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We classify the group of symmetries of all dihedral folding tilings by spherical triangles
and spherical parallelograms, obtained in [2], [3] and [4]. The transitivity classes of
isogonality and isohedrality are also determined, see Table 3.1.
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1 Introduction

A spherical folding tiling, or f-tiling for short, is an edge-to-edge decomposition of the
sphere by geodesic polygons, such that all vertices are of even valency and the sums of
alternating angles around each vertex are π. A f-tiling τ is said dihedral if every tile of τ is
congruent to either two fixed sets T and Q. In this case T and Q are the prototiles of τ .

F-tilings are related to the theory of isometric foldings of Riemannian manifolds.
See [11] for the foundations of this subject.

Isometric foldings can be seen as locally isometries which send piecewise geodesic
segments into piecewise geodesic segments of the same length. These maps are continuous
but not necessarily differentiable. The points where they fail to be differentiable are called
singular points. For surfaces, the singularity set gives rise to a two-coloured graph whose
vertices fulfill the angle-folding relation, i.e., each vertex is of even valency and the sum of
alternating angles is π. For a topological view of this theory see [12].

In [10], Lawrence and Spingarn show that the angle-folding relation is generalized
for isometric foldings of the Euclidian space Rd. Farran et al. [9] present a study which
involves a partition of a surface into polygons.

This work was supported partially by the Research Units Mathematics and Applications of University of
Aveiro and CM-UTAD of University of Trás-os-Montes e Alto Douro, through the Foundation for Science and
Technology (FCT).
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A full range of problems and methods associated with tilings and patterns is presented
by Grnbaum and Shephard [5]. They address the problem of tiling two-dimensional space
with congruent tiles [6].

The complete classification of monohedral tilings of the sphere by triangles (which
obviously includes the monohedral triangular f-tilings [1]) was given by Yukako Ueno and
Yoshio Agaoka [13]. This classification was partially done by D. Sommerville [7], and an
outline of the proof was provided by H. Davies [8].

The classification of all dihedral folding tilings by spherical triangles and spherical
parallelograms was obtained in [2], [3] and [4].

Let τ denote a spherical f-tiling. A spherical isometry σ is a symmetry of τ if σ maps
every tile of τ into a tile of τ . The set of all symmetries of τ is a group under composition
of maps, denoted by G(τ). Here, we classify the group of symmetries of the referred class
of spherical f-tilings.

We shall say that the tiles T and T ′ of τ are in the same transitivity class if the symmetry
group G(τ) contains a transformation that maps T into T ′. If all the tiles of τ form one
transitivity class we say that τ is tile-transitive or isohedral. If there are k transitivity classes
of tiles, then τ is k-isohedral. On the other hand, if G(τ) contains operations that map every
vertex of τ into any other vertex, then we say that the vertices form one transitivity class or
that τ is isogonal. If there are k transitivity classes of vertices, then τ is k-isogonal. In this
paper we also determine the transitivity classes of isogonality and isohedrality.

In Figure 1.1 we present a complete list of all dihedral f-tilings, whose prototiles are
a spherical triangle T and a spherical paralelelogram Q. A detailed study of the f-tilings
is included in [2], [3] and [4]. Only one element of each class or family is given. They
consists of:

• A family of square antiprisms (Aα)α∈[α0, π[, in which T is an isosceles triangle iff
α ∈ {α0, 2π/3}, where α0 = arccos(1−√2) ≈ 114.47 ◦ and α is internal angle of
Q;

• For each k ≥ 2 a family of 2k-polygonal radially elongated dipyramids, Rk
α1α2

;
• A class of f-tilings Ik (k ≥ 2), in which Q is a square and T is a scalene triangle.

We illustrate I2;
• A class of f-tilings J k (k ≥ 2). Q is a spherical quadrangle with all congruent

angles and with distinct pairs of congruent opposite sides. T is a scalene triangle.
We consider k = 2;

• F-tilings Ui, i = 1, 2, 3, 4, with the same prototiles. Q has all congruent sides and
distinct pairs of angles. T is an isosceles triangle (note: there exists one another
element of the form R3

φ1φ2
with such prototiles);

• For each k ≥ 3 a family of f-tilingsMk
α (π/k < α < 2π/k), in which Q has distinct

pairs of angles and T is scalene. In Figure we take the minimum value of k;
• Two classes of f-tilings Ek and Sk−1 (k ≥ 3) such that Q has all congruent sides

and distinct pairs of angles and T is a scalene triangle. We illustrate E3 and S3;
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• F-tilings Gi, i = 1, 2, 3, with the same prototiles. Q has all congruent sides and
distinct pairs of angles. T is scalene;

• For each k ≥ 1 a family of f-tilings Dk
β (0 < β < π/(2k)) in which Q has dis-

tinct pairs of angles and distinct pairs of sides and T is isosceles. In Figure D2
β is

illustrated;

• A class of f-tilings T k (k ≥ 2) in which Q has distinct pairs of angles and distinct
pairs of sides and T is scalene. We illustrate T 2;

• A f-tiling M such that Q has distinct pairs of angles and distinct pairs of sides and
T is scalene.
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Figure 1.1: Dihedral f-tilings of the sphere by triangles and parallelograms.
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2 Preliminaries

It is well known that any spherical isometry is either a reflection, a rotation, or a glide-
reflection, which consists of reflecting through some spherical great circle and then rotating
around the line orthogonal to the great circle and containing the origin.

The following trivial Lemma is a matter of a great import on what follows.

Lemma 2.1. Let v and v′ be vertices of a spherical f-tiling τ , and let σ be a symmetry of
τ , such that σ(v) = v′. Then, every symmetry of τ that sends v into v′ is composition of σ

with a symmetry of τ fixing v′.
On the other hand, the isometries that fix v′ are exactly the rotations around the line

containing ±v′ and the reflections through the great circles by ±v′.

On what follows Rx
θ , Ry

θ and Rz
θ denote the rotations through an angle θ around the

xx axis, yy axis and zz axis, respectively. The reflections on the coordinate planes xy, xz

and yz are denoted, respectively, by ρxy, ρxz and ρyz . It follows that: Rx
θρxy = ρxyRx

−θ,
Rx

θRy
π = Ry

πRx
−θ, ρxyRz

θ = Rz
θρ

xy and ρxyρyz = ρyzρxy = Ry
π . Besides, 2k is the

smallest positive integer such that (ρxyRz
π/k)2k = id.

The nth dihedral group Dn (group of symmetries of the planar regular n-gon) consists
of n rotations and n symmetries (reflections). If a is a rotation of order n and b is a
symmetry, then 〈 a, b : an = 1, b2 = 1, ba = an−1b 〉 is a group presentation for Dn.
Moreover, the elements 1, a, . . . , an−1, b, ab, . . . , an−1b are pairwise disjoints.

3 Symmetry Groups

Here we determine the group of symmetries of the mentioned class of spherical tilings.
The number of transitivity classes of tiles and vertices of each tiling is indicated. We
consider separately the families involved in Figure 1.1.

Antiprisms Aα – Described in [2]

Figure 3.2 illustrates some antiprisms Aα, arccos(1−√2) = α0 ≤ α < π, where α is
the internal angle of the spherical square Q.

Firstly, suppose that α0 < α < π. If α = 2π/3 (Figure 3.2-III), then the prototile T is
an isosceles triangle. If α 6= 2π/3 (Figure 3.2-II and Figure 3.2-IV), then T is scalene. In
any case we observe that the unique symmetry ofAα fixing a vertex v of the tiling must be
the identity map. By Lemma 2.1, G(Aα) contains at most 8 symmetries.

However < Rx
π/2 > is a subgroup of G(Aα) of order 4. On the other hand, the rotation

Rz
π ∈ G(Aα)\ < Rx

π/2 >. And so G(Aα) has exactly 8 elements.
Now, if a = Rx

π/2 and b = Rz
π then a4 = 1, b2 = 1 and a3b = ba, where 1 is the

identity element. And so G(Aα) is isomorphic to the octic group D4. Since all the vertices
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Figure 3.2: Square antiprisms.

ofAα form one transitivity class thenAα is isogonal. On the other hand,Aα is 2-isohedral.

Consider now α = α0. The prototile T is an isosceles triangle of angles π/2, π − α0

and π/2 as illustrated in Figure 3.2-I. The symmetries of Aα0 that fix a vertex v belonging
to a certain tile Q of the tiling is either the identity map or the reflection through the unique
great circle containing v and the other vertex of Q opposite to v. By Lemma 2.1, G(Aα0)
contains at most 16 symmetries.

Similarly to the previous case G(Aα0) contains a subgroup S isomorphic to D4, gener-
ated by Rx

π/2 and Rz
π. On the other hand, φ = ρyzRx

π/4 = Rx
π/4ρ

yz obtained by reflecting
on the plane yz followed by a rotation of π/4 around the xx axis is also a symmetry of
Aα0 . Since φ has order 8, then φ 6∈ S (otherwise S would be abelian). It follows that
{aφ : a ∈ S} and S are disjoint, and so G = G(Aα0) has exactly 16 elements. Now, one
has

φ7Rz
π = ρyzRx

7π/4R
z
π = ρyzRx

7π/4ρ
xzρyz = ρyzρxzRx

π/4ρ
yz = Rz

πRx
π/4ρ

yz = Rz
πφ,

and so G is isomorphic to D8, generated by φ and Rz
π. Finally, Aα0 is isogonal and 2-

isohedral.

I k, J k, k ≥ 2 – Described in [2]

The f-tiling Ik (k ≥ 2) contains 2 spherical squares and 8(2k − 1) triangles, see Figu-
re 3.3.

Similarly to the previous case G(Ik) contains a subgroup of order 8 generated by Rx
π/2

and Rz
π .

Now, the cyclic sequence of angles around a vertex v belonging to the quadrangle
contains 2k− 1 angles δ, and it is given by (α, δ, . . . , δ, γ, β). As the transitivity classes of
the triangles with angle δ in v are pairwise disjoints, then G(Ik) has no more elements.

And so, up to an isomorphism, G(Ik) is the 4th dihedral group. It follows that there
are 2k − 1 transitivity classes of triangles (each one with 8 triangles) and one transitivity
class of quadrangles. Hence Ik is 2k-isohedral. Finally, Ik is k-isogonal.



128 A. M. Breda and A. F. Santos

I
2

I
3

1

2

3

4

J
2

Figure 3.3: f-tilings I2, I3 and J 2.

Concerning to the f-tilings J k (k ≥ 2), the triangles numbered from 1 to 2k (k = 2
in Figure 3.3) are in distinct transitivity classes of tiles. On the other hand, the spherical
isometries 1 = Id, Rx

π , Ry
π and Rz

π are symmetries of J k. Since, J k is composed of 8k

triangles, then G(J k) has no more elements. Up to an isomorphism, G(J k) is the Klein
4-group. J k is (2k + 1)-isohedral and (k + 1)-isogonal.

Rk
α1α2

, k ≥ 2 – Described in [2], [3] and [4]

Firstly, we consider the case when the prototile Q is equiangular. A 3D representation
for k = 4 is illustrated in Figure 3.4-I. Let α be the internal angle of Q.

I II

Figure 3.4: f-tilings R4
α and R4

α1α2 .

Any symmetry of Rk
α fixes (0, 0, 1) or maps (0, 0, 1) into (0, 0,−1). The symmetries

that fix (0, 0, 1) are generated, for instance, by the rotation Rz
π/k of order 2k and the re-

flection ρyz , giving rise to a subgroup S of G(Rk
α) isomorphic to D2k. To obtain the

symmetries that sends (0, 0, 1) into (0, 0,−1) it is enough to compose each element of S

with ρxy . Now, since ρxy commutes with Rz
π/k and ρyz , then ρxy commutes with all el-

ements of S. And so, the map defined by ψ 7→ (0, ψ) and ρxyψ 7→ (1, ψ), ψ ∈ S is an
isomorphism between G(Rk

α) and D1×D2k. It follows immediately thatRk
α is 2-isohedral

and 2-isogonal.
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Consider now that Q has distinct pairs of congruent opposite angles, say α1 and α2. A
3D representation for k = 4 is illustrated in Figure 3.4-II.

In this case the group of symmetries that fix (0, 0, 1) is precisely the kth dihedral group
Dk generated by Rz

2π/k and ρyz . In fact, neither the reflections on the vertical great circles
bisecting triangles nor the rotations of the form Rz

(2n+1)π/k (n ∈ Z) are symmetries of
Rk

α1α2
.

The map a = Rz
π/kρxy = ρxyRz

π/k is a symmetry of Rk
α1α2

that maps (0, 0, 1) into
(0, 0,−1) allowing us to get the symmetries that map (0, 0, 1) into (0, 0,−1). Now, one
has

a2k−1ρyz = Rz
(2k−1)π/kρxyρyz = Rz

(2k−1)π/kRy
π = Ry

πRz
π/k = ρyzρxyRz

π/k = ρyza.

On the other hand, a has order 2k and ρyz /∈< a >. It follows that a and ρyz generate
G(Rk

α1α2
). And so it is isomorphic to D2k. Finally, Rk

α1α2
has two transitivity classes of

tiles and three transitivity classes of vertices, which means that Rk
α1α2

is 2-isohedral and
3-isogonal.

Sk, k ≥ 2 and Ek, k ≥ 3 – Described in [3]

Firstly, we consider the tilings Sk, k ≥ 2. A 3D representation for k = 3 is illustrated
in Figure 3.5-I.

I II

b
g

d
a
2

a
1

Figure 3.5: f-tilings S3 and E4.

Any symmetry of Sk fixes (1, 0, 0) or maps (1, 0, 0) into (−1, 0, 0). The symmetries
that fix (1, 0, 0) are generated by the rotation Rx

π/k and the reflection ρxy , giving rise to
D2k. The symmetries that maps (1, 0, 0) into (−1, 0, 0) are obtained composing each one
of these elements with ρyz . Since ρyz commutes with Rx

π/k and ρxy, we conclude that
G(Sk) is isomorphic to D1 × D2k. It follows immediately that Sk is 2-isohedral and
4-isogonal.

Now, we shall consider the tilings Ek, k ≥ 3. A 3D representation for k = 4 is
illustrated in Figure 3.5-II. Ek has exactly four vertices surrounded by the cyclic sequence
(γ, γ, α2, α2, α2, . . . ). Namely, (1, 0, 0), (0, 0, 1), (−1, 0, 0) and (0, 0,−1).
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The isometries ρxy , ρyz , ρxy and ρyz are the non-identity symmetries of Ek that
leave fixed (1, 0, 0), (0, 0, 1), (−1, 0, 0) and (0, 0,−1), respectively. On the other hand,
the isometies ρxzRy

π/2, ρyz and ρxzRy
3π/2 are symmetries of Ek that map, (1, 0, 0) into

(0, 0, 1), (−1, 0, 0) and (0, 0,−1), respectively. By Lemma 2.1 G(Ek) has exactly eight
isometries:

id, ρxy, ρxzRy
π/2, ρyzρxzRy

π/2, ρyz, ρxyρyz, ρxzRy
3π/2 and ρyzρxzRy

3π/2.

It is a straightforward exercise to show that G(Ek) is isomorphic to D4 and it is generated
by ρxzRy

π/2 and ρxy.

There are k − 2 transitivity classes of quadrangles with 8 elements and one class with
4 elements. Concerning to triangles, one gets 2k− 3 transitivity classes, each one contains
8 elements. Hence Ek is (3k − 4) - isohedral.

The vertices surrounded by the cyclic sequence (γ, γ, α2, α2, α2, . . . ) are in the same
transitivity class. The vertices enclosed by (α2, γ, γ, α2, γ, γ) form k − 2 transitivity
classes, each one with 4 vertices. Related to the vertices (α1, α1, δ, δ) one obtain k − 1
transitivity classes, one of them has 4 vertices and k − 2 classes have 8 vertices. Fi-
nally, the vertices surrounded by (β, β, β, β) are in k − 1 distinct transitivity classes,
one of them has 2 vertices and the remaining classes have 4 vertices. And so, Ek is
1 + (k − 2) + (k − 1) + (k − 1) = (3k − 3) - isogonal.

G1, G2, G3 – Described in [3] and M – Described in [4]

The prototiles of Gi (i = 1, 2, 3) are a spherical rhombus with pairs of opposite angles
(α1, α2) = (2π/3, 2π/5) and a spherical triangle with angles (β, γ, δ) = (π/2, π/3, π/5).
3D representations are illustrated in Figure 3.6.

2
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1 1
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1
G M

3
G

Figure 3.6: f-tilings G1, G2, G3 and M.

The reflections ρxy, ρxz and ρyz are symmetries of G1. On the other hand, for a rhombus
Q in the first octant, the unique symmetry that leaves Q in the first octant is the identity
map. And so G(G1) is generated by ρxy, ρxz and ρyz . It follows that G(G1) is isomorphic
to D1 ×D1 ×D1.
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Now, there are 2 transitivity classes of rhombus and 7 transitivity classes of triangles.
Hence G1 is 9-isohedral. On the other hand, numbering the vertices of the first octant, we
conclude that G1 is 11-isogonal.

Consider now the tiling G2. Here we must observe that the cyclic sequence
(γ, γ, γ, γ, γ, γ) encloses exactly two vertices: (0, 0, 1) and (0, 0,−1). Similarly to the
case considered in Rk

α1α2
(with k = 3), it can be seen that G(G2) is isomorphic to D6,

generated by ρxyRz
π/3 and ρyz .

One gets two transitivity classes of rhombi. The identification is done in Figure 3.6
(rhombi labelled by 1 and 2). Representative elements of transitivity classes of triangles
are labelled by a, b, c and d, with 12 triangles each transitivity class. Therefore G(G2) is
6-isohedral. Concerning to vertices, it can be seen that G(G2) is 7-isogonal.

Finally, using similar procedures, we conclude that G(G3) is isomorphic to D10, gen-
erated by ρxyRz

π/5 and ρyz . The tiling M (Figure 3.6 on the right) is obtained by deleting
a pair of opposite sides of the prototile Q of G3 and preserving the angle folding relation.
Moreover, G(M) = G(G3). It follows that G3 is 5-isohedral and 6-isogonal while M is
4-isohedral and 5-isogonal.

U1, U2, U3 and U4 – Described in [3]

The angles of the prototiles Q and T of the tilings Ui (i = 1, 2, 3, 4) are (α1, α2) =
(2π/3, π/2) and (β, γ, γ) = (π/2, π/3, π/3). Bisecting the rhombus Q by α1 one gets two
triangles congruent to T . In Figure 3.7 3D representations are illustrated (we have chosen
these positions since they fit better our purposes).
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Figure 3.7: f-tilings U1, U2, U3 and U4.

The tiling U1 has exactly two vertices (v and v′) surrounded by the cyclic sequence
(γ, γ, γ, γ, γ, γ). Now, the symmetries of U1 that fix v (and v′) are the identity map and the
reflection ρyz . On the other hand, ρxz is a symmetry of U1 sending v into v′. By Lemma 2.1
G(U1) has exactly four elements. It follows immediately that G(U1) is isomorphic to the
Klein 4-group.

There are two transitivity classes of quadrangles (1 and 2) and four transitivity classes
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of triangles (a, b, c and d). Hence U1 is 6-isohedral. Besides, U1 is 6-isogonal.
Consider the tiling U2. The vertices of U2 surrounded by (α2, β, α2, β, ) are (0, 0, 1)

and (0, 0,−1); besides, the symmetries of U2 that fix these vertices are id, ρyz , ρxz and
Rz

π = ρyzρxz . Now, ρxyRz
π/2 is a symmetry of U2 mapping (0, 0, 1) into (0, 0,−1). It

follows that G(U2) is isomorphic to D4, generated by ρxyRz
π/2 and ρyz . U2 is 4-isohedral

(the identifications are made in Figure) and 3-isogonal.
Taking in account the type of vertices of the tiling U3, we observe that any symmetry

of U3 must fix (0, 0, 1). Among the rotations, with this property, we have the maps id,
Rz

π/2, Rz
π and Rz

3π/2; concerning to reflections we have the maps ρyz , ρxz , ρyzRz
π/2 and

ρyzRz
3π/2. Up to an isomorphism, G(U3) = D4. It is generated by Rz

π/2 and ρyz . U3 is
5-isogonal and 4-isohedral.

Finally, using similar procedures to the ones considered in the tilings of the form Rk
α

(with k = 2), we conclude that G(U4) is isomorphic to D1×D4. Besides, U4 is 2-isohedral
and 3-isogonal.

Mk
α, k ≥ 3 – Described in [3] and [4], Dk

β, k ≥ 1 – Described in [4] and T k, k ≥ 2
– Described in [4]

Figure 3.8 illustrates 3D representations of M4
α, D2

β and T 2, for some α and β. A
similar study to the one used in the tilings Rk

α1α2
shows that G(Mk

α2
) is isomorphic to

D2k. Mk
α2

is 3-isohedral and 4-isogonal.

T
2

M
4

a
D

2

b

Figure 3.8: f-tilings M4
α, D2

β and T 2.

The prototiles of Dk
β , are an isosceles triangle of angles (β, γ, γ), with γ = π/2, and a

spherical parallelogram of distinct pairs of opposite angles, (α1, α2), with α2 = π/2 and
α1 + kβ = π. Dk

β is composed of four quadrangles and 8k triangles. In Figure 3.8 a 3D
representation for k = 2 is illustrated, as mentioned before.

It is a straightforward exercise to show that any symmetry of Dk
β fixes (0, 0, 1) or

maps (0, 0, 1) into (0, 0,−1). G(Dk
β) contains exactly four symmetries fixing (0, 0, 1).

Namely, id, ρyz , ρxz and Rz
π . The spherical isometry φ = Rx

πRz
π/2, explicitly defined

by φ(x, y, z) = (−y,−x,−z), is a symmetry of Dk
β sending (0, 0, 1) into (0, 0,−1). By

Lemma 2.1 G(Dk
β) has 8 elements. Since φ4 = id, (ρyz)2 = id and ρyzφ = φ3ρyz , then
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G(Dk
β) is isomorphic to D4. Finally, there are k transitivity classes of triangles and one

transitivity class of quadrangles. And so Dk
β is k + 1-isohedral. Besides, Dk

β is k + 2-
isogonal (the vertices surrounded by (γ, γ, γ, γ)) are distributed by k transitivity classes).

Finally, we shall consider the tilings T k, k ≥ 2. In Figure 3.8 a 3D representation
for k = 2 is illustrated. T k has exactly four vertices (in bold) surrounded by the cyclic
sequence (α1, α1, δ, δ, . . . , δ) (δ appears 2k times). The unique symmetry of T k fixing one
of these vertices is the identity map. By Lemma 2.1 G(T k) contains at most 4 symmetries.
However, the isometries id, Rx

π , Ry
π and Rz

π = Rx
πRy

π are symmetries of T k. It follows
that G(T k) is isomorphic to the Klein 4-group. T k has 2k + 2 transitivity classes of
quadrangles (each one has two elements) and 2k transitivity classes of triangles (each one
with four elements). Therefore T k is 4k + 2-isohedral. Besides, T k is 2k + 2-isogonal.

We have proved the following result:

Proposition 3.1. The symmetry groups of the dihedral f-tilings by spherical triangles and
spherical parallelograms are dihedral groups or direct products of dihedral groups as in-
dicated in Table 3.1. The index of isogonality and isohedrality is also disclosed.

F-Tiling Symmetry Group isohedrality-classes isogonality-classes
Aα0 D8 2 1

Aα, α 6= α0 D4 2 1

Ik , k ≥ 2 D4 2k k

J k , k ≥ 2 D1 ×D1 2k+1 k+1
ERk

α, k ≥ 2 D1 ×D2k 2 2
∗Rk

∗∗, k ≥ 2 D2k 2 3

Sk , k ≥ 2 D1 ×D2k 2 4

Ek , k ≥ 3 D4 3k−4 3k−3

G1 D1 ×D1 ×D1 9 11

G2 D6 6 7

G3 D10 5 6

M D10 4 5

U1 D1 ×D1 6 6

U2 D4 4 3

U3 D4 4 5

U4 D1 ×D4 2 3

Mk
α2

, k ≥ 3 D2k 3 4

Dk
β , k ≥ 1 D4 k+1 k+2

T k , k ≥ 2 D1 ×D1 4k+2 2k+2

Table 3.1: Group of Symmetries and Transitivity Classes
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