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Abstract: Image restoration refers to the problem of removal or reduction of degradation in blurred noisy images. The image
degradation is usually modeled by a linear blur and an additive white noise process. The linear blur involved is always anill-conditioned
which makes image restoration problem an ill-posed problemfor which the solutions are unstable. Procedures adopted tostabilize the
inversion of ill-posed problem are called regularization,so the selection of regularization parameter is very important to the effect of
image restoration. In this paper, we study some numerical techniques for solving this ill-posed problem. Dynamical systems method
(DSM), Tikhonov regularization method, L-curve method andgeneralized cross validation (GCV) are presented for solving this ill-
posed problems. Some test examples and comparative study are presented. From the numerical results it is clear that DSM showed
improved restored images compared to L-curve and GCV.
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1 Introduction

Image restoration is the process of removing blur and
noise from degraded images to recover an approximation
of the original image. This field of imaging technology is
becoming increasingly important in many scientific
applications such as astronomy, medical imaging,
military, surveillance, iris scanning, microscopy and
video communication technologies ([1], [4], [16], [18]).
The degradation consists of two distinct processes: the
deterministic blur and the random noise. The blur may be
due to a number of reasons, such as motion, defocusing,
and atmospheric turbulence. The noise may originate in
the image formation process, the transmission process, or
a combination of them. Many image restoration
algorithms have their roots in well-developed theory, the
solution of ill-posed problem, linear algebra and
numerical analysis ([3], [14], [17]).

The image degradation process can be modeled by a
linear blur and an additive noise process, that is

b= Ax+n, (1)

where b,x,n are MN × 1 vectors and represent
respectively the lexicographically orderedM × N pixel

observed degraded image, original image, and additive
noise. The matrixA represents the degradation matrix of
sizeMN×MN, which may represent a spatially invariant
or a spatially varying degradation [25]. The image
restoration problem is an inverse procedure to obtain an
approximation of the original imagex based on the image
degradation model. It is an ill-posed problem, which
means that a small perturbation in the data leads to a large
perturbation in the solution. Therefore, a regularizationis
needed to avoid computing solutions that are corrupted by
noise. One of the most popular regularization techniques
is Tikhonov regularization which was first proposed and
studied extensively in the 1960’s and 1970’s ([23], [24]),
based on the minimization

min
x
{‖Ax−b‖2

2+α‖Lx‖2
2},

where α > 0 is a constant, called a regularization
parameter and the matrixL is called regularization matrix
and it is typically either the identity matrix or a discrete
approximation to a derivative operator, such as the
Laplacian. The Tikhonov regularization in standard form
whenL = I is given as follows

min
x
{‖Ax−b‖2

2+α‖x‖2
2}. (2)
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Then it follows immediately that the Tikhonov problem
can be reformulated as

xα = (ATA+αI)−1ATb. (3)

By solving the linear least squares problem using the
singular value decomposition (SVD) ofA, we obtain

xα =
n

∑
i=1

(
σ2

i

σ2
i +α

)
uT

i b
σi

vi , (4)

where the numbersσi are called the singular values ofA,
and the vectorsui and vi are referred to as the left and
right singular vectors ofA, respectively.

The determination of the regularization parameterα, is
crucial and is still under intensive research. In this paper,
we use the L-curve method, generalized cross validation
(GCV) method and Dynamical systems method (DSM) to
choose a good regularization parameter.

2 L-Curve Method

The L-curve method is proposed by Lawson and Hanson
[15], later Hansen in ([7], [10]) used it as a
parameter-choice method. The L-curve is a log-log plot of
the norm of a regularized solution‖Lx‖2 versus the
residual norm‖Ax− b‖2 and its names comes from the
characteristic shape of the curve. The best regularization
parametersα should lie in the corner of the L-curve.
The curvature of the L-curve plays an important role in
the understanding and use of the L-curve. We will derive
a convenient expression for this curvature [9]. Let α > 0,

ηα = ‖xα‖2
2, ρα = ‖Axα −b‖2

2, (5)

and

η̂α = logηα , ρ̂α = logρα ; (6)

such that the L-curve is a plot of̂ηα/2 versusρ̂α/2,
then the curvatureκ of the L-curve, as a function ofα, is
given by:

κα = 2
ρ̂ ′

α η̂ ′′
α − ρ̂ ′′

α η̂ ′
α

((ρ̂ ′
α)

2+(η̂ ′
α)

2)3/2
, (7)

where η̂ ′
α , ρ̂ ′

α , η̂ ′′
α , and ρ̂ ′′

α denote the first and second
derivatives ofη̂α andρ̂α with respect toα.
The first derivatives ofη̂α and ρ̂α with respect toα is
given by:

η̂ ′
α =

η ′
α

ηα
, ρ̂ ′

α =
ρ ′

α
ρα

. (8)

The first derivatives ofηα andρα with respect toα such

thatφi =
σ2

i
σ2

i +α , is given by:

η ′
α = 2

n

∑
i=1

(φi
uT

i b
σi

)(
uT

i b
σi

φ ′
i ), (9)

ρ ′
α = 2

n

∑
i=1

((1−φi)u
T
i b)(uT

i b(1−φi)
′). (10)

Then,

φ ′
i =

−σ2
i

(σ2
i +α)2

=
−φ2

i

σ2
i

=−φi(
φi

σ2
i

)

=−φi(
1

σ2
i +α

) =
−φi

α
(

α
σ2

i +α
)

=
−φi

α
(1−φi), (11)

(1−φi)
′ =−φ ′

i =
φi

α
(1−φi); (12)

such thatφ ′
i is the first derivative ofφi with respect toα.

Then Eq.(9), Eq.(10) becomes as follows:

η ′
α =

−2
α

n

∑
i=1

(1−φi)φ2
i
(uT

i b)2

σ2
i

, (13)

ρ ′
α =

2
α

n

∑
i=1

(1−φi)
2φi(u

T
i b)2. (14)

Then the relation betweenη ′
α andρ ′

α is given by:

ρ ′
α =− (1−φi)σ2

i

φi
η ′

α

=−σ2
i +α
σ2

i

(1− σ2
i

σ2
i +α

)σ2
i η ′

α

=−(σ2
i +α)(

α
σ2

i +α
)η ′

α

=−αη ′
α . (15)

The second derivatives of̂ηα andρ̂α with respect toα is
given by:

η̂ ′′
α =

d
dα

η ′
α

ηα
=

η ′′
α ηα − (η ′

α)
2

η2
α

, (16)

ρ̂ ′′
α =

d
dα

ρ ′
α

ρα
=

ρ ′′
αρα − (ρ ′

α)
2

ρ2
α

. (17)

From Eq.(15), we have

ρ ′′
α =

d
dα

(−αη ′
α) =−η ′

α −αη ′′
α . (18)
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Using Eqs.(8, 15, 16, 17and18), Then the curvatureκα of
the L-curve in Eq.(7) becomes as follows:

κα = 2

(

ρ ′
α

ρα

)(

η ′′
α ηα−(η ′

α )
2

η2
α

)

−
(

ρ ′′
α ρα−(ρ ′

α )
2

ρ2
α

)(

η ′
α

ηα

)

(

(ρ ′
α )

2

ρ2
α

+
(η ′

α )
2

η2
α

)3/2

= 2

(

−αη ′
α

ρα

)(

η ′′
α ηα−(η ′

α )
2

η2
α

)

−
(

(−η ′
α−αη ′′

α )ρα−α2(η ′
α )

2

ρ2
α

)(

η ′
α

ηα

)

(

α2(η ′
α )

2

ρ2
α

+
(η ′

α )
2

η2
α

)3/2

= 2

(

−αηη ′
α η ′′

α+α(η ′
α )

3

ρα η2
α

)

−
(

−ρ(η ′
α )

2−αρη ′
α η ′′

α−α2(η ′
α )

3

ρ2
α ηα

)

(

α2η2
α (η ′

α )
2+ρ2

α (η ′
α )

2

ρ2
α η2

α

)3/2

= 2

(

αρα (η ′
α )

3+ρα ηα (η ′
α )

2+α2ηα (η ′
α )

3

ρ2
α η2

α

)

(η ′
α )

3(α2η2
α+ρ2

α )
3/2

ρ3
α η3

α

= 2
ρα ηα

η ′
α

αρα η ′
α +ρα ηα +α2ηα η ′

α
(

α2η2
α +ρ2

α
)3/2

, (19)

where the quantityη ′
α is given by Eq.(13).

3 Generalized Cross Validation (GCV)
Method

The GCV method is proposed by Gene H. Golub [5] used
it as a parameter-choice method. It is a widely used and
very successful predictive method for choosing the
regularization parameterα ([6], [7], [8]). If an arbitrary
elementbi of the left-hand sideb of Eq.(1) is left out, then
the corresponding regularized solution should predict this
observation well, and the choice of regularization
parameterα which minimizes the functionG(α)

G(α) =
‖Axα −b‖2

2

(trace(I −AAα))
2 , (20)

whereAα = (ATA+αI)−1AT is a matrix which produces
the regularized solutionxα of Eq.(3) when multiplied
with b, i.e.,xα = Aαb and thetraceof a matrix is the sum
of its diagonal entries.

‖Axα −b‖2
2 =

n

∑
i=1

((1−φi)u
T
i b)2 =

n

∑
i=1

((

α
σ2

i +α

)

uT
i b

)2

,

where φi =
σ2

i

σ2
i +α

.

Also, from Eq.(4), we have

Aα = (ATA+αI)−1AT =
n

∑
i=1

φi
uT

i

σi
vi ,

A=
n

∑
i=1

uiσiv
T
i .

Then,

I −AAα =
n

∑
i=1

(I −φi) =
n

∑
i=1

(

α
σ2

i +α

)

,

(trace(I −AAα))
2 =

(

n

∑
i=1

α
σ2

i +α

)2

.

Using the singular value decomposition (SVD) ofA, then
the GCV function is given by:

G(α) =
∑n

i=1

(

uT
i b

σ2
i +α

)2

(

∑n
i=1

1
σ2

i +α

)2 . (21)

4 Dynamical Systems Method (DSM)

The DSM is proposed by A. G. Ramm ([19], [20], [21]
and the references cited therein). It’s based on an analysis
of the solution of the Cauchy problem for linear and
nonlinear differential equations in Hilbert space. Such an
analysis was done for well-posed and ill-posed problems
([21] and the references sited therein). Consider a linear
operator equation of the form:

F(x) = Ax−b= 0, x∈ H, (22)

whereH is a Hilbert space andA is a linear operator inH
which is not necessarily bounded but closed and densely
defined [11].

x′(t) =−x(t)+ (T +a(t))−1A∗b, x(0) = x0, (23)

whereT := A∗A, A∗ is the transpose ofA anda(t) > 0 is
a nonincreasing function such thata(t)→ 0 ast → ∞. The
unique solution to Eq.(23) is given by

x(t) = x0e−t +e−t
∫ t

0
es(T +a(s))−1A∗ b ds. (24)

Eq.(24) leads to the following iterative formula [11] :

xn+1 = e−hnxn+(1−e−hn)(T+an)
−1A∗bδ , x0 = 0, (25)

wherehn = tn+1− tn, hn = qn, 1≤ q≤ 2, ‖ b−bδ ‖≤ δ .
using a relaxed discrepancy principle [19], Eq.(25) will
terminate ifxn satisfies the following condition:

0.9δ ≤‖ Axn−bδ ‖≤ 1.001δ . (26)

Also, as suggested in ([12], [11]) we can choosea0 that
satisfy the condition

δ ≤ φ(a0) :=‖ Axa0 −bδ ‖≤ 2δ , (27)

by the following algorithm ([11], [22]) :
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1.As an initial guess fora0 one takesa0 =
‖A‖2δrel

3 , δrel =
δ
‖b‖ .

2.Computeφ(a0). If it satisfies Eq.(27), then we are
done. Otherwise, we go to step 3.

3.If φ(a0)
δ = c> 3, then one takesa1 =

a0
2(c−1) : as go back

to step 2. If 2< c ≤ 3 then one takesa1 =
a0
3 and go

back to step 2. Otherwise, we go to step 4.
4.If φ(a0)

δ = c < 1, thena1 := 3a0. Otherwise we go to
back to step 2.

5 Experiments Verifications

5.1 Example1

The image restoration test problem we use is taken from
[2]. This test problem was developed at the US Air Force
Phillips Laboratory, Lasers and Imaging Directorate,
Kirtland Air Force Base, New Mexico. The original and
degraded images are shown in Figure1. This data has
been widely used in the literature for testing image
restoration methods. The observed blurred noisy images
is computed by [13]:

bδ = b+ δrel
‖b‖
‖n‖n, (28)

where n is a matrix with random entries normally
distributed with mean 0 and variance 1.

Fig. 1: Original and blurred noisy images.

To assess the performance of the different image
restoration methods and to evaluate their comparative
performance, two different standard performance indices
have been used in this paper. They are namely Mean
Squared Error (MSE) and Peak Signal to Noise Ratio
(PSNR) and they are defined as follows:

MSE=
1

M×N

M

∑
i=1

N

∑
j=1

|x(i, j)− x̂(i, j)|2, (29)

PSNR(dB) = 10log10(
2552

MSE
). (30)

Where x, x̂ represented the original and restored image
having the same dimensionM × N respectively, anddB

represents the decibel unit. The higher the PSNR and
lower the MSE in the restored image, the better is its
quality. Moreover, human perception is the visual key
indicator of improvement in quality for subjective
comparisons of various restoration methods.

Figure2, shows the results by the Tikhonov regularization
method for blurred noisy image for different values ofα,
i.e., for α= 0.5, 0.05, 0.005 and 0.0005. Table1, shows
the results of MSE and PSNR in the restored images by
the Tikhonov regularization method with different values
of α. It is clear that the restored image which has high
PSNR and lower MSE atα=0.005, is better than the
restored images for other values ofα. Consequently, it is
obvious that a good choice for regularization parameterα
is crucial to a successful image restoration.

Fig. 2: Results obtained using Tikhonov regularization method
with different values ofα

Table 1: Results of MSE and PSNR for the restored images with
different values ofα

α= 0.5 α= 0.05 α= 0.005 α= 0.0005
MSE 1.5039e−009 5.6696e−010 5.4445e−010 7.5254e−008
PSNR 136.3586 140.5953 140.7712 119.3655

Figure 3 and 4, show the optimum value of
regularization parameterα, for blurred noisy image with
δrel = 0.01 using L-curve method and GCV method.
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From these figures, we observed that the optimum value
of α using L-curve and GCV is 3.8533e-004 and
5.9308e-004 respectively.

Fig. 3: L-curve method.

Fig. 4: GCV method.

Table2, shows the results of MSE and PSNR in the
restored images with different values of noiseδrel = 0.01,
0.03 and 0.05 by Tikhonov regularization method and
DSM where the regularization parameter obtained either
by L-curve or GCV method for Tikhonov regularization
method while it obtained by discrepancy principle for
DSM.

Figure5, 6 and7, show the restored image by L-curve
method, GCV method and DSM for different values ofδrel
at 0.01, 0.03 and 0.05 respectively.

Table 2: Results of MSE and PSNR for the restored images by
Tikhonov regularization and DSM.

δrel= 0.01
L-curve GCV DSM

MSE 3.6691e−007 3.4426e−007 3.2115e−007
PSNR 112.4852 112.7620 113.0637

δrel= 0.03
L-curve GCV DSM

MSE 9.4339e−007 8.7870e−007 7.7613e−007
PSNR 108.3839 108.6924 109.2315

δrel= 0.05
L-curve GCV DSM

MSE 1.9511e−006 1.8202e−006 1.6422e−006
PSNR 105.2279 105.5297 105.9765

Fig. 5: δrel=0.01

Fig. 6: δrel=0.03

Fig. 7: δrel=0.05

5.2 Example2

In this example, we used the image restoration test
problem taken from [2]. The original and degraded
images are shown in Figure8. The observed blurred noisy
images is computed from Eq.(28) and use spatially
invariant Gaussian blur is given by:

k(s, t) =
1

2π√γ
exp

{

−1
2

[

s t
]

C−1
[

s

t

]}

, (31)

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


128 N. H. Sweilam: Comparative Studies for Different Image Restoration Methods

where

C=

[

α2
1 ρ2

ρ2 α2
2

]

, and γ = α2
1α2

2 −ρ4 > 0 .

The shape of the Gaussian blur depends on the parameters
α1, α2 and ρ . In this test exampleα1 = α2 = 4,ρ = 0.
Figure 9 and 10, show the optimum value of

Fig. 8: Original and blurred noisy images.

regularization parameterα, for blurred noisy image with
δrel = 0.01 using L-curve method and GCV method.
From these figures, we observed that the optimum value
of α using L-curve and GCV is 1.1730e-004 and
2.4028e-005 respectively.

Table3, shows the results of MSE and PSNR in the
restored images with different values of noiseδrel = 0.01,
0.03 and 0.05 by Tikhonov regularization method and
DSM.

Table 3: Results of MSE and PSNR for the restored images by
Tikhonov regularization and DSM.

δrel= 0.01
L-curve GCV DSM

MSE 2.9179e−003 8.0155e−003 1.6422e−003
PSNR 73.4801 69.0915 75.9765

δrel= 0.03
L-curve GCV DSM

MSE 1.3201e−002 1.3777e−002 2.2374e−003
PSNR 66.9247 66.7393 74.6334

δrel= 0.05
L-curve GCV DSM

MSE 2.3250e−002 2.9175e−002 7.8764e−003
PSNR 64.4666 63.4807 69.1675

Figure 11, 12 and 13, show the restored image by
L-curve method, GCV method and DSM for different
values ofδrel at 0.01, 0.03 and 0.05 respectively.

Fig. 9: L-curve method.

Fig. 10: GCV method.

Fig. 11: δrel=0.01

6 Concluding Remarks

Image restoration is the process of removing blur and
noise from degraded images to recover an approximation
of the original image. The image degradation is usually
modeled by a linear blur and an additive white noise
process. The linear blur involved is always an
ill-conditioned which makes image restoration problem
an ill-posed problem for which the solutions are unstable.
Procedures adopted to stabilize the inversion of ill-posed

c© 2015 NSP
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Fig. 12: δrel=0.03

Fig. 13: δrel=0.05

problem are called regularization, so the selection of the
regularization parameter is very important to the effect of
image restoration. Dynamical systems method (DSM),
Tikhonov regularization method, L-curve method and
generalized cross validation (GCV) are presented for
solving this ill-posed problems. From comparative studies
and the numerical results it is clear that DSM showed
improved restored images compared to L-curve and GCV.
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