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Abstract: The aim of this paper is to apply the concept of fuzzy soft sets olfesamigroup. Here the notion of fuzzy soft ideals over
al-semigroup has been introduced. The special union, intersectionraddap of fuzzy soft ideals over &-semigroup have been
defined and proved that these are also fuzzySefieals over thé -semigroup.
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1 Introduction In 2001 Maji et al. 4] introduced the notion of fuzzy
soft set as a combination of fuzzy set and soft &y
studied the union, intersection, compliment and De

Zadeh P7] in 1965, introduced the basic concept of fuzzy Morgan Law etc. for fuzzy soft sets. Ahmad and Kharal

sets, which became an imprtant part of research 1] improved the results of Maji et alAygunoglu and

Mathematics. Kuroki10,11,12] presented the notion of Aygun [4] extended Aktas and Cagma@] [soft groups

fuzzy ideals and fuzzy bi-ideals in semigroups. He concept for fuzzy soft groups. Yan@ql introduced the

characterized several classes of semigroups in the termsotion of fuzzy soft semigroups and fuzzy soft ideals.
of fuzzy ideals. Recently, Bora et al 5] defined some operations of fuzzy
Sen and Saha2]l] in 1986, introduced the notion of soft sets and explained them with examples.

I -semigroup. They formed a relation between regular  The purpose of this paper is to extend the concepts of

" -semigroup and -group (see alsolp,17]) Dutta and  fuzzy soft sets to the theory d@f-semigroups. Here, the

Adhikari [8] introduced prime ideals i -semigroups. notion of fuzzy soft left (right) ideals, fuzzy soft interio

The concept of bi-ideals i -semigroups was presented and fuzzy soft bi-ideals over &-semigroup have been

by Chinram and Jirojkulq]. Shabir and Ali R4], studied  introduced. Also the characterization and algebraic

prime bi-ideals in™ -semigroups. properties of these ideals have been investigated.

Sardar et al.19,20] gave the concept of fuzzy prime,
semiprime ideals and also fuzzy ideal extension in
I'.-jsemigroups. They also _introduced the _notions of fuzzy2 Preliminarie
bi-ideals and fuzzy quasi-ideals iR-semigroups 20].
William et al. [25] also discussed fuzzy Wi-ideals in
I -semigroups. Faisal et al. 9] discussed the Let S= {xyz..} and I' = {a,B,y...} be two
(€, € vak)-fuzzy I -ideals ofl -semigroups. non-empty sets. Thes is called al -semigroup if it
Molodtsov [L5] initiated the concept of soft set theory Satisfies
in 1999 and used this concept for the modeling of () XyWW€S
uncertainty. Maji et al. 13] defined some binary (i) (xBy)yz=xB(yyz), for all x,y,z€ SandB,y e I.
operations on soft sets, which were later corrected by Ali A non-empty subseA of al -semigroupSis called a
et al. [3] Shabir and Ali R3] introduced the notion of soft I -subsemigroup obif A" AC A. A left (right) I -ideal of
semigroups. The soft ternary semigroups were studied by I -semigroupS is a non-empty subsef of Ssuch that
Shabir and Ahmad22]. Changphas and Thongkar][ STAC A (ArSC A) and a two sided -ideal or simply a
gave the notion of soff -semigroups. [ -ideal is that which is both a left and a rightideal of
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S A I -subsemigrouB of al” -semigroupSis called a bi-
I -ideal of Sif B S’ B C B. A ' -subsemigroup of al -
semigrougs is called an interiof -ideal of Sif STAIFSC
A. An ideal | of a I'-semigroupS is called a primd™ -
ideal if for any idealsA andB of S, A B C | implies that
ACI1 orBCI andis called semiprime-ideal if Ar AC |
implies thatA C I. An elementx of a I -semigroupS is
called regular if there exist an element Sanda,B €I
such thatx = xasBx andSis called a regulaf -semigroup
if every element oSis regular.

A fuzzy setu in a non-empty seX is a function u :
X — [0,1] where the functiongy : X — [0, 1] denotes the
degree of membership afe X in [0,1]. The compliment

of u, denoted byu is the fuzzy set inX given by u =
1— p(x) for all x € X. The union and intersection of fuzzy
sets is defined as

HUv = maxu(x),v(x)}, forallx e X
andunv = min{u(x),v(x)},forall x € X.

For anyt € [0,1], Al = {x € X | u(x) >t }. This is
called the a — level cutof A.

Definition 1.[15] Let U be an initial universe set and E
be the set of parameters. LefP)denotes the power set of
U. A pair (F,E) is called a soft set over Uvhere F is a
mapping given by, FE — P(U).

Definition 2.[14] Let U be an initial universe set and E

be the set of parameters. Let A be a non empty subset
E and.Z(U) be the collection of all fuzzy subsets of U &

then the pair fA,A) is called a fuzzy soft set (FSS) over U
wheref is a mapping given byf, : A— .7 (U).

For eacta € A, we denotef (a) by f, , which is a fuzzy
set ovelJ.

Definition 3.[14] For any two fuzzy soft sets (FS$)A,7 A)
and (g,B) over a common universe,We say that f,A)
is a fuzzy soft subset ¢§,B) if AC B and f(a) C §(a),
for all a € A. We write this ag f,A) C (g, B).

Here (§,B) is called fuzzy soft supersetf,A) and
(,B) over a common universd are said to be fuzzy

soft equal if,(f,A) € (g,B) and(g,B) C (f,A).

Definition 4.[14] Let (f,A) and (g,B) be two fuzzy soft
sets over a common universe U tHéf, A) AND (g,B)",
denoted by(f,A) A (g,B) is defined as(f A)A(G,B) =

(h,C), where C= Ax B andh(a,b) = f(a) Ng(b), for all
(a,b)eC=AxB.

Definition 5.[14] Let (f,A) and (g,B) be two fuzzy soft
sets over a common universe U tHer,A) OR (g,B)",
denoted by(f,A) V (§,B) is defined agf,A) V (§,B) =
(k,C), where C= A x B andk(a,b) = f(a) Ug(b), for all
(a,b) eC=AxB.

(SP C) over U, where C= AN B andh( )

Definition 6.[14] Let (f,A) and (g,B) be two fuzzy soft
sets over a common universe U then their union is a fuzzy
soft set over U denoted kyf,A) U (g,B) and is defined

as(f,A) U (@,B) = (h,C), where C= AUB and

N f(c) ifccA—B

h(c) = g(c) fceB_A -forallceC.
max{ (c),d(c)} ifcec ANB

Definition 7.[14] Let (f,A) and (g,B) be two fuzzy soft
sets over a common universe U then their intersection is
a fuzzy soft set over U denoted by A) 1 (g,B) and is

defined ag f,A) N (g,B) = (h,C), where C= AUB and

R f(c) ifce A—B
h(c) = g(c) fceB_A -forallceC.
min{ f(c),d(c)} ifce ANB

Except above definitions of union and intersection of
fuzzy soft sets , we may some times use another
definitions of union and intersection given as follows.

Definition 8.Let (f,A) and (g,B) be two fuzzy soft sets
over a common universe U such thalnB # ¢. The bi-

union of (f,A) and (g, B) is defined to be a fuzzy soft set
( )ug(c) for
(9,B).

Definition 9.Let (f,A) and (g,B) be two fuzzy soft sets
over a common universe U such thanB # ¢. The bi-

intersection of (f,A) and (g,B) is defined to be a fuzzy
soft set(h C) over U, where C= ANB andh( )= f(c )
g(c) for all c € C. This is denoted bjh,C) = (f,A) 1
(G.B).

If {(fi,A):i €1} be a collection of fuzzy soft sets over
a common universe such that_QIA| # @ then similarly,
|

all c € C. This is denoted byh C)=(f,A 0

we can defineﬂI (fi,A) andﬁI (fi,A).
le le
3 Fuzzy soft ideals over Gamma semigroup

In what follows, letS denotes al -semigroup unless
otherwise specified.

Definition 10.Let (U,A)be a fuzzy soft set over a
I-semigroup S then (U,A) is called a fuzzy soft
I -subsemigroup over S if

Ha(Xyy) = min{t,(X), Ha(y)}

forallae A x,y,€ Sandyec .
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Definition 11.Let ({,A) be a fuzzy soft set over a
[ -semigroup Sthen ([1,A) is called a fuzzy soft left
(right) I" -ideal over S if

Ha(Xvy) > Ha(y) (Ha(Xyy) > Ha(X) )

forallace A, x,ye Sandye .

Definition 12.A fuzzy soft seffi,A) over al" -semigroup
S is called a fuzzy soft-ideal over S if and only if it is
both a fuzzy soft left and a fuzzy soft righideal over S.
Equivalently, we can define as,

Definition 13.A fuzzy soft sefti,A) over al” -semigroup S
is called a fuzzy soft -ideal over S if

)}

It is clear that any fuzzy soft left (right) -ideal overS
is a fuzzy soft” -subsemigroup dbbut the converse is not
true.

Ha(Xyy) = max{pia(X), Ha

Example lLet S = {a,b,c}, = {y} then S is a
I"-semigroup under the operation defined in the table,

y a b c
a a ¢ ¢
b ¢ b c
cC ¢C ¢ ¢

LetE = {u,v,w}, A= {u,w} then(li,A) is a fuzzy
soft set defined ag, = {(a,0.1),(b,0.3),(c,0.5)}, u,, =
{(a,0.2),(b,0.4),(c,0.8)}. It is easy to verify that[i,A)
is a fuzzy soft left and a fuzzy soft rigifit-ideal overS.
Hence(l1,A) is a fuzzy soft -ideal overS,

LetB = {v} andA, = {(a,0.1),(b,0.8),(c,0.3)} then
(A,B) is a fuzzy softl -subsemigroup but it is not a soft
[ -ideal overS.

Definition 14.A fuzzy soff” -subsemigrougfi,A) of S is
called a fuzzy soft interiof -ideal over S if

Ha(XazBy) > ug(z) forall, x,y,z €S a,B €l and ac A

Definition 15A fuzzy soff”-subsemigrougji,A) of S is
called a fuzzy soff -bi-ideal over S if
Ha(xazBy) > min{u,(X), Ua(y)} forall, x,y,ze S a,B € and ac A.

Lemma 1A fuzzy soft sefii,A) over al”-semigroup S is
a fuzzy soft ideal over S if and only fi(a)! = i, is an
ideal of S for all te [0,1] and ac A.

ProofStraightforward.

Lemma2Llet (i,A) be a fuzzy soft ideal over a
I"-semigroup S . For any non-null, B A, (i,B) is also a
fuzzy soft ideal over S.

Proof Straightforward.

Theorem 1Let (fi,A) and (V,B) be two fuzzy soft ideals
(left , right) over al -semigroup SThen([i,A) A(V,B)
and ([1,A)1 (V,B) are also fuzzy soft ideals (left, right)
over S

ProofLet (i,A) and (V,B) be two fuzzy soft ideals (left
, right) over arl -semigroupS then as definedéfi,A)
A(V,B) = (A,C), whereC = Ax B andA (a,b) = fi(a)N
G(b), for all (a,b) e C=AxB. As (li,A) and (v,B) are
fuzzy soft ideals (left , right) ove$ then for(a,b) € C =
Ax B, we have

A@b)(xyy) = A@ap(vy) = (Ha N Ve)(Xyy) =

min{ t4(Xyy), Vb(Xyy) }
()}, max{vp(x), vo(y)}}

= min{max{ 5 (X), Ha(y
= max{min{t5(X), vo(X) },min{ La(y), Vo (y) }

= maxX{(Ha N Vp) (X)), (MaNVb)(¥))}

= max{/l ab)(X); Aa oY)}

= max{A(a,b)(x),A(a,b)(y)}.for all xy € S ye T
and (a,b) € C = Ax B. Which implies that (1,A)
A(V,B) = (A,C) is a fuzzy soft ideal (left , right) oves.

Similarly, we can prove thatfi,A)r1(V,B) is also
fuzzy soft ideal (left, right) oves.

Theorem 2Let (f,A) and (V,B) be two fuzzy soft
bi-ideals (interior) over ar -semigroup S therfii,A)
A(V,B) and (11,A)1 (v,B) are also fuzzy soft bi-ideals
(interior) over S

ProofAs (H,A) and (U,B) are fuzzy soft bi-ideals
(interior) overS then they are also fuzzy soft ideals over
S and by Theoreml, (fi,A) A(V,B) and (ii,A)1 (V,B)
are also fuzzy soft ideals and herfcesubsemigroup o$.

since, (fi,A) A(V,B) = (A,C), whereC = Ax B and

A(a,b) = fi(a) NV(b), for all (a,b) € C=AxB. Let
X.y,Z € S a,p € r then
A(a,b)(xazBy) = A (ap) (XaZBy) = (Ha N Vb) (xaZBY) =

min{u,(xazBy), vo(xazBy)}
> min{min{ 4 (x), Ha(Y) }, Min{vp(X), vo(y)
= min{min{115(x), vu(X) }, min{t1(y), vb(y)
= min{(Ha N Vp)(X)), (HaNVb)(¥))}
_min{/\ (ab)(X), A@b)(y)}
= min{A(a,b)(x), A (a,b)(y)}-
Hence([i,A) A(V,B) = ()\ C) is an fuzzy soft bi-ideal
(interior) overS.
Similarly, we can prove thatfi,A)i(V,B) is also
fuzzy soft bi-ideal (interior) oves.

}
1

Theorem 3Let ([1,A) and (V,B) be two fuzzy soft ideals
(left, right) over al-semigroup S thefy,A)V(v,B) and
(1, A)T(v,B) are also fuzzy soft ideals (left, right) over S

ProoflLet (11,A) and (V,B) be two fuzzy soft ideals (left ,

right) over arl -semigroupS Then (f,A)V(V,B) is
defined agfi,A)V(V,B) = (,C), whereC = A x B and
d(a,b) = fi(a) UV(b), for all (a,b) € C=AxB. As
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(4,A) and (v, B) are fuzzy soft ideals (left , right) oveés;
so we have for alk,y,ze Sandye ',
o(a,b)(xyy) = O@p(Xyy) = (Ha U vp)(Xyy) =
max{ L1, (Xyy), Vo(Xyy) }
Ha(y)}, max{vip(x), Vb(y) %

> max{max{ U (X), }
= max{max{H4(X), Vp(X) }, max{ U, (¥), Vb(Y) }

= max{ (K, U Vp)(X), (HaUVb)(Y)}

=max{S(ap)(X);Sap)(¥)}

= max{d(a,b)(x), 5(a,b)(y)}.

Which implies that(fi,A)V(V,B) =
soft ideals (left , right) oves.

Similarly, we can prove thatti,A)(J(V,B) is also a
fuzzy soft ideal (left , right) oves.

o~

(6,C) is a fuzzy

Theorem 4Let ({,A) and
bi-ideals (interior) over
(ILA)V(V.B) and (1,A)D(0
bi-ideal (interior) over S

(v,B) be two fuzzy soft
a -semigroup S then
,B) are also fuzzy soft

ProofStraightforward.

Theorem 5Let ([1,A) and (V,B) be two fuzzy soft ideals
(left, right) over al -semigroup S thefyi, A)"\(v,B) and
(1, A)U(V, B) are also fuzzy soft ideals (left, right) over S

ProofLet (fi,A) and(V,B) be two fuzzy soft ideals (left,

right) over al”-semigroug then(fi,A)7(V,B) = (A,C),
whereC = AUB and
R H(c) ifce A-B
Alc) =< V(o) ifceB—A forallce
min{fi(c),v(c)} ifce ANB
C.

Letce Candx,y € Sandy € I then we have,
(i) If ce A—B, then

AQOMY) = RO = Hlwy) >
max{ H(X), He(y) = max{i(c)(x ) u(e)(y)}

= max{A (c)(x),A(c)(y)}

(Au) If ce B—A, then

AMyy) = VO = velxyy) >
max{ve(x), Ve(y)} = max{v(c)(x),v(c)(y)}

= max{A (c)(x),A (c)(y)}
~ (iii) If c € N B, then
A(c) =min{fi(c),v(c)} = p(c)NV(c).

We can easily verify that

A(©)(xyy) = max{A () (x), A (c)(y)}-
Hence for alc € C andx Y€ Sandy e I ,we can write

A(0)(xyy) > max{A (c) (), )\(C)(y)}-A
Which shows tha{fi,A)A\(V,B) = (A,C
soft ideal (left, right) ove®.
Similarly, we can prove thatfi,A)J(V,B) is also a
fuzzy soft ideal (left, right) oves.

) is a fuzzy

Theorem 6Let ([i,A) and
bi-ideals (interior) over
(H.AN(V,B) and (F,A)U(V
bi-ideals (interior) over S

(V,B) be two fuzzy soft
a [-semigroup S then
,B) are also fuzzy soft

Proof Straightforward.

Theorem 7Let A(S E), be the collection of all fuzzy soft
ideals (left, right, interior, bi) over & -semigroup SThen
(A(SE),U,M) is a complete distributive lattice under the
relation C.

ProofLet (Li,A) and (V,B) be two fuzzy soft ideals (left ,
right, interior, bi) over a I-semigroup S that is
(ﬁ A), (v B) € A(SE) then as, we proved abave
(4,A)U(V,B) and(f1,A)11(V, B) are fuzzy soft ideals (left
, _ right, interior, bi) over § implies that
(1, A)O(v, ),(ﬁ,A)ﬁ(G, B) € A(SE). Obviously, we
can say tha(ﬁ,A)O(V,B) is the least upper bound and
(4,A)1(v,B) is the greatest lower bound of the subclass
{(H,A),(v,B)}. Hence for any arbitrary collection of
A(SE), there exist a least upper bound and a greatest
lower bound, which implies thaf\(S E) is a complete
lattice.

Now, for (fi,A), (v,B) and(n,C) € A(SE), we have
(BLA)F((V,B)0(7,C)) = (8,AN(BUC)).

Also ((1,A)1(V,B) U ((1,A)1(A,C)) = (@,(ANB)U(ANC))
= (@,AN(BUC))

Easily, we can show that for arge AN (BUC),S(Z) =
®(z), which implies that

(B,AA((V,B)T(A,C)) = (1. A)TI(V,B) U ((H,A(7.C))
HenceA (S E) is a complete distributive lattice.

Theorem 8Let A(SE), be the collection of all fuzzy soft
ideals (left, right, interior, bi) over & -semigroup SThen
(A(SE),,N) is a complete distributive lattice under the

relation C.
ProofStraightforward.

Now, letD C E be a specific family of parameters. let
the set of fuzzy soft ideals over la-semigroupS with
parameter setD is denoted by Ap(S), where
Ap(S) ={(H,A) EA(SE) | 1:D — P(FS(S)}.

Lemma3Let ({,A) and (V,B) € Ap(S),
(U,A)U(V,B) € Ap(S) and (1, A)T1(V,B) € Ap(S).

then

ProofStraightforward.

Lemma4let (f,A) and (V,B) €
)

v then
(0,A)N(V,B) € Ap(S) and (I1,A)T(V,B) €

AD(S)7
Ao(S).

ProofStraightforward.

Theorem 9(Ap(S),11,0) is a sublattice of A(S E), 1, U)
and (4p(9),0,N) is a sublattice of A(S E),J,N).

Proof Straightfoeward.

Definition 16.Let ({i,A) and (V,B) be two fuzzy soft sets
over al -semigroup SThen their product is defined as
(4,A)o(V,B)= (Urv,C), where C= AUB and
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(Arv)(z)(s) ==
fi(2)(s) if zeA-B
V(2)(s) if zeB-A
sup min{fi(z)(m),v(z)(n)}, if z € ANB
forynall seC.

Theorem 10Let (11, A) and (V, B) be two fuzzy soft ideals
(left , right, interior, bi) over al”-semigroup S then their
product(fi,A)o (V,B) is also a fuzzy soft ideal (left, right,
interior, bi) over S

ProoflLet (1,A) and(V, B) be two fuzzy soft ideals over a
[-semigroupS. Letze C=AUB, x,y€ Sandy . We
have,
(i) ze A—B, then
(HIV)(2)(xyy) = [(2)(xvy)
> max{ i1(2) (x), i (z)(
= max{(Urv)(2)(x),
(i) ze B—A, same as proved in
(iv) ze ANB, then

(ﬁ”ﬁ)(z)(x)=ximmin{(ﬁ)( 2)(m), v(z)(n)}
sup - min{([)(2)(m),V(2)(n)}

Xay=upway

< sup {min{(i1)(2)(m),V(z)(w)}}

Xay=uyw
(Brv)(2)(xay)
= (Urv)(2)(x) <

show that,
(HrV)(2)(xay).

(HrV)(2)(y) <
(HrV)(2)(xay) >

n
(BrY)@)y)}-
0}

<

(Urv)(z)(xay). Similarly, we can

Which implies that,

max{ (UIv)(2)(x), (B v)(2)(y)}-
Hence,(li,A) o (V,B) is a fuzzy soft ideal oves.

Theorem 11Let S be a -semigroup with identity e and
Q(S E) be the collection of all fuzzy soft ideals over S with
the property thatfi,A) € Q(S E) if and only if, i(z)(e) =
1then(Q(SE),o,) is a complete lattice undet.

ProofLet ({,A) and (V,B) € Q(SE) then
H(z)(e) = V(2)(e) = 1. As (11,A) and(V, B) be fuzzy soft
ideals overS then so is(fi,A)1(V,B) and (1,A) o (V,B)
by Theoreml and T heorem10. Also (L NV)(z)(e) = 1
and (1l v)(z)(e) = 1. Which implies that(f1, A)Ti(V, B)
and ([,A) o (V,B) € Q(SE). Note that(fi,A)T1(V,B) is
the greatest lower bound of the clag§i,A),(V,B)}.
Now for least upper bound, lete AUB andx € Sthen,
we have

i) If ze A-B
EV)@00=A@K )

(i) If ze B—Athen(urv)(z)(x) =v(z)(x).

(iii) If ze ANB, then akis identity inS so

(B9)(@() = sup{min{fi(2)(x,9(2)(@)}).

> min{{i(2)(x),v(2)(e)}
= H(2)(x), sincev(z)(e) = 1.

then by definition,

Which implies that(f, A) C(H,A) o (V,B). Similarly,

we can show that(V,B)C(fi,A) o (V,B) implies that
(4,A) o (V,B) is an upper bound of(d,A), (V,B)}. Now,

S
let (p,%) € Q(SE) such that (ﬁ,A)i( 5) and
(v,B)C(p
Then(
(H,A) o (
{(1,A),(
Q(SE).

,2).

H,A)o(V.B)C (p.X)o(p,X) C (P,2). Hence
) is the least upper bound of the class

B)}, which is an orbitrary subclass of

V,B
V,B
Hence( (SE),o,MN) is a complete lattice.
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