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Abstract: The aim of this paper is to apply the concept of fuzzy soft sets over aΓ -semigroup. Here the notion of fuzzy soft ideals over
a Γ -semigroup has been introduced. The special union, intersection and product of fuzzy soft ideals over aΓ -semigroup have been
defined and proved that these are also fuzzy softΓ -ideals over theΓ -semigroup.
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1 Introduction

Zadeh [27] in 1965, introduced the basic concept of fuzzy
sets, which became an imprtant part of research in
Mathematics. Kuroki [10,11,12] presented the notion of
fuzzy ideals and fuzzy bi-ideals in semigroups. He
characterized several classes of semigroups in the terms
of fuzzy ideals.

Sen and Saha [21] in 1986, introduced the notion of
Γ -semigroup. They formed a relation between regular
Γ -semigroup andΓ -group (see also [16,17]) Dutta and
Adhikari [8] introduced prime ideals inΓ -semigroups.
The concept of bi-ideals inΓ -semigroups was presented
by Chinram and Jirojkul [7]. Shabir and Ali [24], studied
prime bi-ideals inΓ -semigroups.

Sardar et al. [19,20] gave the concept of fuzzy prime,
semiprime ideals and also fuzzy ideal extension in
Γ -semigroups. They also introduced the notions of fuzzy
bi-ideals and fuzzy quasi-ideals inΓ -semigroups [20].
William et al. [25] also discussed fuzzy bi-Γ -ideals in
Γ -semigroups. Faisal et al. [9], discussed the
(∈,∈ ∨qk)-fuzzyΓ -ideals ofΓ -semigroups.

Molodtsov [15] initiated the concept of soft set theory
in 1999 and used this concept for the modeling of
uncertainty. Maji et al. [13] defined some binary
operations on soft sets, which were later corrected by Ali
et al. [3] Shabir and Ali [23] introduced the notion of soft
semigroups. The soft ternary semigroups were studied by
Shabir and Ahmad [22]. Changphas and Thongkam [6]
gave the notion of softΓ -semigroups.

In 2001 Maji et al. [14] introduced the notion of fuzzy
soft set as a combination of fuzzy set and soft set. They
studied the union, intersection, compliment and De
Morgan Law etc. for fuzzy soft sets. Ahmad and Kharal
[1] improved the results of Maji et al. Aygunoglu and
Aygun [4] extended Aktas and Cagman [2] soft groups
concept for fuzzy soft groups. Yang [26] introduced the
notion of fuzzy soft semigroups and fuzzy soft ideals.
Recently, Bora et al. [5] defined some operations of fuzzy
soft sets and explained them with examples.

The purpose of this paper is to extend the concepts of
fuzzy soft sets to the theory ofΓ -semigroups. Here, the
notion of fuzzy soft left (right) ideals, fuzzy soft interior
and fuzzy soft bi-ideals over aΓ -semigroup have been
introduced. Also the characterization and algebraic
properties of these ideals have been investigated.

2 Preliminarie

Let S = {x,y,z, ...} and Γ = {α ,β ,γ , ...} be two
non-empty sets. ThenS is called aΓ -semigroup if it
satisfies

(i) xγy∈ S
(ii) (xβy)γz= xβ (yγz), for all x,y,z∈ Sandβ ,γ ∈ Γ .

A non-empty subsetA of a Γ -semigroupS is called a
Γ -subsemigroup ofS if AΓ A⊆ A. A left (right) Γ -idealof
a Γ -semigroupS is a non-empty subsetA of S such that
SΓ A⊆ A (AΓ S⊆ A) and a two sidedΓ -ideal or simply a
Γ -ideal is that which is both a left and a rightΓ -ideal of
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S. A Γ -subsemigroupB of aΓ -semigroupS is called a bi-
Γ -ideal ofS if BΓ SΓ B⊆ B. A Γ -subsemigroupA of aΓ -
semigroupS is called an interiorΓ -ideal ofS if SΓ AΓ S⊆
A. An ideal I of a Γ -semigroupS is called a primeΓ -
ideal if for any idealsA andB of S, AΓ B⊆ I implies that
A⊆ I or B⊆ I and is called semiprimeΓ -ideal ifAΓ A⊆ I
implies thatA ⊆ I . An elementx of a Γ -semigroupS is
called regular if there exist an elements∈ Sandα,β ∈ Γ
such thatx= xαsβx andSis called a regularΓ -semigroup
if every element ofS is regular.

A fuzzy setµ in a non-empty setX is a function, µ :
X → [0,1] where the functions,µ : X → [0,1] denotes the
degree of membership ofx∈ X in [0,1] . The compliment

of µ, denoted by
−
µ is the fuzzy set inX given by

−
µ =

1−µ(x) for all x∈ X. The union and intersection of fuzzy
sets is defined as

µ ∪ν = max{µ(x),ν(x)}, for all x∈ X

andµ ∩ν = min{µ(x),ν(x)}, for all x∈ X.

For anyt ∈ [0,1] , At = {x ∈ X | µ(x) ≥ t }. This is
called the at − level cutof A.

Definition 1.[15] Let U be an initial universe set and E
be the set of parameters. Let P(U)denotes the power set of
U. A pair (F,E) is called a soft set over U, where F is a
mapping given by, F: E → P(U).

Definition 2.[14] Let U be an initial universe set and E
be the set of parameters. Let A be a non empty subset of
E andF (U) be the collection of all fuzzy subsets of U
then the pair( f̂ ,A) is called a fuzzy soft set (FSS) over U,

where f̂ is a mapping given by,̂f : A→ F (U).

For eacha∈A, we denotêf (a) by fa , which is a fuzzy
set overU.

Definition 3.[14] For any two fuzzy soft sets (FSS),( f̂ ,A)
and (ĝ,B) over a common universe U, we say that( f̂ ,A)
is a fuzzy soft subset of(ĝ,B) if A ⊆ B and f̂ (a) ⊆ ĝ(a),
for all a ∈ A. We write this as( f̂ ,A) ⊆̂ (ĝ,B).

Here (ĝ,B) is called fuzzy soft superset.( f̂ ,A) and
(ĝ,B) over a common universeU are said to be fuzzy
soft equal if,( f̂ ,A) ⊆̂ (ĝ,B) and(ĝ,B) ⊆̂ ( f̂ ,A).

Definition 4.[14] Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft
sets over a common universe U then”( f̂ ,A) AND (ĝ,B)” ,
denoted by( f̂ ,A) ∧̂ (ĝ,B) is defined as( f̂ ,A)∧̂(ĝ,B) =

(ĥ,C), where C= A×B andĥ(a,b) = f̂ (a)∩ ĝ(b), for all
(a,b) ∈C= A×B.

Definition 5.[14] Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft
sets over a common universe U then”( f̂ ,A) OR (ĝ,B)” ,
denoted by( f̂ ,A) ∨̂ (ĝ,B) is defined as( f̂ ,A) ∨̂ (ĝ,B) =
(k̂,C), where C= A×B andk̂(a,b) = f̂ (a)∪ ĝ(b), for all
(a,b) ∈C= A×B.

Definition 6.[14] Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft
sets over a common universe U then their union is a fuzzy
soft set over U denoted by( f̂ ,A) ∪̂ (ĝ,B) and is defined
as( f̂ ,A) ∪̂ (ĝ,B) = (ĥ,C), where C= A∪B and

ĥ(c)=





f̂ (c)
ĝ(c)

max{ f̂ (c), ĝ(c)}

if c ∈ A−B
If c ∈ B−A
if c ∈ A∩B

, for all c∈C.

Definition 7.[14] Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft
sets over a common universe U then their intersection is
a fuzzy soft set over U denoted by( f̂ ,A) ∩̂ (ĝ,B) and is
defined as( f̂ ,A) ∩̂ (ĝ,B) = (ĥ,C), where C= A∪B and

ĥ(c)=





f̂ (c)
ĝ(c)

min{ f̂ (c), ĝ(c)}

if c ∈ A−B
If c ∈ B−A
if c ∈ A∩B

, for all c∈C.

Except above definitions of union and intersection of
fuzzy soft sets , we may some times use another
definitions of union and intersection given as follows.

Definition 8.Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft sets
over a common universe U such that A∩B 6= φ . The bi-
union of ( f̂ ,A) and (ĝ,B) is defined to be a fuzzy soft set
(ĥ,C) over U, where C= A∩B andĥ(c) = f̂ (c)∪ ĝ(c) for
all c ∈C. This is denoted by(ĥ,C) = ( f̂ ,A) ⊔̂ (ĝ,B).

Definition 9.Let ( f̂ ,A) and (ĝ,B) be two fuzzy soft sets
over a common universe U such that A∩B 6= φ . The bi-
intersection of ( f̂ ,A) and (ĝ,B) is defined to be a fuzzy
soft set(ĥ,C) over U, where C= A∩B andĥ(c) = f̂ (c)∩
ĝ(c) for all c ∈ C. This is denoted by(ĥ,C) = ( f̂ ,A) ⊓̂
(ĝ,B).

If {( f̂i ,Ai) : i ∈ I} be a collection of fuzzy soft sets over
a common universeU such that ∩

i∈I
Ai 6= φ then similarly,

we can definê⊔
i∈I

( f̂i ,Ai) and ⊓̂
i∈I

( f̂i ,Ai).

3 Fuzzy soft ideals over Gamma semigroup

In what follows, let S denotes aΓ -semigroup unless
otherwise specified.

Definition 10.Let (µ̂,A)be a fuzzy soft set over a
Γ -semigroup S, then (µ̂,A) is called a fuzzy soft
Γ -subsemigroup over S if

µa(xγy)≥ min{µa(x),µa(y)}

for all a∈ A, x,y,∈ Sandγ ∈ Γ .
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Definition 11.Let (µ̂,A) be a fuzzy soft set over a
Γ -semigroup S, then (µ̂,A) is called a fuzzy soft left
(right) Γ -ideal over S if

µa(xγy)≥ µa(y) (µa(xγy)≥ µa(x) )

for all a∈ A, x,y∈ Sandγ ∈ Γ .

Definition 12.A fuzzy soft set(µ̂,A) over aΓ -semigroup
S is called a fuzzy softΓ -ideal over S if and only if it is
both a fuzzy soft left and a fuzzy soft rightΓ -ideal over S.
Equivalently, we can define as,

Definition 13.A fuzzy soft set(µ̂,A) over aΓ -semigroup S
is called a fuzzy softΓ -ideal over S if

µa(xγy)≥ max{µa(x),µa(y)}.

It is clear that any fuzzy soft left (right)Γ -ideal overS
is a fuzzy softΓ -subsemigroup ofSbut the converse is not
true.

Example 1.Let S = {a,b,c},Γ = {γ} then S is a
Γ -semigroup under the operation defined in the table,

γ a b c
a a c c
b c b c
c c c c

Let E = {u ,v ,w}, A = {u,w} then(µ̂,A) is a fuzzy
soft set defined as,µu = {(a,0.1),(b,0.3),(c,0.5)}, µw =
{(a,0.2),(b,0.4),(c,0.8)}. It is easy to verify that(µ̂,A)
is a fuzzy soft left and a fuzzy soft rightΓ -ideal overS.
Hence(µ̂,A) is a fuzzy softΓ -ideal overS.

Let B= {v} andλ v = {(a,0.1),(b,0.8),(c,0.3)} then
(λ̂ ,B) is a fuzzy softΓ -subsemigroup but it is not a soft
Γ -ideal overS.

Definition 14.A fuzzy softΓ -subsemigroup(µ̂,A) of S is
called a fuzzy soft interiorΓ -ideal over S if

µa(xαzβy)≥ µa(z) for all , x,y,z,∈S, α,β ∈Γ and a∈A.

Definition 15.A fuzzy softΓ -subsemigroup(µ̂,A) of S is
called a fuzzy softΓ -bi-ideal over S if

µa(xαzβy)≥ min{µa(x),µa(y)} for all , x,y,z∈ S, α,β ∈ Γ and a∈ A.

Lemma 1.A fuzzy soft set(µ̂,A) over aΓ -semigroup S is
a fuzzy soft ideal over S if and only if̂µ(a)t = µ t

a is an
ideal of S for all t∈ [0,1] and a∈ A.

Proof.Straightforward.

Lemma 2.Let (µ̂,A) be a fuzzy soft ideal over a
Γ -semigroup S . For any non-null, B⊂ A, (µ̂,B) is also a
fuzzy soft ideal over S.

Proof.Straightforward.

Theorem 1.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals
(left , right) over aΓ -semigroup S. Then(µ̂,A) ∧̂(ν̂ ,B)
and (µ̂,A)⊓̂ (ν̂ ,B) are also fuzzy soft ideals (left, right)
over S.

Proof.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals (left
, right) over aΓ -semigroupS then as definede(µ̂,A)
∧̂(ν̂ ,B) = (λ̂ ,C), whereC = A×B andλ̂ (a,b) = µ̂(a)∩
ν̂(b), for all (a,b) ∈C = A×B. As (µ̂,A) and (ν̂ ,B) are
fuzzy soft ideals (left , right) overS then for(a,b) ∈C =
A×B , we have

λ̂ (a,b)(xγy) = λ (a,b)(xγy) = (µa ∩ νb)(xγy) =
min{µa(xγy),νb(xγy)}

≥ min{max{µa(x),µa(y)},max{νb(x),νb(y)}}
= max{min{µa(x),νb(x)},min{µa(y),νb(y)}}
= max{(µa∩νb)(x)),(µa∩νb)(y))}
= max{λ (a,b)(x),λ (a,b)(y)}

= max{λ̂ (a,b)(x), λ̂ (a,b)(y)},for all x,y ∈ S, γ ∈ Γ
and (a,b) ∈ C = A × B. Which implies that (µ̂,A)
∧̂(ν̂ ,B) = (λ̂ ,C) is a fuzzy soft ideal (left , right) overS.

Similarly, we can prove that(µ̂,A)⊓̂(ν̂ ,B) is also
fuzzy soft ideal (left, right) overS.

Theorem 2.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft
bi-ideals (interior) over aΓ -semigroup S then(µ̂,A)
∧̂(ν̂ ,B) and (µ̂,A)⊓̂ (ν̂ ,B) are also fuzzy soft bi-ideals
(interior) over S.

Proof.As (µ̂,A) and (υ̂ ,B) are fuzzy soft bi-ideals
(interior) overS then they are also fuzzy soft ideals over
S and byTheorem1, (µ̂,A) ∧̂(ν̂ ,B) and (µ̂,A)⊓̂ (ν̂ ,B)
are also fuzzy soft ideals and henceΓ -subsemigroup ofS.
Since, (µ̂,A) ∧̂(ν̂ ,B) = (λ̂ ,C), whereC = A× B and
λ̂ (a,b) = µ̂(a) ∩ ν̂(b), for all (a,b) ∈ C = A× B. Let
x,y,z ∈ S, α ,β ∈ Γ then
λ̂ (a,b)(xαzβy) = λ (a,b)(xαzβy) = (µa ∩ νb)(xαzβy) =
min{µa(xαzβy),νb(xαzβy)}

≥ min{min{µa(x),µa(y)},min{νb(x),νb(y)}
= min{min{µa(x),νb(x)},min{µa(y),νb(y)}}
= min{(µa∩νb)(x)),(µa∩νb)(y))}
= min{λ (a,b)(x),λ (a,b)(y)}

= min{λ̂ (a,b)(x), λ̂ (a,b)(y)}.
Hence(µ̂,A) ∧̂(ν̂ ,B) = (λ̂ ,C) is an fuzzy soft bi-ideal

(interior) overS.
Similarly, we can prove that(µ̂,A)⊓̂(ν̂ ,B) is also

fuzzy soft bi-ideal (interior) overS.

Theorem 3.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals
(left , right) over aΓ -semigroup S then(µ̂,A)∨̂(ν̂ ,B) and
(µ̂,A)⊔̂(ν̂ ,B) are also fuzzy soft ideals (left , right) over S.

Proof.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals (left ,
right) over a Γ -semigroupS. Then (µ̂,A)∨̂(ν̂ ,B) is
defined as(µ̂,A)∨̂(ν̂ ,B) = (δ̂ ,C), whereC = A×B and
δ̂ (a,b) = µ̂(a) ∪ ν̂(b), for all (a,b) ∈ C = A× B. As
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(µ̂,A) and (ν̂ ,B) are fuzzy soft ideals (left , right) overS,
so we have for allx,y,z∈ Sandγ ∈ Γ ,

δ̂ (a,b)(xγy) = δ (a,b)(xγy) = (µa ∪ νb)(xγy) =
max{µa(xγy),νb(xγy)}

≥ max{max{µa(x),µa(y)},max{νb(x),νb(y)}}
= max{max{µa(x),νb(x)},max{µa(y),νb(y)}}
= max{(µa∪νb)(x),(µa∪νb)(y)}
= max{δ (a,b)(x),δ (a,b)(y)}

= max{δ̂ (a,b)(x), δ̂ (a,b)(y)}.
Which implies that(µ̂,A)∨̂(ν̂ ,B) = (δ̂ ,C) is a fuzzy

soft ideals (left , right) overS.
Similarly, we can prove that(µ̂,A)⊔̂(ν̂ ,B) is also a

fuzzy soft ideal (left , right) overS.

Theorem 4.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft
bi-ideals (interior) over a Γ -semigroup S then
(µ̂,A)∨̂(ν̂ ,B) and (µ̂,A)⊔̂(ν̂ ,B) are also fuzzy soft
bi-ideal (interior) over S.

Proof.Straightforward.

Theorem 5.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals
(left , right) over aΓ -semigroup S then(µ̂,A)∩̂(ν̂ ,B) and
(µ̂,A)∪̂(ν̂ ,B) are also fuzzy soft ideals (left , right) over S.

Proof.Let (µ̂,A) and(ν̂ ,B) be two fuzzy soft ideals (left ,
right) over aΓ -semigroupS then(µ̂,A)∩̂(ν̂ ,B) = (λ̂ ,C),
whereC= A∪B and

λ̂ (c) =





µ̂(c) if c∈ A−B
ν̂(c) if c∈ B−A
min{µ̂(c), ν̂(c)} if c∈ A∩B

,for all c∈

C.
Let c∈C andx,y∈ Sandγ ∈ Γ then we have,
(i) If c∈ A−B, then
λ̂ (c)(xγy) = µ̂(c)(xγy) = µc(xγy) ≥

max{µc(x),µc(y) = max{µ̂(c)(x), µ̂(c)(y)}
= max{λ̂ (c)(x), λ̂ (c)(y)}
(ii) If c∈ B−A, then
λ̂ (c)(xγy) = ν̂(c)(xγy) = νc(xγy) ≥

max{νc(x),νc(y)} = max{ν̂(c)(x), ν̂(c)(y)}
= max{λ̂ (c)(x), λ̂ (c)(y)}
(iii) If c ∈ A ∩ B, then

λ̂ (c) = min{µ̂(c), ν̂(c)}= µ̂(c)∩ ν̂(c).
We can easily verify that

λ̂ (c)(xγy)≥ max{λ̂ (c)(x), λ̂ (c)(y)}.
Hence, for allc∈C andx,y∈Sandγ ∈Γ ,we can write
λ̂ (c)(xγy)≥ max{λ̂ (c)(x), λ̂ (c)(y)}.
Which shows that(µ̂,A)∩̂(ν̂ ,B) = (λ̂ ,C) is a fuzzy

soft ideal (left, right) overS.
Similarly, we can prove that(µ̂,A)∪̂(ν̂ ,B) is also a

fuzzy soft ideal (left, right) overS.

Theorem 6.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft
bi-ideals (interior) over a Γ -semigroup S then
(µ̂,A)∩̂(ν̂ ,B) and (µ̂,A)∪̂(ν̂ ,B) are also fuzzy soft
bi-ideals (interior) over S.

Proof.Straightforward.

Theorem 7.Let ∆(S,E), be the collection of all fuzzy soft
ideals (left , right, interior, bi) over aΓ -semigroup S. Then
(∆(S,E), ∪̂, ⊓̂) is a complete distributive lattice under the
relation ⊆̂.

Proof.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft ideals (left ,
right, interior, bi) over a Γ -semigroup S that is
(µ̂,A),(ν̂ ,B) ∈ ∆(S,E) then as, we proved above,
(µ̂,A)∪̂(ν̂ ,B) and(µ̂,A)⊓̂(ν̂ ,B) are fuzzy soft ideals (left
, right, interior, bi) over S, implies that
(µ̂,A)∪̂(ν̂ ,B),(µ̂,A)⊓̂(ν̂ ,B) ∈ ∆(S,E). Obviously, we
can say that(µ̂,A)∪̂(ν̂ ,B) is the least upper bound and
(µ̂,A)⊓̂(ν̂ ,B) is the greatest lower bound of the subclass
{(µ̂,A),(ν̂,B)}. Hence for any arbitrary collection of
∆(S,E), there exist a least upper bound and a greatest
lower bound, which implies that∆(S,E) is a complete
lattice.

Now, for (µ̂,A),(ν̂,B) and(η̂ ,C) ∈ ∆(S,E), we have

(µ̂,A)⊓̂((ν̂ ,B)∪̂(η̂ ,C)) = (δ̂ ,A∩ (B∪C)).

Also ((µ̂,A)⊓̂(ν̂ ,B) ∪̂ ((µ̂,A)⊓̂(η̂ ,C)) = (ω̂,(A∩B)∪ (A∩C))

= (ω̂,A∩ (B∪C))

Easily, we can show that for anyz∈ A∩ (B∪C), δ̂ (z) =
ω̂(z), which implies that

(µ̂,A)⊓̂((ν̂ ,B)∪̂(η̂ ,C))= ((µ̂,A)⊓̂(ν̂ ,B) ∪̂ ((µ̂,A)⊓̂(η̂ ,C))

Hence∆(S,E) is a complete distributive lattice.

Theorem 8.Let ∆(S,E), be the collection of all fuzzy soft
ideals (left , right, interior, bi) over aΓ -semigroup S. Then
(∆(S,E), ⊔̂, ∩̂) is a complete distributive lattice under the

relation ⊆̂
′
.

Proof.Straightforward.

Now, letD ⊆ E be a specific family of parameters. let
the set of fuzzy soft ideals over aΓ -semigroupS with
parameter set D is denoted by ∆D(S), where
∆D(S) = {(µ̂,A) ∈ ∆(S,E) | µ̂ : D → P(FS(S)}.

Lemma 3.Let (µ̂,A) and (ν̂ ,B) ∈ ∆D(S), then
(µ̂,A)∪̂(ν̂ ,B) ∈ ∆D(S) and(µ̂,A)⊓̂(ν̂ ,B) ∈ ∆D(S).

Proof.Straightforward.

Lemma 4.Let (µ̂,A) and (ν̂ ,B) ∈ ∆D(S), then
(µ̂,A)∩̂(ν̂ ,B) ∈ ∆D(S) and(µ̂,A)⊔̂(ν̂ ,B) ∈ ∆D(S).

Proof.Straightforward.

Theorem 9.(∆D(S), ⊓̂, ∪̂) is a sublattice of(∆(S,E), ⊓̂, ∪̂)
and(∆D(S), ⊔̂, ∩̂) is a sublattice of(∆(S,E), ⊔̂, ∩̂).

Proof.Straightfoeward.

Definition 16.Let (µ̂,A) and (ν̂ ,B) be two fuzzy soft sets
over aΓ -semigroup S. Then their product is defined as
(µ̂,A)◦ (ν̂ ,B) = (µ̂Γ ν̂ ,C), where C= A∪B and
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(µ̂Γ ν̂)(z)(s) ==




µ̂(z)(s) if z∈ A−B
ν̂(z)(s) if z∈ B−A

sup
s=mγn

min{µ̂(z)(m), ν̂(z)(n)}, if z ∈ A∩B

for all s∈C.

Theorem 10.Let (µ̂,A) and(ν̂ ,B) be two fuzzy soft ideals
(left , right, interior, bi) over aΓ -semigroup S then their
product(µ̂,A)◦(ν̂ ,B) is also a fuzzy soft ideal (left , right,
interior, bi) over S.

Proof.Let (µ̂,A) and(ν̂ ,B) be two fuzzy soft ideals over a
Γ -semigroupS. Let z∈C= A∪B, x,y∈ Sandγ ∈ Γ . We
have,

(i) z∈ A−B, then
(µ̂Γ ν̂)(z)(xγy) = µ̂(z)(xγy)

≥ max{µ̂(z)(x), µ̂(z)(y)}
= max{(µ̂Γ ν̂)(z)(x),(µ̂Γ ν̂)(z)(y)}.

(ii) z∈ B−A, same as proved in (i).
(iv) z∈ A∩B, then
(µ̂Γ ν̂)(z)(x) = sup

x=mγn
min{(µ̂)(z)(m), ν̂(z)(n)}

≤ sup
xαy=uγvαy

min{(µ̂)(z)(m), ν̂(z)(n)}

≤ sup
xαy=uγw

{min{(µ̂)(z)(m), ν̂(z)(w)}} =

(µ̂Γ ν̂)(z)(xαy)
⇒ (µ̂Γ ν̂)(z)(x)≤ (µ̂Γ ν̂)(z)(xαy). Similarly, we can

show that,
(µ̂Γ ν̂)(z)(y)≤ (µ̂Γ ν̂)(z)(xαy).

Which implies that,
(µ̂Γ ν̂)(z)(xαy) ≥

max{(µ̂Γ ν̂)(z)(x),(µ̂Γ ν̂)(z)(y)}.
Hence,(µ̂,A)◦ (ν̂ ,B) is a fuzzy soft ideal overS.

Theorem 11.Let S be aΓ -semigroup with identity e and
Ω(S,E) be the collection of all fuzzy soft ideals over S with
the property that(µ̂,A)∈ Ω(S,E) if and only if,µ̂(z)(e) =
1 then(Ω(S,E),◦, ⊓̂) is a complete lattice under̂⊆.

Proof.Let (µ̂,A) and (ν̂ ,B) ∈ Ω(S,E) then
µ̂(z)(e) = ν̂(z)(e) = 1. As (µ̂,A) and(ν̂ ,B) be fuzzy soft
ideals overS then so is(µ̂,A)⊓̂(ν̂ ,B) and(µ̂,A) ◦ (ν̂ ,B)
by Theorem1 andTheorem10. Also (µ̂ ∩ ν̂)(z)(e) = 1
and (µ̂Γ ν̂)(z)(e) = 1. Which implies that(µ̂,A)⊓̂(ν̂ ,B)
and (µ̂,A) ◦ (ν̂ ,B) ∈ Ω(S,E). Note that(µ̂,A)⊓̂(ν̂ ,B) is
the greatest lower bound of the class{(µ̂,A),(ν̂ ,B)}.
Now for least upper bound, letz∈ A∪B andx ∈ S then,
we have

(i) If z ∈ A − B then by definition,
(µ̂Γ ν̂)(z)(x) = µ̂(z)(x)

(ii) If z∈ B−A,then(µ̂Γ ν̂)(z)(x) = ν̂(z)(x).
(iii) If z∈ A∩B, then ase is identity inS, so

(µ̂Γ ν̂)(z)(x) = sup
x=xγe

{min{µ̂(z)(x), ν̂(z)(e)}},

≥ min{µ̂(z)(x), ν̂(z)(e)}
= µ̂(z)(x), sinceν̂(z)(e) = 1.

Which implies that(µ̂,A)⊆̂(µ̂,A) ◦ (ν̂ ,B). Similarly,
we can show that(ν̂ ,B)⊆̂(µ̂,A) ◦ (ν̂ ,B) implies that
(µ̂,A)◦ (ν̂ ,B) is an upper bound of{(µ̂ ,A),(ν̂,B)}. Now,
let (ρ̂,Σ) ∈ Ω(S,E) such that (µ̂,A)⊆̂(ρ̂,Σ) and
(ν̂ ,B)⊆̂(ρ̂,Σ).

Then(µ̂,A)◦ (ν̂,B)⊆ (ρ̂,Σ)◦ (ρ̂,Σ)⊆ (ρ̂,Σ). Hence
(µ̂,A) ◦ (ν̂ ,B) is the least upper bound of the class
{(µ̂,A),(ν̂,B)}, which is an orbitrary subclass of
Ω(S,E). Hence(Ω(S,E),◦, ⊓̂) is a complete lattice.
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