} = \bar{w_y} + \frac{S_{wxwy}}{S_{wx}^2} (\bar{X} - \bar{w_x}) \tag{9}$$

The MSE of the estimator \bar{y}_{Reg} up to the first order of approximation is given by:

$$MSE(y_{Reg}) = \frac{1 - f}{n} S_{wy}^2 (1 - \rho_{wxwy}^2)$$
 (10)

where $\rho_{wxwy}^2 = (\frac{S_{wxwy}}{S_{wx}S_{wy}})^2$, $S_{wx}^2 = \frac{1}{N-1}\sum_{i=1}^N (w_{xi} - \bar{X})^2$

$$S_{wy}^2 = \frac{1}{N-1} \sum_{i=1}^{N} (w_{yi} - \bar{Y})^2$$
, $S_{wxwy} = \frac{1}{N-1} \sum_{i=1}^{n} (w_{x_i} - \bar{X})(w_{y_i} - \bar{Y})$

A modified ratio estimator was proposed by Dryver and Chao (2007)[7] as

$$t_4 = \frac{\sum_{i=1}^n w_{y_i}}{\sum_{i=1}^n w_{x_i}} \bar{X}$$
 (11)

where w_{yi} and w_{xi} denote the network means of a network containing the i^{th} unit, so $w_{yi} = \sum_{j \in \Psi_i} (y_j)$ and $w_{si} = \sum_{j \in \Psi_i} (x_j)$, where ψ_i is the network containing unit i amd m_i be the number of units in the network ψ_i . The MSE of Dryver and Chao (2007)[7] estimator t_4 up to first order of approximation is

$$MSE(t_4) = \left(\frac{1}{n} - \frac{1}{N}\right)\bar{w}_y^2 \left[C_{wy}^2 + C_{wx}^2 - 2\rho_{wxwy}C_{wx}C_{wy}\right]$$
 (12)

where $C_{wx}^2 = \frac{S_{wx}^2}{\bar{X}^2}$, $S_{wx}^2 = \frac{1}{N-1} \sum_{i=1}^N (w_{xi} - \bar{X})^2$, $\rho_{wxwy} = \frac{S_{wxwy}}{S_{wx}S_{wy}}$,

$$S_{wxwy} = \frac{1}{N-1} \sum_{i=1}^{n} (w_{x_i} - \bar{X})(w_{y_i} - \bar{Y})$$

4 Proposed Estimators

Motivated by Yadav and Kadilar (2013)[5] and Singh et. al (2019)[3], we propose two generalized exponential ratio estimators t_5 and t_6 as:

$$t_5 = k_1 \bar{w}_y a_5^{\frac{\bar{X} - \bar{w}_x}{\bar{X} + \bar{w}_x}} \tag{13}$$

where k_1 is any constant and a is a positive real number.

$$t_6 = [k_2 \bar{w_y} + (1 - k_2)(\bar{X} - \bar{w_x})] a_0^{\frac{\bar{X} - \bar{w_x}}{\bar{X} + \bar{w_x}}}$$
(14)

The expression of MSE for the estimator t_5 is obtained as follows:

Using
$$\bar{w_{wy}} = \frac{\bar{w_y}}{\bar{y}} - 1$$
, $\bar{w_{wx}} = \frac{\bar{w_x}}{\bar{x}} - 1$, $E(e_{wx}^{-2}) = fC_{wx}^2$, $E(e_{wy}^{-2}) = fC_{wy}^2$,

$$E(\bar{e_{wx}}\bar{e_{wy}}) = f\rho_{wxwy}C_{wx}C_{wy}.$$

Expanding the estimator t_5 , we get

$$k_1 \bar{Y} (1 + e_{wy}^-) a_5^{(\frac{e_{wx}^{-2}}{4} - \frac{e_{wx}^{-2}}{2}).$$

Expanding $a(\frac{e_{\overline{w}x}^2}{4} - \frac{e_{\overline{w}x}^2}{2})$ and simplifying we get

$$t_5 = k_1 \bar{Y} (1 + e_{wy}^- - \frac{e_{wx}^-}{2} log_e a_5 + \frac{e_{wx}^2}{4} log_e a_5 - \frac{e_{wx}^- e_{wy}^-}{2} log_e a_5 + \frac{e_{wx}^- 2}{8} (log_e a_5)^2)$$

Subtracting \bar{Y} from both sides, squaring and taking expectation, we get the Mean Square Error as:

$$MSE(t_5) = \bar{Y}^2 [1 + k_1^2 A^{\gamma} - 2k_1 B^{\gamma}]$$
(15)

where $A^{\gamma} = 1 + fC_{wy}^2 + \frac{1}{2}fC_{wx}^2log_ea_5 + \frac{1}{2}fC_{wx}^2(log_ea_5)^2 - 2\rho_{wxwy}fC_{wx}C_{wy}log_ea_5$

$$B^{\gamma} = 1 + \frac{1}{4}fC_{wx}^2log_ea_5 + \frac{1}{8}fC_{wx}^2(log_ea_5)^2 - \frac{1}{2}\rho_{wxwy}fC_{wx}C_{wy}log_ea_5$$

Differentiating MSE of the estimator (t_5) with respect to k_1 we get

$$\frac{d}{dk_1}MSE(t_5) = 2k_1\bar{Y}^2A^{\gamma} - 2B^{\gamma}\bar{Y}^2 \tag{16}$$

equating equation (16) to zero we get the optimum value of k_1 as $k_{1(opt)} = \frac{B^{\gamma}}{A^{\gamma}} = k_0(\text{say})$. Putting this optimum value of k_0 in equation (15) we get the minimum MSE of the estimator t_5 :

$$minimumMSE(t_5) = \bar{Y}^2 \left[1 - \frac{(B^{\gamma})^2}{A^{\gamma}}\right]$$

Expanding etimator t_6 :

$$t_6 = \left[k_2 \bar{Y}(\bar{e}_{wy} + 1) + (1 - k_2)(\bar{X} - \bar{X}(\bar{e}_{wx} + 1))\right] a_6^{(-1)} - \frac{\bar{e}_{wx}}{2} + \frac{\bar{e}_{wx}^2}{4}$$
(17)

expanding $a_6^(-rac{e_{wx}^-}{2}+rac{ar{e}_{wx}^2}{4})$ and simplifying equation (17) we get:

$$k_{2}\bar{Y}[1+\bar{e}_{wy}-\frac{\bar{e}_{wx}\bar{e}_{wy}}{2}loga_{6}\frac{\bar{e}_{wx}^{2}}{4}loga_{6}-\frac{\bar{e}_{wx}}{2}loga_{6}+\frac{\bar{e}_{wx}^{2}}{8}(loga_{6})^{2}]-\bar{X}\bar{e}_{wx}+\bar{X}\frac{\bar{e}_{wx}^{2}}{2}loga_{6}+k_{2}\bar{X}\bar{e}_{wx}-k_{2}\bar{X}\frac{\bar{e}_{wx}^{2}}{2}loga_{6}$$
 (18)

Subtracting \bar{Y} from both the sides of equation (18), squaring and taking expectation, we get the MSE as:

$$MSE(t_6) = \bar{Y}^2 + k_2^2 A^* - 2k_2 B^* + C^*$$
(19)

where

$$A^* = \bar{Y}^2[1 + f(C_{wy}^2 + \frac{1}{2}C_{wx}^2(log_ea_6)^2 - 2\rho_{wxwy}C_{wx}C_{wy}log_ea_6)] + \bar{X}^2fC_{wx}^2 + 2\bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2log_ea_6)$$

$$B^* = \bar{Y}^2 [1 + f(\frac{1}{4}C_{wx}^2 log_e a_6 - \frac{1}{2}\rho_{wxwy}C_{wx}C_{wy} log_e a_6 + \frac{1}{8}C_{wx}^2 (log_e a_6)^2)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 - \bar{X}\bar{Y}f\frac{1}{2}C_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wy}C_{wx}C_{wy} - C_{wx}^2 log_e a_6)] + \bar{X}^2 fC_{wx}^2 log_e a_6 + \bar{X}\bar{Y}f(\rho_{wxwy}C_{wx}C_{wx}C_{wy}C_{wx$$

$$C^* = fC_{wx}^2 \bar{X}(\bar{X} - \bar{Y}log_e a_6)$$

Differentiating equation (19) with respect to k_2 we get:

$$\frac{d}{dk_2}MSE(t_6) = 2k_2A^* - 2B^* \tag{20}$$

Equating equation (20) to zero we get optimum value of k_2 as $k_{2(opt)} = \frac{B^*}{A^*}$ Differentiating $MSE(t_6)$ with respect to k_2 and equating to zero we get

$$k_2^* = \frac{B^*}{A^*} = k_o^*(say)$$

Putting this value of k_0^* in equation (19) we get:

minimum
$$MSE(t_6) = \bar{Y}^2 + (k_2^*)^2 - 2k_2^*B^* + C^*$$

5 Numerical Illustrations

In this section, we have studied the simulated x-values and y-values from Chutiman and Kumphon [8] and calculated the theoretical MSE of both the proposed estimators t_5 and t_6 for each and every value of a > 0, and obtained their PRE with respect to Thompson's [1] estimator t_3 , Dryver and Chao's [7] estimator t_4 and the regression estimator under ACS \bar{y}_{Reg} , for 4 different sample sizes viz., 45, 50, 55 and 60. The optimum "a" is the value of "a" which gave minimum MSE. Results of the study are presented in table 2 to table 9. These tables contain just a sample of the output obtained for each iteration, here only those calculated values of the MSE and PRE are presented at which the value of a is reaching its optimum value. The data statistics of their population are taken from S. K. Yadav et al.[9] are given below in table 1. The results obtained are presented in Table 2 to in Table 9.

Table 1: Data statistics

N=400	\bar{Y} =1.2225	\bar{X} =0.5550	$S_y = 5.050$
$\theta_1 = 0.876$	$S_{wy} = 3.562$	$\theta_{w3} = 0.137$	$S_x = 2.400$
$\theta_2 = 0.042$	$S_{wx} = 1.948$	$\theta_{w4} = 0.9357$	$S_{xy} = 11.037$
$\theta_3 = 0.817$	$S_{wxwy} = 6.428$	$\theta_{w5} = 0.006$	$\rho_{XY} = 0.910$
$\theta_4 = 0.064$	$\rho_{wxwy} = 0.926$	$\theta_{w6} = 0.375$	$C_y = 4.131$
C_x =4.325	$C_{wy} = 2.914$	$\theta_{w8} = 0.864$	C_{wx} =3.510

Table 2: Mean Square Error and Percentage Relative Efficiency of t_5 for sample size 45

a_5	$MSE t_5$	PRE w.r.t t_3	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.85	0.032598	767.7989	168.9947	109.4073412
4.86	0.032595	767.8518	169.0064	109.4148861
4.87	0.032594	767.89	169.0148	109.4203318
4.88	0.032593	767.9136	169.02	109.4236932
4.89	0.032592	767.9227	169.022	109.4249851
4.9	0.032593	767.9173	169.0208	109.4242225
4.91	0.032593	767.8977	169.0165	109.4214206
4.92	0.032595	767.8638	169.009	109.4165946
4.93	0.032597	767.8158	168.9985	109.4097598
4.94	0.250284	767.7539	168.9848	109.4009318

Table 3: Mean Square Error and Percentage Relative Efficiency of t_5 for sample size 50

a_5	$MSE t_5$	PRE w.r.t t ₃	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.81	0.029235	759.6411	167.1992	108.2449092
4.82	0.029233	759.7102	167.2144	108.2547565
4.83	0.02923	759.7643	167.2263	108.2624532
4.84	0.029229	759.8033	167.2349	108.2680138
4.85	0.029228	759.8274	167.2402	108.2714532
4.86	0.029228	759.8368	167.2423	108.2727863
4.87	0.029228	759.8315	167.2411	108.2720281
4.88	0.029229	759.8116	167.2367	108.2691938
4.89	0.02923	759.7772	167.2292	108.2642987
4.9	0.029232	759.7285	167.2184	108.2573583

Table 4: Mean Square Error and Percentage Relative Efficiency of t_5 for sample size 55

a_5	$MSE t_5$	PRE w.r.t t_3	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.8	0.02642	753.2443	165.7912	107.3333893
4.81	0.026419	753.2932	165.802	107.3403653
4.82	0.026417	753.327	165.8094	107.3451815
4.83	0.026417	753.3458	165.8136	107.3478527
4.84	0.026417	753.3496	165.8144	107.3483939
4.85	0.026417	753.3385	165.812	107.3468204
4.86	0.026418	753.3128	165.8063	107.3431472
4.87	0.026419	753.2724	165.7974	107.3373899
4.88	0.026421	753.2174	165.7853	107.329564

Table 5: Mean Square Error and Percentage Relative Efficiency of t_5 for sample size 60

a_5	$MSE t_5$	PRE w.r.t t_3	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.8	0.024035	748.0047	164.638	106.5867768
4.81	0.024034	748.0246	164.6424	106.5896053
4.82	0.024034	748.0293	164.6434	106.5902788
4.83	0.024034	748.019	164.6411	106.5888126
4.84	0.024035	747.9938	164.6356	106.5852219
4.85	0.024036	747.9538	164.6268	106.5795222
4.86	0.024038	747.8991	164.6147	106.571729
4.87	0.179781	747.8298	164.5995	106.561858
4.88	0.179781	747.7461	164.5811	106.5499251
4.89	0.179781	747.648	164.5595	106.535946

Table 6: Mean Square Error and Percentage Relative Efficiency of t_6 for sample size 45

a_6	$MSE t_6$	PRE w.r.t t ₃	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.65	0.032412	772.1964	169.9627	110.0339681
4.66	0.03241	772.2516	169.9748	110.0418346
4.67	0.032408	772.2896	169.9832	110.04725
4.68	0.032407	772.3105	169.9878	110.05023
4.69	0.032407	772.3145	169.9886	110.0507902
4.7	0.032408	772.3015	169.9858	110.0489466
4.71	0.032409	772.2718	169.9793	110.0447155
4.72	0.032411	772.2255	169.9691	110.0381132
4.73	0.032413	772.1626	169.9552	110.0291563

Table 7: Mean Square Error and Percentage Relative Efficiency of t_6 for sample size 50

a_6	$MSE t_6$	PRE w.r.t t_3	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.64	0.029104	763.0649	167.9528	108.7327754
4.65	0.029102	763.1274	167.9665	108.7416864
4.66	0.0291	763.1728	167.9765	108.7481452
4.67	0.029099	763.201	167.9827	108.7521671
4.68	0.029098	763.2122	167.9852	108.7537678
4.69	0.029099	763.2066	167.984	108.7529629
4.7	0.0291	763.1841	167.979	108.7497684
4.71	0.029101	763.1451	167.9704	108.7442005
4.72	0.029103	763.0895	167.9582	108.7362756
4.73	0.029106	763.0174	167.9423	108.7260102

Table 8: Mean Square Error and Percentage Relative Efficiency of t_6 for sample size 55

a_6	$MSE t_6$	PRE w.r.t t ₃	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.64	0.026328	755.8898	166.3735	107.7103555
4.65	0.026326	755.9449	166.3856	107.7182112
4.66	0.026325	755.9829	166.394	107.723626
4.67	0.026324	756.0039	166.3986	107.7266153
4.68	0.026324	756.0079	166.3995	107.7271946
4.69	0.026324	755.9952	166.3967	107.7253796
4.7	0.026325	755.9658	166.3902	107.7211863
4.71	0.026327	755.9198	166.3801	107.7146309
4.72	0.026329	755.8573	166.3664	107.7057297
4.73	0.026332	755.7785	166.349	107.6944992

Table 9: Mean Square Error and Percentage Relative Efficiency of t_6 for sample size 60

a_6	$MSE t_6$	PRE w.r.t t_3	PRE w.r.t t ₄	PRE w.r.t \bar{y}_{Reg}
4.63	0.023971	749.9996	165.0771	106.871035
4.64	0.023969	750.0662	165.0917	106.8805271
4.65	0.023967	750.1156	165.1026	106.8875724
4.66	0.023966	750.148	165.1097	106.892186
4.67	0.023966	750.1634	165.1131	106.8943833
4.68	0.023966	750.162	165.1128	106.8941798
4.69	0.023966	750.1438	165.1088	106.8915912
4.7	0.023967	750.109	165.1012	106.8866335
4.71	0.023969	750.0577	165.0899	106.8793227
4.72	0.023971	749.99	165.075	106.8696754

Table 10: MSE and PRE of all the estimators for sample size 45 (the MSE for t_2 , t_5 and t_6 are at $a = a_{opt}$)

estimators	MSE	PRE	optimum a
t_1	0.392597	63.75079	not exponential
t_2	0.086465	289.4628	5.69
t_3	0.250284	100	not exponential
t_4	0.550088	45.49	not exponential
t_5	0.032592	767.9227	4.89
t_6	0.032407	772.3145	4.69

Table 11: MSE and PRE of all the estimators for sample size 50 (the MSE for t_2 , t_5 and t_6 are at $a=a_{opt}$)

estimators	MSE	PRE	optimum a
t_1	0.352588	62.98647	not exponential
t_2	0.076722	289.4628	5.69
t_3	0.222083	100	not exponential
t_4	0.048881	454.3336	not exponential
<i>t</i> ₅	0.029228	759.8367	4.86
t_6	0.029098	763.2123	4.68

Table 12: MSE and PRE of all the estimators for sample size 55 (the MSE for t_2 , t_5 and t_6 are at $a=a_{opt}$)

estimators	MSE	PRE	optimum a
t_1	0.319094	62.36703	not exponential
t_2	0.068751	289.4627	5.69
t_3	0.199009	100	not exponential
t_4	0.043803	454.333	not exponential
t_5	0.026417	753.3493	4.84
t_6	0.026324	756.0077	4.68

Table 13: MSE and PRE of all the estimators for sample size 60 (the MSE for t_2 , t_5 and t_6 are at $a=a_{opt}$)

estimators	MSE	PRE	optimum a
t_1	0.29065	61.85489	not exponential
t_2	0.062109	289.4628	5.69
t_3	0.179781	100	not exponential
t_4	0.03957	454.333	not exponential
t_5	0.024034	748.0294	4.82
<i>t</i> ₆	0.023966	750.1634	4.67

6 Conclusion

In the present manuscript, we proposed two generalized exponential ratio estimators under ACS and obtained the optimum a values for both the proposed estimators using the numerical study. From Table 10 to Table 13, it is clear that the optimum a values obtained for both the estimators based on 4 different sample sizes, are too close to the value of optimum a obtained using the expression $\exp(\frac{2\rho_{wxny}C_{uy}}{C_{wx}})$ which is $\exp(\frac{2\rho_{wxny}C_{uy}}{C_{wx}}) = 4.65308$ for the population under study. Moreover from table 10 to table 13, it can be seen that when population is rare and hidden clustered, the proposed estimators have the maximum efficiency and the estimators for SRS do not perform adequately. Therefore the proposed estimators should be preferably adopted for estimating the unknown population mean in ACS.

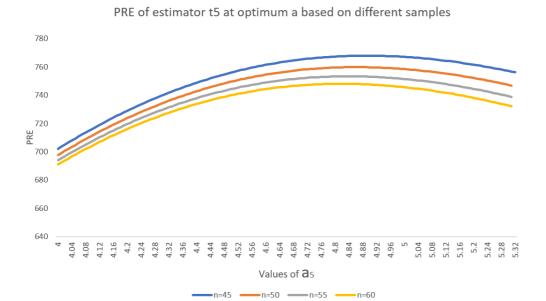


Fig. 2: The PRE of the estimator t_5 for the 4 sample sizes increases till it reaches the corresponding optimum value of a_5 and then starts declining.

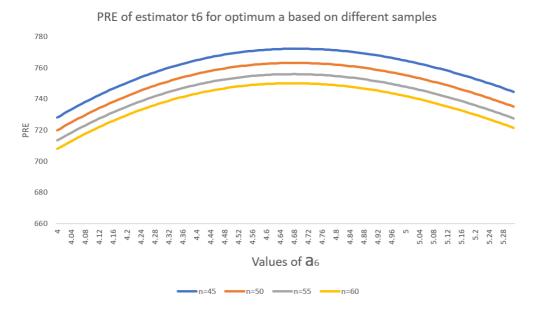


Fig. 3: The PRE of the estimator t_6 for the 4 sample sizes increases till it reaches the corresponding optimum value of a_6 and then starts declining.

References

- [1] Thompson, Steven K, Adaptive cluster sampling, Journal of the American Statistical Association, Taylor & Francis Group **85(412)**, 1050-1059 (1990).
- [2] Cochran, WG, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, The journal of agricultural science, Cambridge University Press **30(2)**, 262-275 (1940).

- [3] Singh, Poonam and Bouza, Carlos and Singh, Rajesh, Generalized exponential estimator for estimating the population mean using auxiliary variable, Journal of Scientific Research 63(1&2), 273-280 (2019).
- [4] Chaudhry, Muhammad Shahzad and Liaqat, Faiza and Hanif, Muhammad, Journal of Statistics, New Exponential Ratio Estimators using Auxiliary Information in Adaptive Cluster Sampling, AsiaNet Pakistan (Pvt) Ltd. **24**(1), 62 (2017).
- [5] Yadav, Subhash Kumar and Kadilar, Cem, Efficient family of exponential estimators for the population mean, Hacettepe Journal of Mathematics and Statistics **42(6)**, 671-677 (2013).
- [6] Hansen, Morris H and Hurwitz, William N, On the theory of sampling from finite populations, The Annals of Mathematical Statistics, JSTOR **14(4)**, 333-362 (1943).
- [7] Dryver, Arthur L and Chao, Chang-Tai, Ratio estimators in adaptive cluster sampling, Environmetrics: The official journal of the International Environmetrics Society, Wiley Online Library **18**(6), 607-620 (2007).
- [8] Chutiman, Nipaporn and Kumphon, Bungon, Ratio Estimator Using Two Auxiliary Variables for Adaptive Cluster Sampling, Thailand Statistician 6(2), 241-256 (2008).
- [9] Yadav, Subhash Kumar and Misra, Sheela and Mishra, Sant Saran and Chutiman, Nipaporn, Improved ratio estimators of population mean in adaptive cluster sampling, J Stat Appl Probab Lett **3**(1), 1-6 (2016).