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Abstract: Image restoration refers to the problem of removal or redncof degradation in blurred noisy images. The image
degradation is usually modeled by a linear blur and an agdithite noise process. The linear blur involved is alwayslaonditioned
which makes image restoration problem an ill-posed prolftanwhich the solutions are unstable. Procedures adoptsthbilize the
inversion of ill-posed problem are called regularizatisa,the selection of regularization parameter is very ingmdrto the effect of
image restoration. In this paper, we study some numericahigues for solving this ill-posed problem. Dynamicaltsyss method
(DSM), Tikhonov regularization method, L-curve method aymheralized cross validation (GCV) are presented for sglthis ill-
posed problems. Some test examples and comparative steigyesented. From the numerical results it is clear that DBMved
improved restored images compared to L-curve and GCV.
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1 Introduction observed degraded image, original image, and additive
noise. The matriA represents the degradation matrix of

Image restoration is the process of removing blur andsizeMN x MN, which may represent a spatially invariant

noise from degraded images to recover an approximatiomr a spatially varying degradation29. The image

of the original image. This field of imaging technology is restoration problem is an inverse procedure to obtain an

becoming increasingly important in many scientific approximation of the original imagebased on the image

applications such as astronomy, medical imaging,degradation model. It is an ill-posed problem, which

military, surveillance, iris scanning, microscopy and means that a small perturbation in the data leads to a large

video communication technologied][[4], [16], [18]). perturbation in the solution. Therefore, a regularizatn

The degradation consists of two distinct processes: theeeded to avoid computing solutions that are corrupted by

deterministic blur and the random noise. The blur may benoise. One of the most popular regularization techniques

due to a number of reasons, such as motion, defocusings Tikhonov regularization which was first proposed and

and atmospheric turbulence. The noise may originate irstudied extensively in the 1960’s and 197023]] [24]),

the image formation process, the transmission process, dsased on the minimization

a combination of them. Many image restoration , ) )

algorithms have their roots in well-developed theory, the mX|n{||Ax— bll2+ allLX|[3},

solution of ill-posed problem, linear algebra and ) o
numerical analysis g, [14], [17)). where a > 0 is a constant, called a regularization

The image degradation process can be modeled by Rarameter and the matrixis called regularization matrix
linear blur and an additive noise process, that is and it is typically either the identity matrix or a discrete
approximation to a derivative operator, such as the

b= Ax+n, (1) Laplacian. The Tikhonov regularization in standard form
whenL = | is given as follows
where b,x,n are MN x 1 vectors and represent ) 5 5
respectively the lexicographically orderéd x N pixel min{[|Ax—bl|3+ a||x]|3}- (2)

* Corresponding author e-mar:sweilam@yahoo.com, abdelhamersalyy @yahoo.com

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/msl/040205

124 NS 2 N. H. Sweilam: Comparative Studies for Different Image Resion Methods

Then it follows immediately that the Tikhonov problem Then,
can be reformulated as

Xqa = (ATA+al)"1ATh. ©) ,
By solving the linear least squares problem using the q = 2_0‘ 5 = _qu = _m(ﬂz)
singular value decomposition (SVD) &f we obtain (0°+a) i i
1 —-@ a
n 2 T
0 ui b = _(ﬂ( > ) = _( 2 )
_ ety 4 - .
Xq i;(q2+a)0iv" (4) o?+a a o’+a
_ - Pa-g (11)
where the numbers; are called the singular values Af — Q)
and the vectors; andyv; are referred to as the left and . @
right singular vectors oA, respectively. 1-@)=-¢= g1 (12)

The determination of the regularization parameteris

crucial and is still under intensive research. In this paper ) , . ,

we use the L-curve method, generalized cross validatiorsuch thaty is the first derivative ofg with respect taa.
(GCV) method and Dynamical systems method (DSM) to ' €N Ea.9), Eq.(10) becomes as follows:

choose a good regularization parameter.

;=28 o(ub)?
2 L-Curve Method Na =~ 21(1 @)@ P (13)
i= i
The L-curve method is proposed by Lawson and Hanson o n s 1o
[15], later Hansen in (f], [10]) used it as a Po = o Z(l— @) @y b). (14)
parameter-choice method. The L-curve is a log-log plot of =
the norm of a regularized solutiofiLx||> versus the
residual norm||Ax— b||, and its names comes from the
characteristic shape of the curve. The best regularizatioThen the relation betweeyy, andp}, is given by:
parametersr should lie in the corner of the L-curve.
The curvature of the L-curve plays an important role in
the understanding and use of the L-curve. We will derive 1 2
a convenient expression for this curvatug Let a > 0, ol = —%’78
Na=%l3,  Pa=|Ax —b||3, (5) _ Of+a a o? \o2n!
and N o? o?+a’ e
~ ~ _ 2 a !
fla =logna,  Pa =logpa; (6) = (074 (G e
such that the L-curve is a plot afy /2 versuspy /2, — _an’ (15)
then the curvature of the L-curve, as a function af, is o
given by:
_ 5 Palla —Palla o o ,
Ka =20 = 5 =3 3/2° () The second derivatives @f, andp, with respect tax is
((Pa)?+(Na)?) given by:
whereny, Py, N4, and py denote the first and second '
derivatives offj, andp, with respect tar.
The first derivatives of)q and p, with respect toa is
given by: sy d ng _ nNgha— (n&)?
0. Py Na=ggmn. = pz (16)
a1 Mo a1 Pa Na Na
Ng = ) Pa=—"- (8) / " 12
Na Pa N/ d Pa _ PaPa — (pa) 17
The first dezrivatives ofjg andpq with respect too such “" dapg T a7
thatq = Uifjra, is given by:
; L. ulb u'b From Eq.(5), we have
Na Z;(ca o ) o q), 9)
n
ph=25 (1-@ub)(u'b(1—@)).  (10) d
2 Pa = gq(~0Na) = —Na —ang. (18)
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Using Egs.8, 15, 16, 17 and18), Then the curvature, of
the L-curve in Eq.[) becomes as follows:

(g_[,) (nt’;na’;zmg)z) _ (pé,’pagz(pwz) <%)

(*2'7&) <n&’nunf2(né,>2) _ ((wéran,’,’!))gufaZ(n’G)Z) <%)
(*anngné’w(naP) _ Ep<ng>2aapné,né.’a2(né,)3>
2

Ka

panZ P& Na
(a“ﬁwwﬁ+pﬁnw2)yz
pané
(apdnwﬁpmmumf+a%umw3)
pzn3
=2 32
(ng)3(a?nZ+p3)”
pang
_ ,Pafla APaly +Palla + aNany
- / 3/2 ’
Na (a2n?+p2)¥

(19)

where the quantity);, is given by Eq.13).

3 Generalized Cross Validation (GCV)
Method

The GCV method is proposed by Gene H. Golgpysed

Then,

a

I_A%:ii(l_m):iii<0i2+a>’

N 2
(trace(l —AAg))? = <.Z\ Oizia> .

Using the singular value decomposition (SVD)Afthen
the GCV function is given by:

_ ZI:]. O'iz+C{

(s sts)

G(a) (21)

4 Dynamical Systems Method (DSM)

The DSM is proposed by A. G. Ramm1d], [20], [2]]

and the references cited therein). It's based on an analysis
of the solution of the Cauchy problem for linear and
nonlinear differential equations in Hilbert space. Such an
analysis was done for well-posed and ill-posed problems
([21 and the references sited therein). Consider a linear
operator equation of the form:

F(x) =Ax—b=0, xeH, (22)

it as a parameter-choice method. It is a widely used and . . _ _ _
very successful predictive method for choosing thewhereH is a Hilbert space andis a linear operator i

regularization parametar ([6], [7], [8]). If an arbitrary
elementy; of the left-hand sidé of Eq.(1) is left out, then

the corresponding regularized solution should prediat thi
observation well, and the choice of regularization

parameten which minimizes the functio®(a)

A - b||
(trace(l — AAq))?’

(20)

whereA, = (ATA+ al)~*AT is a matrix which produces
the regularized solutiorxy of Eg.3) when multiplied
with b, i.e.,xqg = Agb and thetraceof a matrix is the sum
of its diagonal entries.

n n 2
Axg—bZ= S (1= @)u'b)? = BN Th Y
[Axa — D15 iZ\(( @y b) i;((qura i :

2

o
where @ = L.
§ o2+a

Also, from Eq.4), we have

nooT
Ag = (ATA+al) AT = Zm%vi,
i< i

n
A= ZiuiaiviT.
i=

which is not necessarily bounded but closed and densely
defined [L1].

X(t) = —x(t) + (T +a(t)) A'b, x(0)=xo, (23)
whereT := A*A, A* is the transpose dh anda(t) > O is

a nonincreasing function such tret) — 0 ast — . The
unique solution to Egq3) is given by

t
X(t) = xoet + et / S(T+a(s) A'bds  (24)
0
Eq.(24) leads to the following iterative formuld.]] :
Xni1=€ Mxq+(1—e )T +an) " tA'bs, X =0, (25)
whereh, =t 1 —th, hh=0", 1<q<2,||b—bs ||< .

using a relaxed discrepancy principled], Eq.(@25) will
terminate ifx, satisfies the following condition:

0.95 <|| Ax, — b || < 1.0013. (26)

Also, as suggested in1P], [11]) we can choosey that
satisfy the condition

3 < @(ao) =|| Axey — b5 [|< 29,
by the following algorithm (11], [22]) :

(27)

(@© 2015 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

126

N SS ¥

N. H. Sweilam: Comparative Studies for Different Image Resion Methods

1.As aninitial guess foay one takesy = %, Orel =
-

2.Compute@(ap). If it satisfies Eq.27), then we are
done. Otherwise, we go to step 3.

3.If @ = > 3, then one takes; = %: as go back

to step 2. If 2< ¢ < 3 then one takeg; = % and go
back to step 2. Otherwise, we go to step 4.

4.If @ =c < 1, thena; := 3ay. Otherwise we go to
back to step 2.

represents the decibel unit. The higher the PSNR and
lower the MSE in the restored image, the better is its
quality. Moreover, human perception is the visual key
indicator of improvement in quality for subjective
comparisons of various restoration methods.

Figure2, shows the results by the Tikhonov regularization
method for blurred noisy image for different valuesaof

i.e., fora= 0.5, 0.05, 0.005 and 0.0005. Taldleshows
the results of MSE and PSNR in the restored images by

the Tikhonov regularization method with different values
of a. It is clear that the restored image which has high
PSNR and lower MSE atr=0.005, is better than the
restored images for other values@f Consequently, it is
obvious that a good choice for regularization parameter
is crucial to a successful image restoration.

5 Experiments Verifications

5.1 Examplel

The image restoration test problem we use is taken from
[2]. This test problem was developed at the US Air Force
Phillips Laboratory, Lasers and Imaging Directorate,
Kirtland Air Force Base, New Mexico. The original and
degraded images are shown in FigureThis data has
been widely used in the literature for testing image
restoration methods. The observed blurred noisy image
is computed by13]:

a=0.5

0=0.05

sl

bs = b+ Ger—n,
0 ]

(28)

where n is a matrix with random entries normally

distributed with mean 0 and variance 1. 0=0.005

Blurred Noisy Image

Fig. 1: Original and blurred noisy images.

Fig. 2: Results obtained using Tikhonov regularization method

. ) with different values oftx
To assess the performance of the different image

restoration methods and to evaluate their comparative
performance, two different standard performance indices
have been used in this paper. They are namely Mean

Squared Error (MSE) a_nd Peak Signal to Noise RatloTable 1: Results of MSE and PSNR for the restored images with
(PSNR) and they are defined as follows: different values ofy

1 MN . o a=05 a=0.05 a=0.005 a=0.0005
MSE= M <N Ziz x(i, J) — R(i, )I?, (29) MSE | 1.503%—009 | 5.6606—010 | 5.444%—010 | 7.5254— 008
XNiG &= PSNR | 1363586 1405953 1407712 1193655
255
PSNRUB) = 10l0go( =) (30)

Figure 3 and 4, show the optimum value of

Where x,X represented the original and restored imageregularization parameter, for blurred noisy image with

having the same dimensidvl x N respectively, andiB

Oe = 0.01 using L-curve method and GCV method.
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From these figures, we observed that the optimum valud@ble 2: Results of MSE and PSNR for the restored images by
of a using L-curve and GCV is 3.8533e-004 and I'khonov regularization and DSM.

5.9308e-004 respectively. Orei=0.01
L-curve GCV DSM
MSE | 3.6691— 007 | 3.4426e—007 | 3.211%— 007
PSNR 1124852 1127620 1130637
del= 0.03
L-curve GCV DSM
o , Lourve, T comer at 0.00032633 ‘ MSE | 9.433%_ 007 | 8.787C_007 | 7.761%— 007
PSNR 1083839 1086924 1092315
.4416e-009 brEI_ 0.05
10° 4 L-curve GCV DSM
33130008 MSE | 1.951%e— 006 | 1.820%_ 006 | 1.642%&— 006
Hdeti? PSNR 1052279 1055297 1059765
? " 16.0818e-007
% 10° e , L-curve GV DSM

9152e-005

.00010748

102 1 1 L Il
10° 10" 10°
residual norm [l Ax-b Il

Fig. 3: L-curve method.

Tikhonov,GCV minimum at A = 0.00059308

L-curve DsSM

Fig. 6: 8/=0.03

DSM

\ L-curve
*/ - iy

Fig. 4: GCV method.

10

Fig. 7: &¢=0.05

Table 2, shows the results of MSE and PSNR in the
restored images with different values of no&g = 0.01, g2 Example2
0.03 and 0.05 by Tikhonov regularization method and
DSM where the regularization parameter obtained either . . .
by L-curve or GCV method for Tikhonov regularization In this example, we used the image restoration test

o . . o problem taken from J]. The original and degraded
rgse;t\qf)d while it obtained by discrepancy principle for images are shown in FiguB The observed blurred noisy

images is computed from EQ®) and use spatially
invariant Gaussian blur is given by:
Figure5, 6 and7, show the restored image by L-curve
i 1 1 S
method, GCV method and DSM for different valuegf expd — = [S t} c1 ’ (31)
2m,/y 2 t
(@© 2015 NSP
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L-curve, Tikh. corner at 0.0001173
T T

where 10°

.3488e-008

2 52

ai p
2

C= ,|, and y=afaZ—p*>0.
a;z

N.777e-007

.4293e-007

The shape of the Gaussian blur depends on the paramete
a1, oz andp. In this test exampler; = o, = 4,p = 0.
Figure 9 and 10, show the optimum value of

.0035e-006

solution norm || x ||,

.6551e-005

Original Image Blurred Moisy Image

I I
10° 10" 10
residual norm || Ax- b ||,

Fig. 9: L-curve method.

Tikhonov,GCV minimum at = 2.4028e-005
T T

Fig. 8: Original and blurred noisy images. 10k ,

regularization parameter, for blurred noisy image with

del = 0.01 using L-curve method and GCV method. _ |
From these figures, we observed that the optimum value * |
of a using L-curve and GCV is 1.1730e-004 and
2.4028e-005 respectively. 10 4

Table 3, shows the results of MSE and PSNR in the ¢ .
restored images with different values of no&g = 0.01,
0.03 and 0.05 by Tikhonov regularization method and
DSM. 1

1

Table 3: Results of MSE and PSNR for the restored images by
Tikhonov regularization and DSM.

L-curve GCV DSM

= 0.01
L-curve GCV DSM
MSE | 2.917%—-003 | 8.015%—-003 | 1.6422— 003
PSNR 734801 69.0915 75.9765
Ore1=0.03
L-curve GCV DSM Fig. 11: §¢=0.01
MSE | 1.3201e—002 | 1.3777%=—002 | 2.2374— 003
PSNR 66.9247 66.7393 74.6334
Orel= 0.05
L-curve GCV DSM 6 Concluding Remarks
MSE | 2.325—002 | 2.917%—-002 | 7.8764— 003
PSNR 64.4666 63.4807 69.1675 Image restoration is the process of removing blur and

noise from degraded images to recover an approximation
of the original image. The image degradation is usually
modeled by a linear blur and an additive white noise
Figure 11, 12 and 13, show the restored image by process. The linear blur involved is always an
L-curve method, GCV method and DSM for different ill-conditioned which makes image restoration problem
values ofdyg at 0.01, 0.03 and 0.05 respectively. an ill-posed problem for which the solutions are unstable.
Procedures adopted to stabilize the inversion of ill-posed
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