

Information Sciences Letters An International Journal

http://dx.doi.org/10.18576/isl/110607

Relative Booster Ideals of Distributive *p*-algebras

 $M. M. Atallah^1$ and $E. G. Rezk^{2,3,*}$

Received: 12 Mar. 2022, Revised: 22 May 2022, Accepted: 2 Jun 2022

Published online: 1 Nov. 2022

Abstract: In this article, the definition and characterization of relative booster ideals in distributive p-algebras are given. The relationship between disjunctive relative booster ideals and normal relative booster ideals is established in the distributive p-algebras. A lattice congruence relation defined via the relative boosters is given and its quotient lattice structure is obtained.

Keywords: Booster ideals, Congruence Relations, Disjunctive lattices, Distributive p-algebras, Ideals, Normal lattices, Stone algebras.

1 Introduction

Frink introduced the notion pseudo-complementation of meet semi-lattices generalize the class of Boolean algebras. Many authors introduced this concept of pseudo-complementation in different classes for example, the class of bounded lattices to get the class of p-algebras, consequently distributive modular *p*-algebras, *p*-algebras, Stone algebras, quasi-modular p-algebras. Ideals are investigated in the class of pseudo-complemented semi-lattice by T.S. Blyth refer to [1]

A. Badawy and M. S. Raw [2] introduced the definition of booster ideals in distributive *p*-algebras in the sense of annihilators with pseudo-complemented elements and discussed some properties. W.H. Cornish studied a normal lattice [3] and announced that disjunctive normal distributive lattices are important in the compactification theory. Y. S. Pawar and S. S. Khopade studied the characterization of disjunctive ideals in 0-distributive lattices, see ([4],Theorem 3.11). Recently, many articles study properties of types of boosters in different classes of algebras, e.g., MS-algebra in [5] and [6], Stone almost distributive lattice in [7], [8] and so on.

In the present article, we generalize the concept of booster which was defined by A.Badawy et al.in [2]. The

relative booster ideals in distributive *p*-algebras is defined, and its important properties are shown. The behavior of disjunctive relative booster and normal relative booster ideals of distributive *p*-algebras is discussed, and hence the disjunctive booster and normal booster distributive *p*-algebras are given. Furthermore, the lattice congruence relations defined via the relative boosters is established.

After preliminaries in section 2, the definition and characterization of relative booster ideals of distributive p-algebra L are introduced. Some related properties are proved and the structure of relative booster ideals of L are given in section 3. In section 4, the relationship between disjunctive relative booster ideals and normal relative booster ideals in distributive p-algebra is established. Consequently, the disjunctive and normal booster distributive p-algebras are given, and every Stone algebra is a normal booster. Concluding by section 5, a relationship between the lattice congruence relation Θ and booster ideals on L is given. Moreover, the structure $(L/\Theta; \wedge, \vee, [0]\Theta, D(L))$ is investigated.

2 Preliminaries

In the present section, we recall some of the basic definitions and theorems that will be needed.

¹Department of Mathematics, Lawson State Community College, Birmingham, Alabama, 35221, USA

²Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt

³Mathematical Sciences Department, College of Science, Princess Nourah bint Abdulrahman University, P.O.Box 84428, Riyadh 11671, Saudi Arabia

^{*} Corresponding author e-mail: eman.rezk@science.tanta.edu.eg

Definition 1.[1] Let $(L; \land, \lor, 0, 1)$ be a bounded lattice. An element $a^* \in L$ is called a pseudo-complement of a if for all $x \in L$

$$x \wedge a = 0$$
 iff $x \leq a^*$

Therefore, in a bounded lattice the pseudo-complement of a is the largest element $x \in L$ with the property that $a \land x = 0$.

The bounded lattice L is said to be pseudo-complemented lattice (a p-algebra, for short) if every element in it have at most one pseudo-complement.

It is clear that $0^* = 1$ and $1^* = 0$. A *p*-algebra is called distributive (modular) if the underlying lattice is distributive (modular).

A distributive *p*-algebra is called a Stone algebra if it satisfies Stone identity

$$x^{\bigstar} \lor x^{\bigstar \bigstar} = 1$$
, for all $x \in L$

Theorem 1.[1] Let L be a p-algebra. For all $a, b \in L$,

(1)
$$a \le b$$
 implies $b^* \le a^*$,
(2) $a \le a^{**}$,
(3) $a^* = a^{***}$,
(4) $(a \lor b)^* = a^* \land b^*$,
(5) $(a \land b)^{**} = a^{**} \land b^{**}$,
(6) $(a \land b)^* \ge a^* \lor b^*$,
(7) $(a \lor b)^{**} = (a^{**} \lor b^{**})^{**} \ge a^{**} \land b^{**}$.

Moreover, if L be a Stone algebra, then

$$(8)(a \wedge b)^{\bigstar} = a^{\bigstar} \vee b^{\bigstar},$$

$$(9)(a \vee b)^{\bigstar \bigstar} = (a^{\bigstar \bigstar} \vee b^{\bigstar \bigstar})^{\bigstar \bigstar} = a^{\bigstar \bigstar} \wedge b^{\bigstar \bigstar}.$$

Let L be a p-algebra, an element $a \in L$ is called a closed element if it satisfies the condition $a^{\bigstar \bigstar} = a$. The set of all closed elements of L denoted by B(L). It is known that, $(B(L); \land, \bigtriangledown, \bigstar, 0, 1)$ forms a Boolean algebra where

$$a \nabla b = (a^{\bigstar} \wedge b^{\bigstar})^{\bigstar}$$

An element $d \in L$ is said to be a dense element if it satisfies the condition $d^* = 0$. The set of all dense elements of L denoted by D(L).

Let I(L) be the set of all ideals of L. Then $(I(L); \subseteq)$ forms a complete lattice, and the lattice operations defined on I(L) are given by, for $I, J \in I(L)$,

$$I \wedge J = I \cap J \text{ and } I \vee J = \{x \in L : x \ge a \vee b, for \text{ some } a \in I \text{ and } b \in J\}$$

It is known that, $(I(L); \land, \lor, (0], L)$ forms a complete lattice. In the special case, $I = \{a\}$, $a \in L$, the ideal $(a] = \{x \in L : x \leq a\}$ is called the principal ideal generated by $a \in L$. One can see that

$$(a] \wedge (b] = (a \wedge b]$$
 and $(a] \vee (b] = (a \vee b]$, refer to [1].

Definition 2.[2] Let a be an element in a distributive palgebra L. Then the booster $(a)^{\triangle}$ of a is the set:

$$(a)^{\triangle} = \{ x \in L : x \wedge a^{\bigstar} = 0 \}.$$

Clearly, $(0)^{\triangle} = (0]$ and $(1)^{\triangle} = L$. In addition to boosters have the following properties:

Proposition 1.[2] Let L be a distributive p-algebra. Then for any $a, b \in L$:

$$(1)(a)^{\triangle} \text{ is an ideal of L containing a,} \\ (2)(a)^{\triangle} = (a^{\bigstar \bigstar})^{\triangle} = (a^{\bigstar \bigstar}], \\ (3)(a)^{\triangle} = (a] \text{ iff } a \in B(L), \\ (4)(a)^{\triangle} = L \text{ iff } a \in D(L), \\ (5)\text{If } a \in (b)^{\triangle}, \text{ then } (a)^{\triangle} \subseteq (b)^{\triangle}, \\ (6)\text{If } a \leq b, \text{ then } (a)^{\triangle} \subseteq (b)^{\triangle}, \\ (7)a^{\bigstar} = b^{\bigstar} \text{ iff } (a)^{\triangle} = (b)^{\triangle}, \\ (8)(a)^{\triangle} = (0)^{\triangle} \text{ iff } a = 0.$$

Let Con(L) be the set of all congruence relations on L, it is complete distributive lattice under set inclusion. For any $a \in L$, the congruence class of a with respect to the congruence Θ on L is given by $[a]\Theta = \{x \in L : x \equiv a(\Theta)\}$. The set of all congruence classes is denoted by L/Θ . The operations are defined on L/Θ by $[a]\Theta \wedge [b]\Theta = [a \wedge b]\Theta$ and $[a]\Theta \vee [b]\Theta = [a \vee b]\Theta$ for all $[a]\Theta, [b]\Theta \in L/\Theta$. Then the algebraic system $(L/\Theta; \wedge, \vee, [0]\Theta, [1]\Theta)$ forms a lattice called a quotient lattice of L modulo Θ , refer to [1].

Throughout the present article, *L* stands for a distributive *p*-algebra unless otherwise mentioned

3 Relative Boosters

In the present section, the concept of relative booster and related properties are given.

Definition 3.Let A be a non-empty subset of L and I be a fixed ideal in L. A relative booster of A in an ideal I is the set A^{bo} defined as:

$$A^{bo} = \{ x \in I : x \land a^{\bigstar} = 0 \ for \ all \ a \in A \}$$

where a^* represents the pseudo-complemented element of a in L.

In the special case, if $A = \{a\}$, we write $(a)^{bo} = \{x \in I : x \land a^* = 0\}$ is called the relative booster of a in I. If I = (a] is a principal ideal generated by a in L, then $(0)^{bo} = (0], (a)^{bo} = (a]$. If I = L, then $(a)^{bo}$ coincide with the booster $(a)^{\triangle}$ as in [2].

Lemma 1. If A is a non-empty subset of L and I is a fixed ideal of L. Then A^{bo} is an ideal of I.

Proof. Suppose that $x, y \in A^{bo}$, then

$$(x \lor y) \land a^{\bigstar} = (x \land a^{\bigstar}) \lor (y \land a^{\bigstar}) = 0$$
, for all $a \in A$.

So, $x \lor y \in A^{bo}$. Let $x \in A^{bo}$ and $z \in I, z \le x$, meeting both sides with a^{\bigstar} , then

 $z \wedge a^{\bigstar} \leq x \wedge a^{\bigstar}$ implies that $z \wedge a^{\bigstar} = 0$, for all $a \in A$. Thus $z \in A^{bo}$ and A^{bo} is an ideal of I.

Corollary 1. The relative booster $(a)^{bo}$ of $a \in L$ is an ideal of I containing a.

Proposition 2.For any two elements $a, b \in L$ and a fixed ideal I in L. The following properties are true:

$$(1)(a)^{bo} \subseteq (a^{\bigstar \bigstar}],$$

$$(2)If \ a \le b \ then \ (a)^{bo} \subseteq (b)^{bo},$$

$$(3)(a)^{bo} \cap (b)^{bo} = (a \wedge b)^{bo},$$

$$(4)If \ b \in (a)^{bo} \ then \ (b)^{bo} \subseteq (a)^{bo},$$

$$(5)I = \bigcup_{a \in I} (a)^{bo},$$

$$(6)If \ a \in B(L), \ then \ (a)^{bo} \subseteq (a],$$

$$(7)If \ a \in I \cap D(L), \ then \ (a)^{bo} = I,$$

$$(8)(a)^{bo} = (0)^{bo} \ iff \ a = 0,$$

$$(9)If \ a, b \in L \ and \ (a)^{bo} = (b)^{bo}, \ then :$$

$$(a \wedge c)^{bo} = (b \wedge c)^{bo}$$
 and $(a \vee c)^{bo} = (b \vee c)^{bo}$ for all $c \in L$.

Proof. (1) we have that, $(a)^{bo} = (a)^{\triangle} \cap I$. Then, $(a)^{bo} \subseteq (a)^{\triangle} =$

(2) Let $a \le b$ and $x \in (a)^{bo} \subseteq I$. Then $x \wedge b^{\bigstar} \le x \wedge a^{\bigstar} = 0$. Accordingly $x \in (b)^{bo}$ and $(a)^{bo} \subseteq (b)^{bo}$.

(3) Clearly, we have $(a \wedge b)^{bo} \subseteq (a)^{bo}$, $(b)^{bo}$. Now, let $x \in (a)^{bo} \cap (b)^{bo} \subseteq (a^{**}] \cap b^{**}$, i.e., $x \leq a^{**}$, $x \leq b^{**}$. Then $x \leq a^{**} \wedge b^{**} = (a \wedge b)^{**}$. Hence, $(a \wedge b)^{\bigstar} = 0$, and then $x \in (a \wedge b)^{bo}$. Therefore, $(a)^{bo} \cap (b)^{bo} = (a \wedge b)^{bo}.$

(4)If $b \in (a)^{bo}$, then $b \wedge a^{\bigstar} = 0$ which implies $a^{\bigstar} \leq b^{\bigstar}$. Now, let $x \in (b)^{bo}$. Then $x \wedge a^{\bigstar} \le x \wedge b^{\bigstar} = 0$. As a result, $x \wedge a^* = 0$ and so $x \in (a)^{bo}$.

(5) Since $a \in (a)^{bo}$, means that $I = \bigcup_{a \in I} \{a\} \subseteq \bigcup_{a \in I} (a)^{bo} \subseteq I.$

(6)If $a \in B(L)$, then $a = a^{\bigstar \star}$. By using (1). $(a)^{bo} \subset (a^{\bigstar \bigstar}] = (a].$

(7) If $a \in I \cap D(L)$, then $a^{\bigstar} = 0$. Thus, for all $x \in I$ we get $x \wedge a^{\bigstar} = 0$. Therefore $I = (a)^{bo}$.

 $(8)a \in (a)^{bo} = (0)^{bo} = (0)$ iff a = 0.

(9)Let $(a)^{bo} = (b)^{bo}$, and $x \in (a \land c)^{bo}$. Then $(x \land a^{\bigstar}) \lor (x \land a)^{bo}$ $(c^{\star}) = x \wedge (a^{\star} \vee c^{\star}) \leq x \wedge (a \wedge c)^{\star} = 0$. Hence $(x \wedge a^{\star}) = 0$ $(x \wedge c^*) = 0$, it implies $x \in (a)^{bo} = (b)^{bo}$ and $x \in (c)^{bo}$. Accordingly $x \in (b)^{bo} \cap (c)^{bo} = (b \wedge c)^{bo}$ (from (3)). As a result, $(a \wedge c)^{bo} \subseteq (b \wedge c)^{bo}$. Similarly, $(b \wedge c)^{bo} \subseteq (a \wedge c)^{bo}$. If $x \in (a \lor c)^{bo}$, then $x \land (a \lor c)^{\bigstar} = x \land a^{\bigstar} \land c^{\bigstar} = 0$. Thus, $x \wedge c^{\bigstar} \in (a)^{bo} = (b)^{bo}$ and $x \wedge b^{\bigstar} \wedge c^{\bigstar} = x \wedge (b \vee c)^{\bigstar} = 0$. Therefore, $x \in (b \lor c)^{bo}$ and $(a \lor c)^{bo} \subseteq (b \lor c)^{bo}$. Similarly, $(b \lor c)^{bo} \subseteq (a \lor c)^{bo'}$.

Let the set $B^{bo}(I) = \{(a)^{bo} : a \in L\}$ be the set of all relative boosters of a fixed ideal I in L, and the operations on $B^{bo}(I)$ are defined as the following:

 $(a)^{bo} \cap (b)^{bo} = (a \wedge b)^{bo}$ and $(a)^{bo} \sqcup (b)^{bo} = (a \vee b)^{bo}$ for all $(a)^{bo}, (b)^{bo} \in B^{bo}(I)$.

Theorem 2. The structure $(B^{bo}(I); \land, \sqcup, ^c, (0], I)$ forms a Boolean algebra, where $((a)^{bo})^c = (a^{\bigstar})^{bo}$ represents the complemented element of $(a)^{bo}$ in $B^{bo}(I)$. *Proof.*Since for any $a, b \in L$, $(0)^{bo} \subseteq (a)^{bo}$, $(b)^{bo} \subseteq I$, and by Proposition 2(9), the meet operation in $B^{bo}(I)$ is well defined.

Now, for any $a,b \in L$, $a,b \le a \lor b$, by using Proposition 2 (2), $(a)^{bo}, (b)^{bo} \subseteq (a \vee b)^{bo}$. That is $(a \lor b)^{bo}$ is an upper bound of both $(a)^{bo}$ and $(b)^{bo}$. Let $(c)^{bo}$ be another an upper bound of both $(a)^{bo}$ and $(b)^{bo}$. Then $(a)^{bo}$, $(b)^{bo} \subseteq (c)^{bo}$. Suppose that $x \in (a \lor b)^{bo}$, i.e., $(x \wedge (a \vee b)^{\bigstar} = x \wedge (a^{\bigstar} \wedge b^{\bigstar}) = 0.$ $x \wedge a^{\bigstar} \in (b)^{bo} \subseteq (c)^{bo}$. It implies that $x \wedge a^{\bigstar} \wedge c^{\bigstar} = 0$ and $x \wedge c^{\bigstar} \in (a)^{bo} \subseteq (c)^{bo}$. Hence $x \in (c)^{bo}$ and $(a \lor b)^{bo} \subseteq (c)^{bo}$. As a result, $(a \lor b)^{bo} = (a)^{bo} \sqcup (b)^{bo}$.

The distributive condition can be proved as the following, let $(a)^{bo}$, $(b)^{bo}$, $(c)^{bo} \in B^{bo}(I)$. Then

$$(a)^{bo} \cap [(b)^{bo} \sqcup (c)^{bo}] = (a)^{bo} \cap (b \vee c)^{bo} = (a \wedge (b \vee c))^{bo}$$

$$= ((a \wedge b) \vee (a \wedge c))^{bo}$$

$$= (a \wedge b)^{bo} \sqcup (a \wedge c)^{bo}$$

$$= ((a)^{bo} \cap (b)^{bo}) \sqcup ((a)^{bo} \cap (c)^{bo}).$$

Hence, $B^{bo}(I)$ is a bounded distributive lattice.

Since for any $(a)^{bo} \in B^{bo}(I)$ there $(a^{\bigstar})^{bo}$ $B^{bo}(I)$ \in such $(a)^{bo} \wedge (a^*)^{bo} = (a \wedge a^*)^{bo} = (0)^{bo} = (0],$ and if $(x)^{bo} \in B^{bo}(I)$ satisfies the property $(x)^{bo} \wedge (a)^{bo} = (0]$, we get $(x \wedge a)^{bo} = (0)$, and so $x \wedge a = 0$, that means $x \le a^{\bigstar}$, by Proposition 2(2), $(x)^{bo} \subseteq (a^{\bigstar})^{bo}$. Hence, $(a^{\stackrel{-}{\bigstar}})^{bo}$ represents the pseudo-complementation of $(a)^{bo} \in B^{bo}(I)$, and $(a)^{bo} \sqcup (a^*)^{bo} = (a \vee a^*)^{bo} = I$. Consequently, $((a)^{bo})^c = (a^*)^{bo'}$ is the complement of $(a)^{bo} \in B^{bo}(I)$. Therefore, $B^{bo}(I)$ is a Boolean algebra.

Example 1. Consider L in Figure 1. The relative booster of the set $A = \{a, c\}$ in the ideal $I = (\zeta)$ is $A^{bo} = \{0, a\}$ and its booster is $A^{\triangle} = \{0, a, c\}$. Figure 2 represent the boolean algebra of the set of all relative doosters in the ideal *I*.

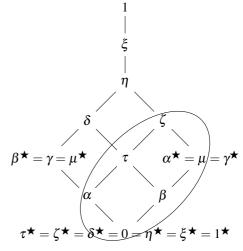


Figure 1: distributive p-algebra L

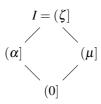


Figure 2: The Boolean algebra $(B^{bo}(I); \land, \sqcup, {}^c, (0], I)$

Lemma 2.Let I be a fixed ideal of L and J be an ideal of $B^{bo}(I)$. Then:

(1) For any ideal K of L, the set $\{(a)^{bo} : a \in K\}$ is an ideal of $B^{bo}(I)$.

(2) The set $\{a \in L : (a)^{bo} \in J\}$ is an ideal of L.

Proof. (1)For all $a,b \in K$ we get $a \lor b \in K$. So, if $(a)^{bo}, (b)^{bo} \in \{(a)^{bo} : a \in K\}, \text{ then } (a)^{bo} \sqcup (b)^{bo} = (a \lor b)^{bo} \in \{(a)^{bo} : a \in K\}. \text{ Now let }$ (a) $\Box(b) = (a \lor b) \in \{(a) : a \in K\}$. Now let $(a)^{bo} \in \{(a)^{bo} : a \in K\}$ and $(c)^{bo} \in B^{bo}(I)$ such that $(c)^{bo} \subseteq (a)^{bo}$. Then $(c)^{bo} \cap (a)^{bo} = (c)^{bo} = (c \land a)^{bo} \in \{(a)^{bo} : a \in K\}$, since $a \land c \in K$. Thus $\{(a)^{bo} : a \in K\}$ is an ideal of

(2)If $(a)^{bo}$, $(b)^{bo} \in J$, implies $(a)^{bo} \sqcup (b)^{bo} = (a \lor b)^{bo} \in J$. Accordingly, if $a, b \in \{a \in L : (a)^{bo} \in J\}$, then $a \lor b \in J$ { $a \in L : (a)^{bo} \in J$ }. Assume $a \in \{a \in L : (a)^{bo} \in J\}$ and $c \in L$ such that $c \leq a$. Hence $(c)^{bo} \cap (a)^{bo} = (c)^{bo} = (c \land a)^{bo} \in J$ and $c \in \{a \in L : (a)^{bo} \in J\}$. Therefore $\{a \in L : (a)^{bo} \in J\}$ is an ideal of L.

Definition 4.Let I(L) be a lattice of ideals of L and $I(B^{bo}(I))$ be a lattice of the ideals of $B^{bo}(I)$, for a fixed ideal I of L. Then define the maps:

 $\phi: I(L) \to I(B^{bo}(I))$ as: $\phi(K) = \{(a)^{bo} : a \in K\}$, for any ideal K of L and,

 $\psi : I(B^{bo}(I)) \to I(L) \text{ as: } \psi(J) = \{a \in L : (a)^{bo} \in J\}, \text{ for } J \in J \in J \}$ any ideal J of $B^{bo}(I)$.

Theorem 3.The maps ϕ and ψ are satisfy the following conditions:

(1)Maps ϕ and ψ are isotones,

(2) The map $\phi(\psi)$ is an identity map,

(3) The map $\psi(\phi)$ is a clousure operator,

 $(4)\psi(\phi(K\cap G))=\psi(\phi(K))\cap\psi(\phi(G)),$ for any two ideals $K, G \in I(L)$.

Proof. (1)If $K, G \in I(L)$ and $K \subseteq G$, then $\phi(K) \subseteq \phi(G)$.On the other side, suppose $J, H \in I(B^{bo}(I))$ such that $J \subseteq$ H. Then $\{a \in L : (a)^{bo} \in J\} \subseteq \{a \in L : (a)^{bo} \in H\}$. I.e., $\psi(J) \subseteq \psi(H)$.

 $\begin{array}{lll} \psi(J)\subseteq \psi(II).\\ \text{(2)Assume} & J\in I(B^{bo}(I)) \text{ implies} & \psi(J)\in I(L).\\ \text{Accordingly,} & (a)^{bo}&\in J\\ \text{iff} & a\in \psi(J) \text{ iff} & (a)^{bo}\in \phi(\psi(J)). \text{ Therefore} \end{array}$ $\phi(\psi(J)) = J.$

(3) Now we show that $\psi(\phi)$ is extensive, isotone and idempotent.

(i)Let $a \in K \in I(L)$. Then $(a)^{bo} \in \phi(K)$. It means $a \in \psi(\phi(K))$ and $K \subseteq \psi(\phi(K))$. Hence $\psi(\phi)$ is extensive.

(ii)Let $K, G \in I(L)$ such that $K \subseteq G$ and $a \in \psi(\phi(K))$. Then $(a)^{bo} \in \phi(K)$ and there exist $b \in K \subseteq G$ such that $(a)^{bo} = (b)^{bo} \in \phi(G)$. Since $\phi(G)$ is an ideal of $B^{bo}(I)$, hence $a \in \psi(\phi(G))$. As a result, $\psi(\phi(K)) \subseteq$ $\psi(\phi(G))$ and $\psi(\phi)$ is isotone.

(iii)We get $\psi(\phi(K)) \subseteq \psi(\phi(\psi(\phi(K))))$, Since $\phi(\psi(\phi(K))) \in I(B^{bo}(I))$. Conversly, suppose $a \in \psi(\phi(\psi(\phi(K))))$ implies $(a)^{bo} \in \phi(\psi(\phi(K)))$. Let $b \in \psi(\phi(K))$ and $(b)^{bo'} = (a)^{bo'} \in \phi(K)$. Therefore $a \in \psi(\phi(K))$ and it is idempotent.

(4)Suppose $a \in \psi(\phi(K)) \cap \psi(\phi(G))$.It $(a)^{bo} \in \phi(K) \cap \phi(G) = \phi(K \cap G).$ \cap \in $\psi(\phi(K))$ G))and $\psi(\phi(K \cap G)) \supseteq \psi(\phi(K)) \cap \psi(\phi(G))$. The convers is clear.

4 Disjunctive and Normal Relative Boosters

In the present section, the behavior of a disjunctive relative booster ideal and a normal relative booster ideal in distributive *p*-algebra are established.

Definition 5.An ideal I of L is a disjunctive relative booster if it satisfies

 $(a)^{bo} = (b)^{bo}$ implies that a = b for all $a, b \in L$.

Definition 6.*An ideal I of L is a normal relative booster* ideal if it satisfies

$$(a)^{bo} \lor (b)^{bo} = (a \lor b)^{bo}$$
 for all $a, b \in L$

In particular case I = L, we can say that L is called disjunctive (or normal) booster.

Example 2. Consider L in Figure (1). The ideal $(\tau]$ is disjunctive and normal relative booster while the ideal (η) is normal relative booster but not disjunctive. The ideal $(\xi]$ is neither disjunctive nor normal relative booster in L.

Theorem 4.Let I be a disjunctive relative booster ideal of *L.* Then I can be embedded into $B^{bo}(I)$.

Proof. Suppose that $\varphi: I \to B^{bo}(I)$ is defined by: $\varphi(a) =$ $(a)^{bo}$, for all $a \in I$. It is easy to see that φ is well defined. Moreover,

$$\varphi(a \wedge b) = \varphi(a \wedge b)^{bo} = (a)^{bo} \cap (b)^{bo} = \varphi(a) \cap \varphi(b), \text{ and}$$
$$\varphi(a \vee b) = (a \vee b)^{bo} = (a)^{bo} \sqcup (b)^{bo} = \varphi(a) \sqcup \varphi(b).$$

Also, φ is one-to-one follows from the disjunctive of *I*.

Corollary 2.L is disjunctive booster iff L is a Boolean algebra.

A characterization of a normal relative booster ideal is given in the following results:

Theorem 5.*An ideal I of L is normal relative booster iff* $B^{bo}(I)$ is a Boolean sub-lattice of I(L).

*Proof.*The necessary condition follows from Theorem 2. Conversely, suppose that $B^+(I)$ is a Boolean sub-lattice of I(L) and for all $(a)^{bo}$, $(b)^{bo} \in B^{bo}(I)$

$$(a)^{bo} \vee (b)^{bo} = (c)^{bo}$$
, for some $c \in L$.

So, $(a)^{bo}$, $(b)^{bo} \subseteq (c)^{bo}$, and $a,b \leq a \vee b$, by Proposition $2(2),(a)^{bo},(b)^{bo} \subseteq (a \vee b)^{bo}$. Thus, $(c)^{bo}$ and $(a \vee b)^{bo}$ are upper bounds of both $(a)^{bo}$ and $(b)^{bo}$. Since L is distributive, then I(L) so, and

$$(c)^{bo} \wedge (a \vee b)^{bo} = (c)^{bo} \wedge [(a)^{bo} \sqcup (b)^{bo}]$$

= $[(c)^{bo} \wedge (a)^{bo}] \sqcup [(c)^{bo} \wedge (b)^{bo}]$
= $(a)^{bo} \sqcup (b)^{bo} = (a \vee b)^{bo}$.

Therefore $(a \lor b)^{bo} \subseteq (c)^{bo}$ and $(a)^{bo} \lor (b)^{bo} = (a \lor b)^{bo}$.

Corollary 3.L is normal booster iff $B^{bo}(I)$ is a Boolean sub-lattice of I(L).

Theorem 6.If L is a Stone algebra, then L is a normal booster.

*Proof.*Since, $a,b \le a \lor b$, then by Proposition 2(2), $(a)^{\triangle}, (b)^{\triangle} \subseteq (a \vee b)^{\triangle}$ and so $(a)^{\triangle} \vee (b)^{\triangle} \subseteq (a \vee b)^{\triangle}$. Now, suppose that $x \in (a \lor b)^{\triangle}$, i.e., $x \land (a \lor b)^{\bigstar} = x \land a^{\bigstar} \land b^{\bigstar} = 0$. It implies that $(x \land a^{\bigstar} \land b^{\bigstar}] = (x \land a^{\bigstar}] \land (b^{\bigstar}] = (b)^{\triangle}$. But $(x] \wedge (a^{\star\star}) \subseteq (a^{\star\star})$ Accordingly, $((x] \land (a^{\star\star}]) \lor ((x] \land (a^{\star}]) = (x] \land$ $((a^{\bigstar}] \vee (a^{\bigstar \bigstar}]) = (x] \wedge (a^{\bigstar} \vee a^{\bigstar \bigstar}] = (x] \subseteq (a)^{\triangle} \vee (b)^{\triangle}.$ Therefore, $x \in (a)^{\triangle} \vee (b)^{\triangle}$ and $(a)^{\triangle} \vee (b)^{\triangle} = (a \vee b)^{\triangle}$

Corollary 4.A disjunctive booster distributive p-algebra is a normal booster

The convers of the above corollary is not true. For example, the Stone algebra of three elements chain is normal booster but not disjunctive booster.

5 Congruence Relations Via The Relative Boosters

In the present section a lattice congruence defined via the relative boosters is studied and some properties are derived.

Definition 7.[6] A Gilvenko congruence relation Φ on L is defined as

$$a \equiv b(\Phi) \ iff \ a^{\bigstar \bigstar} = b^{\bigstar \bigstar}.$$

Theorem 7.Let Θ be a binary relation defined on L by the rule, for a fixed element $z \in L$ and fixed ideal I of L,

$$a \equiv b(\Theta)$$
 iff $(a)^{bo} \cap (z)^{bo} = (b)^{bo} \cap (z)^{bo}$ for all $a, b \in L$.

Then Θ is a lattice congruence on L.

*Proof.*It is clear that, Θ is an equivalence relation on L. Now, let $a \equiv b(\Theta)$ and $c \equiv d(\Theta)$ for all $a, b, c, d \in L$ by the definition, we get

$$(a)^{bo} \cap (z)^{bo} = (b)^{bo} \cap (z)^{bo}$$
 and $(c)^{bo} \cap (z)^{bo} = (d)^{bo} \cap (z)^{bo}$, thus

$$(a \wedge c)^{bo} \cap (z)^{bo} = (a)^{bo} \cap (c)^{bo} \cap (z)^{bo} = (b)^{bo} \cap (d)^{bo} \cap (z)^{bo}$$

$$= (b \wedge d)^{bo} \cap (z)^{bo}, \text{ and}$$

$$(a \vee c)^{bo} \cap (z)^{bo} = ((a \vee c) \wedge z)^{bo} = ((a \wedge z) \vee (c \wedge z))^{bo}$$

$$= (a \wedge z)^{bo} \sqcup (c \wedge z)^{bo} = (b \wedge z)^{bo} \sqcup (d \wedge z)^{bo}$$

$$= ((b \wedge z) \vee (d \wedge z))^{bo} = ((b \vee d) \wedge z))^{bo}$$

$$= (b \vee d)^{bo} \cap (z)^{bo}$$

Therefore, $a \wedge c \equiv b \wedge d(\Theta)$ and $a \vee c \equiv b \vee d(\Theta)$). That is, Θ is a lattice congruence relation on L.

Example 3. Consider relative boosters of elements of lattice L in ideal $I = (\zeta]$. Closed curves in Figure 3 represent the congruence classes of relation Θ which is defined as $a \equiv b(\Theta)$ iff $(a)^{bo} \cap (\alpha)^{bo} = (b)^{bo} \cap (\alpha)^{bo}$ for a fixed element $\alpha \in L$ and for all $a, b \in L$.

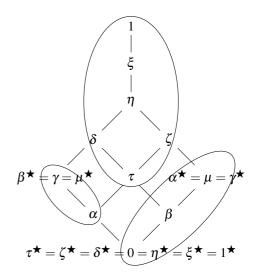


Figure 3: Congruence classes of relation Θ

Corollary 5. If the fixed element z in L, $z \in I \cap D(L)$ is dense element, then the congruence relation Θ on Ldefined as

$$a \equiv b(\Theta)$$
 iff $(a)^{bo} = (b)^{bo}$ for all $a, b \in L$

In particular case, whenever I = L, we have

$$a \equiv b(\Theta)$$
 iff $(a)^{\triangle} = (b)^{\triangle}$ for all $a, b \in L$

A Gilvinko congruence is an example of this congruence.

Theorem 8.Let Θ be a congruence relation on L defined

$$a \equiv b(\Theta)$$
 iff $(a)^{bo} = (b)^{bo}$ for all $a, b \in L$.

Then, the structure $(L/\Theta; \wedge, \vee, ^c, (0], D(L))$ forms a Boolean algebra.

*Proof.*From the definition of the class $[a]\Theta = \{x \in L : (x)^{bo} = (a)^{bo}\}$, we have

$$[0]\Theta = \{x \in L : (x)^{bo} = (0)^{bo}\} = \{0\} = (0].$$

So, $[0]\Theta$ is the smallest congruence class of L. Also, let $d \in D(L)$,

$$[d]\Theta = \{x \in L : (x)^{bo} = (d)^{bo}\} = \{x \in L : (x)^{bo} = (1]\}$$
$$= \{x \in L : x^* = (0]\} = D(L).$$

D(L) is a class of L/Θ , since the set of dense elements D(L) forms a filter of L, then for any $x \in L$ and $d \in D(L)$, we have $x \lor d \in D(L)$. Thus $[x]\Theta \lor [d]\Theta = [x \lor d]\Theta = D(L)$. Therefore, D(L) is the largest element of L/Θ . Moreover, $[a]\Theta \land [a^{\bigstar}]\Theta = [a \land a^{\bigstar}]\Theta = [0]\Theta$

and $[a]\Theta \vee [a^{\bigstar}]\Theta = [a \vee a^{\bigstar}]\Theta = D(L)$. It means that the complement $([a]\Theta)^c$ of $[a]\Theta$ is $[a^{\bigstar}]\Theta$. As a result, L/Θ is a Boolean algebra.

Example 4.Consider relative boosters of elements of lattice L in ideal $I=(\zeta]$. Closed curves in Figure 4 represent the congruence classes of relation Θ which is defined as $a\equiv b(\Theta)$ iff $(a)^{bo}\cap(\delta)^{bo}=(b)^{bo}\cap(\delta)^{bo}$ for all $a,b\in L$. It is equivalent to $a\equiv b(\Theta)$ iff $(a)^{bo}=(b)^{bo}$, since $\delta\in D(L)$. Figure 5 shows the Boolean algebra of L/Θ .

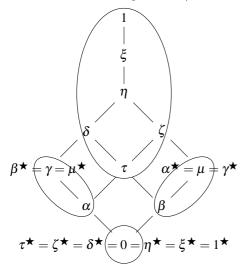


Figure 4: Congruence classes of relation Θ

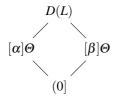


Figure 5: The Boolean algebra $(L/\Theta; \wedge, \vee, {}^c, (0], D(L))$

Corollary 6.Let $B^{bo}(I)$ be a Boolean algebra of relative boosters of fixed ideal I of L and Θ be a congruence defined as

$$a \equiv b(\Theta)$$
 iff $(a)^{bo} = (b)^{bo}$ for all $a, b \in L$.
Then, $L/\Theta \cong B^{bo}(I)$.

6 Conclusion

- (1)The structure of relative booster ideals of a distributive p-algebra L forms a Boolean algebra, and hence it is a generalization of the booster ideals of L. Moreover, there is a closure operator generated by $I(B^{bo}(I))$ on the lattice ideal of L.
- (2)A distributive p-algebra L is disjunctive booster iff L is a Boolean algebra, and L is normal booster iff the structure of booster ideals is a sublattice of the structure of all ideals of L.
- (3)If the congruence relation Θ defined via the relative booster ideal of a distributive p-algebra L. Then the structure $(L/\Theta; \wedge, \vee, ^c, (0], D(L)))$ forms a Boolean algebra isomorphic to the Boolean algebra of relative boosters.

Conflicts of Interests

The authors declare that they have no conflicts of interests

References

- [1] G.Gratzer, *Lattice Theory: Foundation*, Springer Basel AG,(2011).
- [2] A. Badawy and M.S. Rao, σ-Ideal of Distributive *p*-algebras, *Chamchuri Journal of Mathematics*, **6**, 17-30(2014).
- [3] W.H.Cornish, Annulets and α-Ideals In A Distributive Lattice, *J. Aust.*, *Math. Soc.*, **15**, 70-77(1973).
- [4] Y.S.Pawar and S.S.Khopade, α-ideals and annihilator ideals in 0-distributive lattices, *Acta Univ. Palacki. Olomuc. Fac. Rer. Nat. Mathematica*, **49**(1), 63-74(2010).
- [5] A. Badawy and R. El-Fawal, Closure Filters of Decomposable MS-Algebras, Southeast Asian Bulletin of Mathematics, 44(2), 177-194(2020).
- [6] R. Noorbhasha, B. Ravikumar and K.P. Shum, Closure Filters and Prime Fuzzy Closure Filters of MS-Algebra, *Korean J. Math.*, **28**(3), 509-524(2020).
- [7] N. Rafi, Ravi Kummar Bandaru and G.C. Rao, e-filters in a Stone Almost Lattices, Chamehuri Journal of Mathematics, 7, 16-28(2015).
- [8] N. Rafi and B. Ravikumar, β Prime Spectrum of Stone Almost Distributive Lattices, *Discussiones Mathematicae General Algebra and Applications*, **40**, 311-326(2020).