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Abstract: Let B be a finite set of binary operations over the set of natural numbers N. A B-chain for a natural number 7, denoted by
BC(n), is a sequence of numbers 1 = ¢, c1,...,¢; = nsuch that for each i > 0,¢; = ¢ ocy, where 0 < j,k <i— 1 and o is an operation of
B. Generating a shortest B-chain for n plays an important role in increasing the performance of some cryptosystems and protocols. This
paper has two purposes. The first is to propose a generic algorithm to generate a shortest B-chain using a single CPU and a single GPU
for any B. The second is to propose two strategies to improve the generation of a shortest B-chain using two (or more) GPUs. Using two
GPUgs, the experimental study shows that the first strategy improves the performance by about 20%, while the second strategy improves
the performance by about 30 ~ 35% in case of B = {+}. It is also possible to combine both strategies when we have at least four GPUs.
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1 Introduction 1. addition chain [7], denoted by AC or BC*, when
B = {+}. Generating a shortest addition chain for n
plays an important role in speeding up modular

Given a natural number n, and an element g in some exponentiation g" modm, where g € Z, is an
groups G, computing g" with the minimal number of element in the multiplicative group of integers
operations is equivalent to the problem of finding a modulo a positive integer .

sequence of elements such that the sequence starts with 1, For example, computing ! using
which represents g, terminates with n, which represents BC*(51) : 1,2,4,8,16,32,48,50,51 can be done as
g", and each other element in the sequence comes from follows:

two preceding elements (not necessarily different) in G gé 828: 8 3*287 g?(): 8126* 8228 I :3§4 * ?:7 8512 =
using the binary operation defined on G. Formally, let B 848* gza 85 = §O *8, § =& *8, & =
be a finite set of binary operations over the set of natural 8§ %8, & =& *&.

numbers. A B-chain [1] for a natural number 7, denoted This computation requires 8 multiplications, while the
by BC(n), is a sequence 1 = cg,cy,...,c; = n, such that following computation requires 7 multiplications
for eachi >0, ¢; = cjocy, where 0 < j,k <i—1andois usingztheBC+(513):1,22,3,6,]62,24,348,53]. b e
an operation of B. The number / is called the length of 8§ 8§ —8*8 § =& *§ & =& *§, § =& *
BC(n). A BC(n) is called a shortest if its length is g% g =g"xg"? g¥=g"xg", @ =g%xg
minimal. Let ¢8(n) denotes the length of a shortest

B-chain. 2. addition-subtraction chains [7], denoted by ASC or

BC*, when B = {+,—1}, i.e., each element in a chain
can be written as summation or subtraction of two
previously elements ¢; = c¢;j & ¢, j,k < i
Addition-subtraction chains [2] are similar to addition

o - ) chains in that they are used to compute n - g, where n
A B-chain is considered a mathematical model for is a scalar and g is a point on elliptic curve E over a

studying the complexity of evaluating integers and finite field F. For example, if n = 63, then we can find

polynomials [1,6]. The most important types of B-chains BC*(n) : 1,2,4,8,16,32,64,63. The last element
are:

Designing an efficient algorithm to generate a shortest
B-chain plays an important role in increasing the efficiency
of some public key cryptosystems and protocols [2,3,4,5]
that used the operation g" in their computations.
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¢7 = c¢ — co. Thus, computing 63 - P can be done as
follows: P, 2-P,4-P, 8-P, 16-P, 32-P,64-P 63-P,
where 63 = 64 — 1. Note that a shortest BC*(63) is
1,2,3,6,12,15,30,60,63, and so £+ (63) > £+(63). In
general, £ (n) < (T (n.)

3. addition-multiplication chains [8,9,10], denoted by
AMC or BC*, when B = {+,%}, i.e., each element in
a chain is a summation or multiplication of two
previously elements ¢; = c¢j *" ¢, j,k < i. For

example, BC-(63) : 1,2,3,6,7,9,63, and so
(4(63) < 1£(63) < £1(63.) Clearly, ¢+ (n) < £ (n.)

4. Euclidean addition chains [11], denoted by EAC. It is
a special case of addition chains where ¢, = 3, and for
2<i<Il—1,ifc;=ci1+cjforsome j <i—2,then
Cit1 = ci+ci—1 or ¢ciy1 = ¢;+cj. EAC has application
in performance of some elliptic curve cryptosystem
[12]. Herbaut and P. Véron [13] proposed a public key
cryptosystem with security based on EAC. Efficient
generation of EAC may lead to the cryptanalysis of
Herbaut-Véron cryptosystem.

In general, generating a shortest B-chain is NP-hard
problem [14, 15]. There are two directions to generate BC.
The first is to generate a short BC, while the other is
generate a shortest BC. In this paper, we concentrate on a
shortest BC. From practical view, generating a shortest
B-chain is important when n is not very large or it is a
fixed number for a period of time. Otherwise, one can
generate a short B-chain [3,7,16]

The majority of studies in the literature have focused
on generating a shortest BCT. For examples, Thurber [17]
developed a fast branch and bound depth first search
(BB-DFS) algorithm to find a BC™ by presenting three
(pruning bounds) bounding sequences and two types of
pruning techniques to cut off some elements in the search
tree that cannot lead to a BC'. Bahig [18,19] improved
Thurber’s work by determining some conditions for a step
¢; to be in the form ¢; = ¢;_1 + ¢, j < i, and the lower
bound of j, and k& when we  generate
¢i = ¢j + ¢ j,k < i — 1. Thurber and Clift [20]
generalized two purring bounds of Thurber’s result [17].
Bahig and AbdElbari [21] proposed a GPU-based
algorithm to generate a shortest BC™.

On other sides, a few works have been done on
generating shortest BC* [8,9], and EAC [12,13].

Parallel computing [22,23,24] is used to speedup
generation of a shortest or short BC*. Graphics
processing units (GPUs) play a main role in parallel
computing in different domains, such as cryptanalysis
[25], and bioinformatics [26].

The purposes of this paper are (1) uses of GPUs to
present a general algorithm to generate any type of
B-chains with minimal length; and (2) proposing two

strategies to speed up the generation using multi-GPUs
and multi-threads.

Compared to using a single GPU, the two proposed
strategies accelerate the generation by about 20, and
30 ~ 35% respectively.

The remainder of the paper is organized as follows. In
Section 2, we present a general algorithm to generate a
shortest B-chain. It is a generalization of the algorithm
developed by Bahig and AbdElbari [21] to generate a
shortest addition chain. The proposed algorithm can work
on any type of B-chain. In Section 3, we propose the first
strategy to use multi-GPUs to increase the performance of
generating a shortest B-chain. In Section 4, we propose
the second strategy. Section 5 describes the
implementation details of the two strategies. Finally,
Section 6 includes the conclusion of the paper.

2 Generating a Shortest B-Chain using GPU

In this section, we present a general algorithm to generate
a shortest B-chain. It is a generalization of the algorithm
proposed by Bahig and AbdElbari [21]. The algorithm
starts with computing a lower bound , /b, of BC, and then
generating a short BC. Thus, the length of the generated
short BC is the upper bound of the depth of the search
tree, i.e., if no a BC with length [B < ub is found, then the
generated short BC is shortest and so the algorithm
terminates. The search tree is divided into three parts
(subtrees) as shown in Fig. 1:

1. Top tree (TTree) which employs the central
processing unit, CPU, to perform branch and bound
depth first search strategy (BB-DFS) see Algorithm 1.

2. Middle tree (MTree) which employs the CPU to
perform the branch and bound breadth first search
algorithm (BB-BFS), see Algorithm 2.

3. Bottom tree (BTree) which employs the GPU to
perform the branch and bound depth first search
strategy (BB-DFS), see Algorithm 3.

The detailed description of each part is similar to that
described in [21] but for B = {+}. Algorithm 1 describes
the search tree to generate a shortest BC, where

e B refers to the type of B-chains.
e lower-bound-BC(n,B) returns a lower bound of
BC(n). For example, if B = {+}, then we have [7,27]

Ib > [log,n+logy, HW (n) —2.13],
where HW denotes to the Hamming weight, i.e.,
number of 71" bit in the binary representation of .
While if B = {+,}, then we have [8]
Ib >log,logyn+1.

Similarly for B = {4, —}, see [28].
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MTree: BB-BFs.
using CPU core

Fig. 1: GSBC: General strategy to generate a shortest BC using GPU

e upper-bound-BC(n, B) returns a short B-chain, and its
length. In case of B = {+}, we can use one of the
methods that generates a short addition chain such as
[7,29,30]. Similarly, for B = {+,}, we can use the
r-ary method [8], while the methods in [2,31] for
B={+,-}.

e Bounding-sequences(n,B,lb)  returns  bounding
sequences, if exists, for n with length [b, where a
bounding sequence (or prune bounds) is a sequence of
numbers {p;}!, of length /b to determine a lower
bound of each ¢; in any B-chain of length b, i.e.,
¢i > pi,0 < i < Ib. In the literature, bounding
sequences for BC™ are proposed by Thurber [17] and
improved by Thurber and Clift [20], while Bahig [9]
presented a bounding sequence for BC- . Until now,
there is no proposed bounding sequence for BC*. The
main difficulty in finding a bounding sequence for
BC* is that it is not increasing sequence.

e DetermineDepthLevel (n,B, 1) returns the estimated
depth of TTree, see [21] for example. The estimation
of DepthLevel should consider the available memory
storage, otherwise we need to use another strategy,
such as in [25], for MTree.

e DStack is a stack to hold each element and its level in
the search tree using DFS.

3 The First Strategy

In this section, we present the first strategy to improve the
generation of a shortest B-chain using multi-GPUs. The
strategy is based on using two (or more) GPUs at BTree.
When the number |QueueElem_GPU| of generated
children (paths) using MTree is sufficiently large, we
distribute the generated elements QueueElem_GPU to
some or all available GPUs such that each of them has
sufficient data to work efficiently. Let o denotes the
number of available GPUs, and 8 denotes the minimum
number of elements (paths) to occupy each GPU
assuming that all GPUs have the same specification. The

Algorithm 1 GSBC: Generate a shortest B-chain for 1

Ensure: BC: shortest BC(n).

oYX

: CurBC[0] 1

: CurBC[1] - 2;

. Ib < lower-bound-BC(n, B);

: BC,ub < upper-bound-BC(n,B);
. while (/b < ub) do

BS «+ Bounding-sequences(n, B, ID); > TTree: BB-DFS

DepthLevel < DetermineDepthLevel (n,B,1b);

Curlevel <+ 1;

loop

if CurLevel < DepthLevel then
DStack < Push all possible children of CurBC[0..CurLevel)

(associated with their levels CurLevel 4 1 and) generated by op € B and retained
by BS;

12: end if

13: if DStack is not empty then

14: (CurLevel ,CurBC|[CurLevel]) < Pop(DStack);

15: else

16: Exit the inner loop;

17: end if

18: if CurLevel = DepthLevel then > MTree: BB-BFS
19: (QueueElem_GPU ,CurLevel) “—

Generate-Child BBBFS(CurBC,CurLevel,lb,n,BS,B);

20 if QueueElem_GPU is not empty then

21: if CurLevel = [b then

22: return a shortest BC(n);

23: else > BTree: BB-DFS
24 GPU _BBDFS(QueueElem_GPU ,CurLevel, FoundBC,BC,n,BS, B)
25: if FoundBC = true then

26: return BC

27: end if

28: end if

290: end if

30: end if

31 end loop

32: Ib=1b+1;

33

. end while

34: return BC

Algorithm 2 GenerateChild_BBBFS(CurBC,CurLevel,lb,n, BS, B)

En
1:

Voo AW

sure: List_Paths_for-.GPU
List_Paths_for_.GPU < insert(CurBC)

. while CurLevel < 1b and List_Paths_for-GPU is not empty do

CurLevel < CurLevel +1;
List_Paths_for_.GPU < Generate all possible children for each path in
List_Paths_for_.GPU
if the conditions for GPU are satisfied then
return List_Paths_for_GPU;
end if

. end while
. return List_Paths_for_.GPU;

Algorithm 3 GPUBBDFS (ListPaths.GPU,CurLevel, FoundBC,BC,n,
BS.B)

Require: FoundBC, BC;

17

e Lo Y TS
SUEHR=SOFND Ewe

Each GPU thread has the following local variables:
ThrdStack : stack to hold elements and their levels;
ThrdCurPath : current path;
ThrdCurLevel : current level

. start threads sufficient for all elements of ListPaths_GPU ;
. ThrdCurPath < ListPaths-GPU [T hreadU nigelD];

. ThrdCurLevel < CurLevel,

: repeat parallely

each thread push children of ThrdCurPath|0..ThrdCurLevel| in ThrdStack
(associated with ThrdCurLevel+1) ;
if ThrdStack is not empty (i.e., ThrdCurLevel > CurLevel)) then
(ThrdCurLevel, T hrdCurBC|[ThrdCurLevel)) < Pop(T hrdStack);
else
End of the thread ;
end if
if ThrdCurLevel = [b then
FoundBC= true;
Atomically make BC = ThrdCurBC;
Announce all other threads to stop;
end if
. until ThrdStack is empty
. FoundBC= false;
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QueueElem_GPU generated from TTree is distributed to
GPUs as follows:

Y+ Q.
while (1uecElen-GPUL - g o
Y ry—1
end while

Copy about (‘QWWEZ+GPU‘] to each GPU.

Fig. 2 shows the idea of this strategy when we have two
GPUs. We use CPU-Core-1 for both TTree and MTree
using BB-DFS and BB-BFS, respectively. While we use
GPU-1 and GPU-2 for BTree using BB-DFS.

BB-DFS Using GPU-1 threads

Fig. 2: The first strategy

4 The Second Strategy

In this section, we propose another efficient strategy to
improve the generation of a shortest BC using two (or
more) GPUs. The strategy is based on our observation
that “there is usually a difference between ¢5(n) and 1b”.
For example, let n = 170089. There is no shortest
addition chain for n with length /b = 20, but there is with
the length /b = 21. The algorithm GSBC tries to find a
BC(n) of length Ib. If GSBC couldn’t find a B-chain with
the length /b, then it increases [b by 1 and repeats the
process. Thus, our strategy is to run GSBC using one core
and one GPU to find a BC(n) of length /b, and also to run
GSBC using another core and another GPU to find a
BC(n) of length b+ 1, and so on. Suppose that we have
two GPUs. Our strategy is to run at the same time GSBC
using two cores (say, core-1, and core-2) and two GPUs
(say, GPU-1, and GPU-2). The CPU core-1 with GPU-1
tries to find a BC(n) of length /b, while the CPU Core-2
with GPU-2 tries to find a BC(n) of length Ib + 1. There
are two cases:

1. If Core-1 (with GPU-1) finished before core-2 (with
GPU-2). In this case, we have two subcases:

(a) Core-1 found a shortest B-chain. Thus, GSBC
terminates core-2 and returns the shortest B-chain.

(b) There is no BC(n) of length Ib. Thus, GSBC
waits until core-2 (with GPU-2) ends. If core-2
finds a BC(n) of length /b + 1, then GSBC returns
the founded chain as a shortest B-chain.
Otherwise, i.e., core-2 didn’t find a shortest
BC(n), we have to start core-1 with depth Ib+ 2,
and core-2 with depth [b + 3, and repeat the
process. Note that, in the case where the depth of
the search tree is equal to ub, then there is no need
to continue the search.

2. Otherwise, core-2 (with GPU-2) finished before
core-1. In this case, core-2 should wait until core-1
terminates, and then we have two subcases:

(a) If core-1 finds a BC(n) of length [b, then it returns
the shortest BC(n).

(b) Otherwise, core-2 returns a shortest BC(n) of
length [b + 1, if one exists. If both cores didn’t
find a BC(n, then repeat the process, i.e., core-1
(with GPU-1) searches for a BC(n) of length
Ib+ 2, and core-2 (with GPU-2) searches for a
BC(n) of length b+ 3.

Fig. 3 shows our main idea.

o wdsa

Fig. 3: The second strategy

S Experimental Results

This section describes our implementation of the two
strategies. We choose B = {+}. The implementation was
conducted on a PC with Intel core i7-10870H CPU 2.21
GHz, 16 GB RAM, Windows 10 and Visual Studio 2013.
The PC is coupled with two NVIDIA GeForce GTX 3060
[32]. The programs are written in the CUDA C. The
CUDA C is an extension of the standard C language that
used to access the GPU. We take oo =2, § = 1024.

Table 1 shows the performance of the proposed
strategies for 200 random m-bit numbers, where
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m=16,18,20,22,24.

The first strategy speeds up the generation by about
19 ~ 21%, while the second strategy speeds up the
generation by 30 ~ 35%. Both strategies increase with an
increasing the number of bits in the input number 7, and,
in particular, with an increasing Hamming weight of n.
The performance of the second strategy increases more
than the first since usually the difference between ¢5(n)
and /b increases as n increases and so the second strategy
will be more effective.

Table 1: Comparison in times (secs) between using a single GPU
and using 2-GPUs with different strategies

m-bits
Algorithm GSBC 16 | 18 | 20 | 22 | 24
single GPU 0.88 | 3.46 | 27.83 | 193.47 | 386.01
2-GPUs + Strategy 1 0.71 | 275 | 22.01 | 152.48 304.7
2-GPUs +Strategy 2 0.62 | 2.39 | 18.95 | 129.41 | 251.17

6 Conclusion

We have presented a general (generic) algorithm for
generating a shortest B-chain using GPU. It can be used
to generate any type of B-chain. Then, we have suggested
two strategies to improve the generation using
multi-GPUs. The experimental results show that using
two GPUs, the first strategy reduces the average time by
about 20%, while the second strategy reduces the average
time by about 30 ~ 35% compared to using a single GPU.
It is possible to combine the two strategies to get more
performance, but this requires two cores and four GPUs.
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