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Abstract: This paper is concerned with two-dimensional(2-D) disemtstem of the following form

Xmi1,n+&mnr1 = T (K, (1+a)Xmn bXm-1n),

wherea, i, bis a real parameters. We investigate the fixed planes, isyadfithe fixed planes and spatial chaos behavior for thitesys
A stability condition for the fixed plane is given, and it iogen analytically that for some parameter values the syhtesa transversal
homoclinic orbit, which is a verification of this system to dfeaotic in the sense of Li-Yorke. These results extend theesponding
results in the one-dimensional (1-D) Hénon system:

Xmt+1,n0 = f(uvxm7no7bxmfl,no)7

whereng is a fixed integer. These results also extend the correspgmésults in the 2-D Logistic system:
Xmi1n +&mns1 = F(U, (1+@)Xmn,),

Keywords: Spatial Logistic system, spatial Heénon system, two-disi@mral discrete system

1 Introduction then system (1) becomes,respectively,

In the. e_ngine_erin_g app!icatic_)ns, particularly i.n the fields X 10 = UXmn(1— Xmn), 2
of digital filtering, imaging, and spatiotemporal

dynamical systems, two-dimensional (2-D) discrete©f )

systems have been a focused subject for investigation Xm+1n = 1— UXqn, (3
(see, for example,1f2,3,4,5] and [9,10,11,12] and the
references cited therein). In this paper, we consider the _ 2
following 2-D discrete system: Xmi1n = 1= HXnn+ DXmn-1, )

m (2)- re regular 2-D discr logisti ms in
Xm+1,n + axm’n+1 = f(u7 (1_|_ a)Xmanme_l’n), (1) Zlyf?é?ent(fo)rgga e regulal discrete (0]0] stic SySte S
wheremne N, = {r,r+1,r+2 ...} r is an integer and Let ng be a fixed integer. i = ng, then systems (2)
r <0, a,u,bis areal parameters, anfd: R — R is a and (3) become
nonlinear function witlR = (—oo, +0).

First, observe that in the particular case where Xm+1np = HXmng (1 —Xmn), ®)
a=0b#0,u#0and or
f(xy) = px(1-x), Xm-1n0 = 1= KX (6)
or )
f(X7 y) =1- I'lX27 Xm+1,n0 =1- Ilem’no + mefj_,no. (7)
or Systems (5) and (6) are the standard 1-D logistic
fxy) =1— ux? + by, systems. System (4) reduces to (7), and systems (7) is the
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standard 1-D hénon system. Hence, system (1) is quitgB)for everyp € Sand periodic poing € | with p#£q
general. The focus of this paper is on system (1), the
stability and spatial chaos behavior in the sense of
Li-Yorke is studied.

Moreover, system (1) can be regarded as a discretqhe 1D dynamical system_; = f () that satisfies the
analog of the following functional partial differential apove conditions is said to be chaotic in the sense of Li

lim sup|f¥(p) — f*(q)| > 0.
k—00

equation: and Yorke.
Jdu Ju
&_Fad_y = F[u,(1+a)u(x,y),bu(x—1,y)], (8) 21 Mafotto Theorem

In fact, this system is a convection equation with a Consider than-dimensional difference equation
forced term in physics. Therefore, some useful
information for analyzing this companion partial
differential system can be derived.

The purpose of this work is to study the fixed planes,
stability of the fixed planes and dynamic behavior of
system (1), give a stability condition for the fixed plane,
and provide just such a mathematical proof of the
complex behavior. In particular, we shall show
analytically that (1) satisfies sufficient conditions foeth
system to be chaotic.

Xer1 = F (%), x € R 9)

Suppose that Eq.(12) has a fixed pointThis fixed point
xX* is called asnap-back repelléfr
(i) F(-) is differentiable in a neighborhodg(x*,r) of
x*, with radiusr > 0, such that all eigenvalues of the
Jacobian are strictly larger than one in absolute values;
(i) there exists a pointy € B(x*,r), with xg # X*, such
that for some integem > 0, F™(xg) = x* and F™(+) is
differentiable ato with deDF™(xg) # 0.
If Eq.(9) has a snap-back repeller, then Eq.(9) is

2 Li-Yorke chaos and Marotto Theorems chaotic in the sense of Li-Yorke.

Li and Yorke [6] introduced the first precise definition of
discrete chaos and established a simple criterion for chaod-2 Marotto Theorem

in 1-D difference equation in 1975. Then Marotig §]
generalized the result ton-dimensional

difference
equations, and showing that the existence of a snap-backxy.1 = (X, byk),

Consider the following difference equation
(10)

repeller implies the existence of chaos in the sense of Yir1 = Xc.

Li-Yorke. With the
researchers on its original conditiord,10], Marotto

recent corrections by several

wheref : R?2 — Ris differentiable, wherb is close to 0,

Theorems are still the best one in predicting and®@" be reduced to the one-dimensional equation:

analyzing discrete chaos in higher-dimensional diffeeenc x,, 1 = f(x,0),

equations today, which are described as follows.
Lemma 2.1.Let| C Rbe an interval and : | — | be a
continuous map. Assume that there is a pant I,
satisfying

f3(a) <a< f(a) < f2(a)

or
f3(a)>a> f(a)> f2(a).

Then:

(1)For everyi = 1,2,---, there is a periodic point of!
with periodkin I.

(2)There are an uncountable s&tC | (containing no
periodic points) and an uncountable subSgtC S
such that

(A)for everyp,q € S with p# q,

lim sup| f*(p) — fk(q)‘ >0
k—0o0
and

lim inf fk(p)—fk(q)‘ -0,

k—so0

(11)

Suppose Eq.(11) has a snap-back repeller. Then
Eq.(10)has a transversal homoclinic orbit for fl] < €
for somee >0
Notes that when f(u,(1 + a)Xmn,0Xm-1n) =
1— p[(1+ a)Xmn|? + bXm-1n, System (1) becomes,

Xmt+1,n+ &Xmnr1 =1 — U[(1+ a)xm,n]2 + me—lJ'Iv (12)

and itis called apatially generalized Henon systemthat
is

Xmi1n+ &mnp1 = 1— p[(1+ 5‘))(m,n]2 +b(1+a)ymn

Ym+1in = mxm,n- (13)

Note that wherb = 0 in system then system becomes
Xmiin+ &mnr1 = 1— H[(1+a)xma®  (14)

which was the case studied i, 2,3,4] Since Eq.(12) is

a continuously differentiable perturbation of Eq.(14), We

therefore employ Marotto’s Theorems to state the stability
and spatial chaos conditions of the system (12) from an
analysis of the system (14) in the next section.
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3 A Fixed Plane of the Spatial System

The following result is well known, a zero poirt of x—
f (1,x) =0 is said to be a fixed point df. The fixed point
of the 1-D logistic system (5) can be written

o = —-1+/1+4u
=y

Definition 3.1 Let X = x* for all myn € N;. Then, x*
is called a fixed plane of the 2-D systemxif is a zero
solution of(14+a)x— f (i, (1+a)x,bx) = 0. Afixed plane
is denoted by (2D).

Next, using Definition 3.1, it is easy to obtain the
following results about the fixed plane of system (12)
Theorem 3.1 A fixed plane of spatially generalized Hénon
system (12) can be written

(15)

Xmn

Xn,.n =X =
—(1+a-b)+/(1+a—-b)2+4u(l+a)?
2(1+a)?u '
Note that wherb = 0, system (12) reduces to the spatially
generlized logistic system, and whar= 0, the spatially
generalized hénon system reduces to the 1-D hénon (b)
system. Then the following result can be obtained:

Corollary 3.1. (i) Whena = 0, taken = ng (constant), the Eig. 1: (a) Stability case of the solutions for system (19). (b) The
fixed point of system (7) can be written fixed plane of system (19).

. b—1£,/(1-b)?2+4u
X = 21 . a7

(16)

Let

(ii) Whenb = 0, the fixed plane of system (14) is given
by Xo-1.n + @%mnt-1 = T (U, X + @, DXm-1.n),
W — —]é?;-\_'_/ ];)l- 4H7m7n e (18) Xmi2,n + &%mnt2 = F (4, Xmy1,n + @%mns1, DXmpn),
_ H Xrn + &% = | (UaXer(k—l),n + &Xmn+ (k-1)5 bXmik—2n)-
Remark 1. It is clear that Eq.(17) and Eq.(18) are the (20)
special case of Eq.(16), respectively, correspondingab th For anym,n € N, the sequence
the 1-D Hénon system (7) and the spatially logistic system
(14), are the special case of system (12). {Xmn + @%m, Xm 1.0 + @Xmnt 1, -,
Example 1. Consider system (12), and take *mtk—1n+ &mnik-1,Xm + aXm}
p(l+a? =018 u = 0.045a = 1,b = 0.0L Then js called a spatially periodiorbit, denoted by
system (12) becomes to

Xmn =

ri(a,mn) = Xn, -1+ &nnei-1,0 = L2,k

Xmi1n -+ Xmni1 =1 — 0-18X§1n+ 0.0%m-1n (19)  Then, itfollows from (20), that thk—periodic points(a,
m,n), ra(a m,n), ... ,rg(a, myn) are all fixed points of the
and the fixed planes of system are giverxgy—= x* = 0.87 composite function
as shown in Fig.1.
f(u,a f(u,a,.. f(Laxy)...)).

ktimes

(u,a,xy) =

4 Periodic Orbits and Stabilities of the

Spatially Fixed Plane Theorem 4.1Assume that € (—o0,+)\ {1}, |b| < &,

a stability condition for the fixed plan€of the 2-D spatial
_ _ . _ - _ system Eq.(16)is

][n tms ?ectcljor}, morgllg)gr|oq points and stability condition . 2148 b)(E+ 1+ [a) . (b2+1+|a\)2]
or the fixed plane will be given. W< 2 al i7a?

(1)
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Proof. For anym,n € N;, takex" € L(2D), and start the
orbit with a small distance away frori. Define a nearby
point by

Xon = X"+ Em (22)

whereé&n is the small quantities, and similarly, we also

have {

Xmi1n+ @*mni1 = (L+a)X" + (Emy1n+@Emnr1). (24)

Xme1n = X"+ Emy1n,
Xmnt1 = X"+ Emny1.
Xm-1,n = X"+ Em_1n,

(23)
Then
Substituting Eq.(23) and Eq.(24) into Eqg.(1), we obtain

(1+a)X + (&myin+ @Emns1) =
flu, (1+a)(X" + &m),b(X" + &m-1n)]-

and 2-D discrete system stability simply means that whe

approaching the fixed point, the difference between the
kth iteratex,, andx* keeps decreasing. In other words, it
follows that

Em+1n Emn+1 Emn

<1, <1

<1,

(25)

Em mn Em-1n

Therefore, whemm andn are sulfficiently large, applying
(25) yields

€mi1n 1 €mi1n 1
= (26)
(1+a)em| [1+al| &m |1+ a]
and
Emn+1 _ 1 Emn+1 1 ' @27)
(1+a)gm| |1+a]| &m |1+a]
bzgmfl,n _ b2 Emfl,n b2 . (28)
(1+a)em| [1+al]| &m |1+ a]
One obtains
Emr1n + aémn+1 1+ |a|
(1+a)em ~|1+4
1 whena € [0, ),
—{ I2whenac (-1,0), (29)
&1 whena e (—o,—1).

Next expandindg to its Taylor series for the first order in
€m, Em—1,n, ONE gets

(1+a)X"+ (ém+1n+@mnt1) = 1, (1+a)X", bx]
7} 17}
(55 L+ e+ g ben ) [k, (1 &)X, b+ (30)
Note thatx* is a fixed plane of system (1) so

X' +ax' = (1+a)x" = f [y, (1+a)x",bx]. (31)

Substituting Eqg.(31) into Eq.(30) and suppressing from
both sides the same items, one can obtain

Em+1n + Almnt1 =

0
a/bem,l’n) flu, (1+a)x",bx* | +...

—2u(1+a)3* (1 + a)&m + b%em_1n

(0_)((1+a)8mn+

applying Eq.(29)

—2u(1+a)x* : 32
substituting Eq.(16) into Eq.(32) gives,
2
_pb— _p)2 2
J1+a b \/(1+a b)2+4u(1+a) +|1+a|
1+|a
33
|1+ a (33)

solving for u to yield the stability condition for the fixed
pointx* as
__ 1 2(1+a—b)(b?+1+a) (b®+1+a))?
4(a+1)2 [1+4 (1+a)?
This completes the proof of Theorem 4.1.

Corollary 4.1 (i) Whena= b= 0 andn = ng (constant),
the stability condition for the 1-D system is

3
2 4
H<, (34)
(i) Whenb = 0,a = 1, the stability condition for the
spatially general logistic system is

(

Remark 1. Note that Eq.(34) is just the familiar stability
condition for 1-D Logistic system, which shows again that
the 2-D system is a natural extension of the 1-D system.
Example 2. Takep = 0.345> =, u(1+a)>=1.38 a=
1,b=0.1. Then we obtain the fixed plane and the stability
condition for the case of spatially Henon system, and Fig.2
shows the behavior of the solution and the unstable case of
the solution within the fixed plane.

1
4

1+lal+(@+1)?\*
16

(a+1)2

11<E.

5 A Proof of Spatial Chaotic Behavior for
the General 2-D Henon System

In this section, the chaotic behavior in the general 2-D
Hénon system Eq.(12) is investigated, a verification of the
system to be chaotic in the sense of Li and Yorke is
derived.

LetV = R®, and takeVp = R= (—o, ®). SoVp C V.
According to Theorem 2.2, Eq.(12) will have a
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satisfying: (ikin+ axmj = (L+a)x* foralli > M,j > N

for some M,N, (i) Xn + amj — (14 a)x* as

i — —oo, j — —oo (iii) h'(Xin+ axmj) # 0 for all i, j, then
(1+a)x* is a snap-back repeller. Such a sequence can be
generated in the following manner. If let
Xon + aXmo = (1 +a)x*, then, since(1+ a)x* is a fixed
plane of system (35 n+axmj = (1+a)x* for all i > 0,

j = 0. Note thatxin + aXmj (for all i <0, j <0) can be
constructed by iterating the multi- valued inverse of
system (35), that is, if
Xit1nt@Xmjr1=1— “()(in+axmj) , then

o H(Xin+ aij)z =1- (Xi+1,n+ aXm,j+l)~

(@ Hence

1
1- (Xi,n"' aXm,j)) 2
u
= hi(u,a,%in + axm)) (36)

provided thain + axmj < 1. With Xon + axmo = (14 a)x*
we have two choices fok_ 1, + axm—1 according to
Eq.(36). Choosing the plus sign for this initial point with
indices i = 0,j = 0 will not yield an appropriate
sequence, because one would get

Xi—in+t&mj-1==* (

X_in+ &n-1= hll(u, a, Xon + @%mo)
=hiYp,a (1+a)x) = (1+a)x'

(b) .
Hence, define
Fig. 2: (a) Unstable case of the solutions for system (19). (b) The .
unstable case of the fixed plane. X_1n+@%m—1=h_"(H,a,Xon + a%mo)-

Note that
X_in+ &Xmn-1= h:l(lJa a,Xon + axnﬂ)
=h"Yu,a (1+a)x) = —(1+a)x*

So, letxi_1n+ @Xmj-1 = h71 (U, a,Xin + axm;) in for all
Now we shall show that this solution

transversal homoclinic orbit for allb| < € for some
€ > 0, if the equation:

Xm0+ &mnp1 = 1— p[(1+ a)xmn]z

= N(H, @ Xin +axmj). i, j,mn € Nr. (35) % + 8% F e e SalisfiesKin + axmj — (1+a)X" as
has a snap-back repeller. We shall show this fori, j = —o (fbr apbropriate values gft). Note that since
appropriate values @i, in particular foru > 1.55 X_1n+&%m-1=—(1+a)x" < (1+a)x*, so have

First takex* = _éﬁﬁ € L(2D), and then observe
that (1+ a)x* = _1+‘/“1+T is an unstable fixed plane of X-2n+@m-2=h HHa X0+ @m 1)
system (35), i.e.{1+a)x* = h(u,a,(1+a)x*), due to € hit[—oo, (1+a)x] C (1 +a)x*, o).

/ kY o3
H(k.a,(1+a)x") = —2u(1+a)x". Hence We shall find those values gffor whichX_s 4+ axm 2 <

1, note that
h/(uvavx*) =1- V 1"'4“ < _17u > Ea

1
1 (1+4p)z
Xfl’n‘f'aXm’fl == —(1+a)X = M

where 2u ’
1[/1+]a+(@+1)2\° then by
&= 4|\ (@+1z2 ) | -1
(a+1) X_2n4@%m_2 = h7 (U, a,X 10+ @%m 1)
Next, for all mn € N;, if one can find a solution _[14+(1+a)x :
{Xin+aXmj }i ;= o0 _or With not all Xin + aXmj = (1+a)x* = 7 ’

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

744 NS 2 F. Sun, Z. W Stability and spatial chaos...

S0,X_2n+am_2 < 1 implies
1+ (1+a)x*/u]% <1,
thatis,(1+a)x" < u—1,o0r

(~1+ (L+4p)2)/2p < p— 1,

this problem can be written

pd—2u?+2u—2>0.

It is easy to observed that all values jof> 1.55 satisfy
this equation, and so

X_2n+ &m-2€ (1+a)x,1)

for these values ofi. Let us restrict the remaining of the Fig- 3: Inverse iterates Ofm. 10 +Xmn+1 = 1 — Xy, fora=1
discussion problem whem > 1.55. andp > 1.55.

Since X_2n + aXm-2 € ((1+a)x",1) for these u
values, one gets
X_3n+a%n-3=h' (1,8, X 20+ 8%m 2)

eht((1+a)x,1) c (0,(1+a)x")

and consequentiX_z, + axm_3 € (0,(1+a)x"). Also
gets

X 4n+ &&m—4 = hjrl(u, a,xX-3n+ axm,—?:)
€ h;l (0,(1+a)x")
C i [(Xpn+ @%Xm -1, (1+a)X7)]
C ((L+a)x",x 2n+axm-2)

and thus<_a n+axm_4 € (14 a)X*,X_2n+ a%m_2) . This (@
implies .
0.8
X_5n+ @m-_5= hll(lla a,X_an+ aXm,*4) 06f
€ hi (1 +a)x', X_on+ aXm—2)] 9 R

C (Xant @n -3 (1+a)x).

o2k b . e

Ymn

Hence, X.5n + @&m-5 € (X_3n+a%m—3,(1+a)x’). or ¥ G
Using this manner, the sequen@an+axmj}0‘0 s e

i,j=—00,—00 .
thus constructed satisfies the foIIowing'J properties: oul e T
X_2i,n+ @Xm _2;j is @ decreasing sequence bounded below e
by (1+a)x", andX_s_1n+ a¥m_2j—1 iS an increasing B TR o5 0 05 1 s
sequence bounded above b+ a)x* (Fig.3). Hence,
there must exist a plane < (0, (1+a)x*) that is the limit (b)
Of X_2i_1n+@Xm_2j—1, and a plan& < [(1+a)x*,1] that
is the limit of X_j n + axm —2j, @si, j — . It can also see
that such a sequence generated in manner from th
following Fig.3, where r_j = X_jn + @m-i,
[y = (1+a)X*

Next let us show thgp = o = (1+ a)x*. Since

Fig. 4: (a) chaotic behavior of system (37). (b) Section View of
ghaotic behavior of system (37).

h(M,a,X 2-1n+ @m—2j-1) = X_2i,n+ &m__2j
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Fig. 5: (2) Chaotic behavior of system(38). (b) Bifurcation
behavior of system(38).

(b)

0.4

0.3

0.1

-0.1

-0.2

-0.3

Fig. 6: Chaotic behavior of system(39).

and

h (M, a,X 2,0+ 8m—2j) = X_2i+1,n + &m—2j+1,

it must be thath(u,a,p) = o and h(u,a,0) = p.
Consequentlyh(h(p)) = p, andp is thus a fixed plane of
the functionho h. But, for u > 1.55, there are precisely
four fixed planes oho h (since this function is a quartic
polynomial), each of which can be computed exactly:

05

—1 (1+4p)7 —1:+(4p—3)?

2u

)

2u

It is easy to see that, for
> 155 —1— (1+4u)?/2u

and —1—(4;1—3)%/2;1 are both negative, and thus
neither of these can equal € (0,(1+a)x*). Consider
that

1
<(Atax = -1+ (1+44p)?2 ’
2u

~1+ (4u—3)?
2u

then,(1+4u)% > 2+ (4u —3)%. Squaring each side of
this inequality, one gives (4u — 3)% < 0, which is a
contradiction for u > 155  This implies
1+(4u—3)%/2u > (1+ a)x*. Therefore, there must
exists thatp = —1+(1+4u)?1/2u = (1+a)x* and
o =h(p) = (1+a)x". So, Xin + aXmj — (1+a)x" asi,

j — —oo.

So far we have verified that the sequence

{Xin + @mj } - e _., Satisfies (i) and (i) from the

theorem of Marotto above. It can be easily verified that it
also satisfiegiii). Sincel (u,a,xmn) = —2u(1+ a)Xmn,

the only possibility forh'(u,a,Xin + axmj) = 0 is when
Xin + &mj = 0 for somei and j. But the sequence was

constructed in this manner, one gets
Xin + &mj = (L 4+ ax* for i >0, j > 0,
X_in + @&m-1 = -1 + ax < 0,

X_2n+@m—_2 > (14+a)x* > 0, X_3n+ axm 3 > 0, and

Xin+@Xmj € (X_3n+ aXm_3,X_2n+ am_2)
C (0,1),

for all i < —3 and j < —3. Hence the sequence also
satisfies (iii), and (1+ a)x* is therefore a snap-back
repeller of system Eq.(35). According to thdarotto
Theorem 2.2, we shall have the conclusion that the 2D
system Eq.(12) has a transversal homaoclinic orbit for all
|b| < & for somee > 0, so is chaotic in the sense dfi
andYorke. Following the above analysis, it can be shown
that each of these is a snap-back repelleh oh for all
> 1.55. Continuing in similar manner, the region pof
values can be extended for even smaller values.

6 lllustrative Examples

Example 3 Whena = 1.4,b = 0.3, u(1+ a)? = 1.4,
Consider the following form of Eq.(10):

Xmiin+ L&mnp1 = 1— 14X 1+ 0.72mn
1
Ymiin = ﬂxm,n- (37)

the system spatial dynamics behavior are demonstrated by
Fig.4, it is shown that system (37) is the extension of 1D
Hénon System.
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Example 4 Consider again system (37) and take [5]S.T. Liu, G. Chen, Asymptotic Behavior of Delay 2-D

a= —18/25b = 0, u = 375/196. Then, the system Discrete Logistic Systems. IEEE Trans Circ Syst | 2002;
becomes 49(11):1677-1682.
[6]Li, T. Y. & Yorke, J. A. Period three implies chaos, Amer.
.. 18 4, 3.0 (38) Math. Monthly 1975;82, 481-485.
mrln T ogmntl 20°™ [7] Marotto, F. R., Snap-back repeller implies chaos in Rh;”

. ] o Math. Anal. Appl. 1978;63, 199-223.
with i = 375/196 > 1.55. that system is chaotic in the  [8] Marotto, F. R., Chaotic behavior in the henon mapping,”
sense of Li-Yorke. The chaotic behavior of system is Commun. Math. Phys. 1979;68, 187-194.

demonstrated by Fig.5. [9] G. Chen, C. Tian, Y. Shi, Stability and chaos in 2-D disere
On the other hand, whex= 0 andng = O, system reduces systems. Chaos, Solitons & Fractals 2005;25:637-647.
to [10]C. P. Li, G. Chen, On the Marotto-Li-Chen theorem
and its application to chaotification of multi-dimensional
Xmi1 = 1_1-4Xr2n+ 0.3%m_1. (39) discrete dynamical systems. Chaos, Solitons & Fractals

2003;18:807-817.
Clearly, system (39) is just a special case of simple Hénor11] F.Y. Sun, S.T. Liu, Spatial chaos-based image enawypti
system. Fig.6 shows its chaotic behavior. design. SCI CHINA SER G 2009 52(2):177-183.
[12] F. Sun, S. Liu, Cryptographic Pseudo-Random Sequence
from the Spatial Chaotic Map. Chaos, Solitons & Fractals

7 Conclusions 2009;41(5):2216-2219.

In this paper, we study the fixed planes, the stable
condition of the fixed planes, and analytically prove the
existence of a transversal homoclinic orbit of (12)for
small values ofb and appropriate values dd, u by
applying Marotto theorem, it is to show that for those
values ofu for which Eq.(12) has a snap-back repeller,
for those values oft for which chaos occurs. Numerical
studies of Eq.(12) indicate that this does in fact occur. On
the other hand, Eq.(39) is just the familiar 1-D hénon at Henan University of
system, and may be viewed as a special case of the highe Technology of China, and
dimensional discrete system (12), which shows again that Academic Technology Leader
the 2-D hénon system is a natural extension of the 1-Dof Henan Provincial Department of education(China).
hénon system. Her research interests are in the areas of non-linear theory
and application, including the mathematical methods and
models for complex systems, chaos and its application,
Acknowledgment circuit design. She has published some research articles in
reputed international journals and applied for and

This work was supported by the National Natural Science?Uthorized some patents.

Foundation of China (N0.61001099), and Basic Scientific
Research Special Fund of Henan University of Technology

(No.2015RCJH18). Z_ongwang LU
received the Master

degree of Electronic and
Communication Engineering
at Guilin  University of
Electronic Technology
of China. He is Associate
Professor of Information
Science and Engineering
at Henan University of
Technology of China. He is
an expert of food stuff safety engineering warehouse

Spatial Chaos. Int J Bifurcat Chaos Appl Sci Eng 2003; Inte'zlllgen't upgrade e?(pert databag:e of Henan Provmge of
13(5):1163-1181. China. His research interests are in the areas of non-linear

[4] S.T. Liu, G. Chen, Nonlinear Feedback-Controlled theory and application.
Generalized Synchronization of Spatial Chaos. Chaos,
Solitons & Fractals 2004; 22(4):35-46.

Fuyan Sun received
the PhD degree in Control
Science and Engineering
at Shan Dong University
of China. She is Associate
Professor of Information
Science and Engineering

References

[1] G. Chen, S.T. Liu, On Spatial Periodic Orbits and Spatial
Chaos. Int J Bifurcat Chaos Appl Sci Eng 2003; 13(3):867- e
876.

[2] G. Chen, S.T. Liu, On Generalized Synchronization of
Spatial Chaos. Chaos, Solitons & Fractals 2003;15(2):311-
318.

[3] S.T. Liu, G. Chen, On Spatial Lyapunov Exponents and

(@© 2016 NSP
Natural Sciences Publishing Cor.



	 Introduction
	Li-Yorke chaos and Marotto Theorems 
	 A Fixed Plane of the Spatial System 
	 Periodic Orbits and Stabilities of the Spatially Fixed Plane
	 A Proof of Spatial Chaotic Behavior for the General 2-D Hénon System
	 Illustrative Examples
	 Conclusions

