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Abstract: Let B be a finite set of binary operations over the set of natural numbers N. A B-chain for a natural number n, denoted by

BC(n), is a sequence of numbers 1= c0,c1, . . . ,cl = n such that for each i > 0,ci = c j ◦ck, where 0≤ j,k≤ i−1 and ◦ is an operation of

B. Generating a shortest B-chain for n plays an important role in increasing the performance of some cryptosystems and protocols. This

paper has two purposes. The first is to propose a generic algorithm to generate a shortest B-chain using a single CPU and a single GPU

for any B. The second is to propose two strategies to improve the generation of a shortest B-chain using two (or more) GPUs. Using two

GPUs, the experimental study shows that the first strategy improves the performance by about 20%, while the second strategy improves

the performance by about 30∼ 35% in case of B = {+}. It is also possible to combine both strategies when we have at least four GPUs.

Keywords: B-chain, addition Chain, addition-subtraction chain, addition-multiplication chain, Branch-and-Bound, GPU, CUDA,

Depth-First Strategy, Breadth-First Strategy

1 Introduction

Given a natural number n, and an element g in some
groups G, computing gn with the minimal number of
operations is equivalent to the problem of finding a
sequence of elements such that the sequence starts with 1,
which represents g, terminates with n, which represents
gn, and each other element in the sequence comes from
two preceding elements (not necessarily different) in G

using the binary operation defined on G. Formally, let B

be a finite set of binary operations over the set of natural
numbers. A B-chain [1] for a natural number n, denoted
by BC(n), is a sequence 1 = c0,c1, . . . ,cl = n, such that
for each i > 0, ci = c j ◦ ck, where 0 ≤ j,k ≤ i− 1 and ◦ is
an operation of B. The number l is called the length of
BC(n). A BC(n) is called a shortest if its length is
minimal. Let ℓB(n) denotes the length of a shortest
B-chain.

Designing an efficient algorithm to generate a shortest
B-chain plays an important role in increasing the efficiency
of some public key cryptosystems and protocols [2,3,4,5]
that used the operation gn in their computations.

A B-chain is considered a mathematical model for
studying the complexity of evaluating integers and
polynomials [1,6]. The most important types of B-chains
are:

1. addition chain [7], denoted by AC or BC+, when
B = {+}. Generating a shortest addition chain for n

plays an important role in speeding up modular
exponentiation gn mod m, where g ∈ Zm is an
element in the multiplicative group of integers
modulo a positive integer m.
For example, computing g51 using
BC+(51) : 1,2,4,8,16,32,48,50,51 can be done as
follows:
g, g2 = g ∗ g, g4 = g2 ∗ g2, g8 = g4 ∗ g4, g16 =
g8 ∗ g8, g32 = g16 ∗ g16, g48 = g32 ∗ g16, g50 =
g48 ∗ g2, g51 = g50 ∗ g.
This computation requires 8 multiplications, while the
following computation requires 7 multiplications
using the BC+(51) : 1,2,3,6,12,24,48,51.
g, g2 = g ∗ g, g3 = g2 ∗ g, g6 = g3 ∗ g3, g12 = g6 ∗
g6, g24 = g12 ∗ g12, g48 = g24 ∗ g24, g51 = g48 ∗ g3.

2. addition-subtraction chains [7], denoted by ASC or
BC±, when B = {+,−}, i.e., each element in a chain
can be written as summation or subtraction of two
previously elements ci = c j ± ck, j,k < i.
Addition-subtraction chains [2] are similar to addition
chains in that they are used to compute n · g, where n

is a scalar and g is a point on elliptic curve E over a
finite field F. For example, if n = 63, then we can find
BC±(n) : 1,2,4,8,16,32,64,63. The last element
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c7 = c6− c0. Thus, computing 63 ·P can be done as
follows: P, 2 ·P, 4 ·P, 8 ·P, 16 ·P, 32 ·P,64 ·P,63 ·P,
where 63 = 64− 1. Note that a shortest BC+(63) is
1,2,3,6,12,15,30,60,63, and so ℓ+(63)≥ ℓ±(63). In
general, ℓ±(n)≤ ℓ+(n.)

3. addition-multiplication chains [8,9,10], denoted by

AMC or BC
+
∗ , when B = {+,∗}, i.e., each element in

a chain is a summation or multiplication of two
previously elements ci = c j ∗

+ ck, j,k < i. For

example, BC
+
∗ (63) : 1,2,3,6,7,9,63, and so

ℓ
+
∗ (63)≤ ℓ±(63)≤ ℓ+(63.) Clearly, ℓ

+
∗ (n)≤ ℓ+(n.)

4. Euclidean addition chains [11], denoted by EAC. It is
a special case of addition chains where c2 = 3, and for
2≤ i≤ l− 1, if ci = ci−1 + c j for some j ≤ i− 2, then
ci+1 = ci + ci−1 or ci+1 = ci + c j. EAC has application
in performance of some elliptic curve cryptosystem
[12]. Herbaut and P. Véron [13] proposed a public key
cryptosystem with security based on EAC. Efficient
generation of EAC may lead to the cryptanalysis of
Herbaut-Véron cryptosystem.

In general, generating a shortest B-chain is NP-hard
problem [14,15]. There are two directions to generate BC.
The first is to generate a short BC, while the other is
generate a shortest BC. In this paper, we concentrate on a
shortest BC. From practical view, generating a shortest
B-chain is important when n is not very large or it is a
fixed number for a period of time. Otherwise, one can
generate a short B-chain [3,7,16]

The majority of studies in the literature have focused
on generating a shortest BC+. For examples, Thurber [17]
developed a fast branch and bound depth first search
(BB-DFS) algorithm to find a BC+ by presenting three
(pruning bounds) bounding sequences and two types of
pruning techniques to cut off some elements in the search
tree that cannot lead to a BC+. Bahig [18,19] improved
Thurber’s work by determining some conditions for a step
ci to be in the form ci = ci−1 + c j, j < i, and the lower
bound of j, and k when we generate
ci = c j + ck, j,k < i − 1. Thurber and Clift [20]
generalized two purring bounds of Thurber’s result [17].
Bahig and AbdElbari [21] proposed a GPU-based
algorithm to generate a shortest BC+.

On other sides, a few works have been done on
generating shortest BC

+
∗ [8,9], and EAC [12,13].

Parallel computing [22,23,24] is used to speedup
generation of a shortest or short BC+. Graphics
processing units (GPUs) play a main role in parallel
computing in different domains, such as cryptanalysis
[25], and bioinformatics [26].

The purposes of this paper are (1) uses of GPUs to
present a general algorithm to generate any type of
B-chains with minimal length; and (2) proposing two

strategies to speed up the generation using multi-GPUs
and multi-threads.

Compared to using a single GPU, the two proposed
strategies accelerate the generation by about 20, and
30∼ 35% respectively.

The remainder of the paper is organized as follows. In
Section 2, we present a general algorithm to generate a
shortest B-chain. It is a generalization of the algorithm
developed by Bahig and AbdElbari [21] to generate a
shortest addition chain. The proposed algorithm can work
on any type of B-chain. In Section 3, we propose the first
strategy to use multi-GPUs to increase the performance of
generating a shortest B-chain. In Section 4, we propose
the second strategy. Section 5 describes the
implementation details of the two strategies. Finally,
Section 6 includes the conclusion of the paper.

2 Generating a Shortest B-Chain using GPU

In this section, we present a general algorithm to generate
a shortest B-chain. It is a generalization of the algorithm
proposed by Bahig and AbdElbari [21]. The algorithm
starts with computing a lower bound , lb, of BC, and then
generating a short BC. Thus, the length of the generated
short BC is the upper bound of the depth of the search
tree, i.e., if no a BC with length lB < ub is found, then the
generated short BC is shortest and so the algorithm
terminates. The search tree is divided into three parts
(subtrees) as shown in Fig. 1:

1. Top tree (TTree) which employs the central
processing unit, CPU, to perform branch and bound
depth first search strategy (BB-DFS) see Algorithm 1.

2. Middle tree (MTree) which employs the CPU to
perform the branch and bound breadth first search
algorithm (BB-BFS), see Algorithm 2.

3. Bottom tree (BTree) which employs the GPU to
perform the branch and bound depth first search
strategy (BB-DFS), see Algorithm 3.

The detailed description of each part is similar to that
described in [21] but for B = {+}. Algorithm 1 describes
the search tree to generate a shortest BC, where

• B refers to the type of B-chains.
• lower-bound-BC(n,B) returns a lower bound of

BC(n). For example, if B = {+}, then we have [7,27]

lb≥ ⌈log2 n+ log2 HW (n)− 2.13⌉,

where HW denotes to the Hamming weight, i.e.,
number of ”1” bit in the binary representation of n.
While if B = {+,∗}, then we have [8]

lb≥ log2 log2 n+ 1.

Similarly for B = {+,−}, see [28].
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Fig. 1: GSBC: General strategy to generate a shortest BC using GPU

• upper-bound-BC(n,B) returns a short B-chain, and its
length. In case of B = {+}, we can use one of the
methods that generates a short addition chain such as
[7,29,30]. Similarly, for B = {+,∗}, we can use the
r-ary method [8], while the methods in [2,31] for
B = {+,−}.
• Bounding-sequences(n,B, lb) returns bounding

sequences, if exists, for n with length lb, where a
bounding sequence (or prune bounds) is a sequence of
numbers {pi}

lb
i=0 of length lb to determine a lower

bound of each ci in any B-chain of length lb, i.e.,
ci ≥ pi,0 ≤ i ≤ lb. In the literature, bounding
sequences for BC+ are proposed by Thurber [17] and
improved by Thurber and Clift [20], while Bahig [9]

presented a bounding sequence for BC
+
∗ . Until now,

there is no proposed bounding sequence for BC±. The
main difficulty in finding a bounding sequence for
BC± is that it is not increasing sequence.
• DetermineDepthLevel(n,B, lb) returns the estimated

depth of TTree, see [21] for example. The estimation
of DepthLevel should consider the available memory
storage, otherwise we need to use another strategy,
such as in [25], for MTree.
• DStack is a stack to hold each element and its level in

the search tree using DFS.

3 The First Strategy

In this section, we present the first strategy to improve the
generation of a shortest B-chain using multi-GPUs. The
strategy is based on using two (or more) GPUs at BTree.
When the number |QueueElem GPU | of generated
children (paths) using MTree is sufficiently large, we
distribute the generated elements QueueElem GPU to
some or all available GPUs such that each of them has
sufficient data to work efficiently. Let α denotes the
number of available GPUs, and β denotes the minimum
number of elements (paths) to occupy each GPU
assuming that all GPUs have the same specification. The

Algorithm 1 GSBC: Generate a shortest B-chain for n

Ensure: BC : shortest BC(n).
1: CurBC[0]← 1;

2: CurBC[1]← 2;

3: lb← lower-bound-BC(n,B);
4: BC,ub← upper-bound-BC(n,B);
5: while (lb < ub) do

6: BS← Bounding-sequences(n,B, lb); ⊲ TTree: BB-DFS

7: DepthLevel← DetermineDepthLevel(n,B, lb);
8: Curlevel← 1;

9: loop

10: if CurLevel < DepthLevel then

11: DStack ← Push all possible children of CurBC[0..CurLevel]
(associated with their levels CurLevel+1 and) generated by op∈B and retained

by BS;

12: end if

13: if DStack is not empty then

14: (CurLevel,CurBC[CurLevel])← Pop(DStack);

15: else

16: Exit the inner loop;

17: end if

18: if CurLevel = DepthLevel then ⊲ MTree: BB-BFS

19: (QueueElem GPU,CurLevel) ←
Generate Child BBBFS(CurBC,CurLevel, lb,n,BS,B);

20: if QueueElem GPU is not empty then

21: if CurLevel = lb then

22: return a shortest BC(n);
23: else ⊲ BTree: BB-DFS

24: GPU BBDFS(QueueElem GPU,CurLevel,FoundBC,BC,n,BS,B)
25: if FoundBC = true then

26: return BC

27: end if

28: end if

29: end if

30: end if

31: end loop

32: lb = lb+1;

33: end while

34: return BC

Algorithm 2 Generate Child BBBFS(CurBC,CurLevel, lb,n,BS,B)

Ensure: List Paths f or GPU

1: List Paths f or GPU ← insert(CurBC)
2: while CurLevel < lb and List Paths f or GPU is not empty do

3: CurLevel←CurLevel+1;

4: List Paths f or GPU ← Generate all possible children for each path in

List Paths f or GPU

5: if the conditions for GPU are satisfied then

6: return List Paths f or GPU ;

7: end if

8: end while

9: return List Paths f or GPU ;

Algorithm 3 GPU BBDFS (ListPaths GPU,CurLevel,FoundBC,BC,n,

BS,B)

Require: FoundBC, BC;

Each GPU thread has the following local variables:

ThrdStack : stack to hold elements and their levels;

ThrdCurPath : current path;

ThrdCurLevel : current level

1: start threads sufficient for all elements of ListPaths GPU ;

2: ThrdCurPath← ListPaths GPU [ThreadUniqeID];
3: ThrdCurLevel←CurLevel;

4: repeat parallely

5: each thread push children of ThrdCurPath[0..ThrdCurLevel] in T hrdStack

(associated with ThrdCurLevel+1) ;

6: if ThrdStack is not empty (i.e., T hrdCurLevel >CurLevel)) then

7: (ThrdCurLevel,T hrdCurBC[ThrdCurLevel])← Pop(T hrdStack);

8: else

9: End of the thread ;

10: end if

11: if ThrdCurLevel = lb then

12: FoundBC= true;

13: Atomically make BC = T hrdCurBC;

14: Announce all other threads to stop;

15: end if

16: until T hrdStack is empty

17: FoundBC= false;
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QueueElem GPU generated from TTree is distributed to
GPUs as follows:

γ ← α.

while (
|QueueElem GPU|

γ < β ) do

γ← γ− 1
end while
Copy about ⌈ |QueueElem GPU|

γ ⌉ to each GPU.

Fig. 2 shows the idea of this strategy when we have two
GPUs. We use CPU-Core-1 for both TTree and MTree

using BB-DFS and BB-BFS, respectively. While we use
GPU-1 and GPU-2 for BTree using BB-DFS.

Fig. 2: The first strategy

4 The Second Strategy

In this section, we propose another efficient strategy to
improve the generation of a shortest BC using two (or
more) GPUs. The strategy is based on our observation
that ”there is usually a difference between ℓB(n) and lb”.
For example, let n = 170089. There is no shortest
addition chain for n with length lb = 20, but there is with
the length lb = 21. The algorithm GSBC tries to find a
BC(n) of length lb. If GSBC couldn’t find a B-chain with
the length lb, then it increases lb by 1 and repeats the
process. Thus, our strategy is to run GSBC using one core
and one GPU to find a BC(n) of length lb, and also to run
GSBC using another core and another GPU to find a
BC(n) of length lb+ 1, and so on. Suppose that we have
two GPUs. Our strategy is to run at the same time GSBC

using two cores (say, core-1, and core-2) and two GPUs
(say, GPU-1, and GPU-2). The CPU core-1 with GPU-1
tries to find a BC(n) of length lb, while the CPU Core-2
with GPU-2 tries to find a BC(n) of length lb+ 1. There
are two cases:

1. If Core-1 (with GPU-1) finished before core-2 (with
GPU-2). In this case, we have two subcases:
(a) Core-1 found a shortest B-chain. Thus, GSBC

terminates core-2 and returns the shortest B-chain.
(b) There is no BC(n) of length lb. Thus, GSBC

waits until core-2 (with GPU-2) ends. If core-2
finds a BC(n) of length lb+ 1, then GSBC returns
the founded chain as a shortest B-chain.
Otherwise, i.e., core-2 didn’t find a shortest
BC(n), we have to start core-1 with depth lb+ 2,
and core-2 with depth lb + 3, and repeat the
process. Note that, in the case where the depth of
the search tree is equal to ub, then there is no need
to continue the search.

2. Otherwise, core-2 (with GPU-2) finished before
core-1. In this case, core-2 should wait until core-1
terminates, and then we have two subcases:
(a) If core-1 finds a BC(n) of length lb, then it returns

the shortest BC(n).
(b) Otherwise, core-2 returns a shortest BC(n) of

length lb + 1, if one exists. If both cores didn’t
find a BC(n, then repeat the process, i.e., core-1
(with GPU-1) searches for a BC(n) of length
lb + 2, and core-2 (with GPU-2) searches for a
BC(n) of length lb+ 3.

Fig. 3 shows our main idea.

Fig. 3: The second strategy

5 Experimental Results

This section describes our implementation of the two
strategies. We choose B = {+}. The implementation was
conducted on a PC with Intel core i7-10870H CPU 2.21
GHz, 16 GB RAM, Windows 10 and Visual Studio 2013.
The PC is coupled with two NVIDIA GeForce GTX 3060
[32]. The programs are written in the CUDA C. The
CUDA C is an extension of the standard C language that
used to access the GPU. We take α = 2, β = 1024.

Table 1 shows the performance of the proposed
strategies for 200 random m-bit numbers, where
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m = 16,18,20,22,24.

The first strategy speeds up the generation by about
19 ∼ 21%, while the second strategy speeds up the
generation by 30 ∼ 35%. Both strategies increase with an
increasing the number of bits in the input number n, and,
in particular, with an increasing Hamming weight of n.
The performance of the second strategy increases more
than the first since usually the difference between ℓB(n)
and lb increases as n increases and so the second strategy
will be more effective.

Table 1: Comparison in times (secs) between using a single GPU

and using 2-GPUs with different strategies

m–bits

Algorithm GSBC 16 18 20 22 24

single GPU 0.88 3.46 27.83 193.47 386.01

2-GPUs + Strategy 1 0.71 2.75 22.01 152.48 304.7

2-GPUs +Strategy 2 0.62 2.39 18.95 129.41 251.17

6 Conclusion

We have presented a general (generic) algorithm for
generating a shortest B-chain using GPU. It can be used
to generate any type of B-chain. Then, we have suggested
two strategies to improve the generation using
multi-GPUs. The experimental results show that using
two GPUs, the first strategy reduces the average time by
about 20%, while the second strategy reduces the average
time by about 30∼ 35% compared to using a single GPU.
It is possible to combine the two strategies to get more
performance, but this requires two cores and four GPUs.
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