On I-Convergent Sequence Spaces of Bounded Linear Operators Defined By A Sequence of Moduli

Vakeel A. Khan* and Mohd Shafiq

Department of Mathematics, Aligarh Muslim University, Aligarh-202002, India

Received: 12 Aug. 2014, Revised: 13 Nov. 2014, Accepted: 14 Nov. 2014
Published online: 1 May 2015

Abstract: In this article we introduce and study sequence spaces $C^I(T, F_k), C^0(T, F_k)$ and $B^I(T, F_k)$ on the sequence of bounded linear operators with the help of a sequence $F_k = (f_k)$ of modulus functions. We study some topological and algebraic properties, prove the decomposition theorem and study some inclusion relations on these spaces.

Keywords: Bounded operators, Ideal, filter, I-convergent sequence, solid and monotone space, modulus function, Lipschitz function

1 Introduction

Let \mathbb{N}, \mathbb{R} and \mathbb{C} be the sets of all natural, real and complex numbers respectively. We denote

$$\omega = \{x = (x_k): x_k \in \mathbb{R} \text{ or } \mathbb{C}\},$$

the space of all real or complex sequences.

Any subspace λ of the linear space ω of sequences is called a sequence space. A sequence space λ with linear topology is called a K-space provided each of maps $p_i: \lambda \rightarrow \mathbb{C}$ defined by $p_i(x) = x_i$ is continuous, for all $i \in \mathbb{N}$. A space λ is called an FK-space provided λ is complete linear metric space. An FK-space whose topology is normable is called a BK-space.

We denote

$$\mathcal{L}(\mathcal{T}) = \left\{ \mathcal{T} = (T_k): T_k: X \rightarrow Y \text{ is linear, for each } k \in \mathbb{N} \right\},$$

the space of all linear operators from a normed space X to normed space Y.

Definition 1.1. Let X and Y be two normed linear spaces and $T: \mathcal{D}(T) \rightarrow Y$ be a linear operator, where $\mathcal{D}(T) \subset X$. Then, the operator T is said to be bounded if there exists a real $k > 0$ such that

$$\|Tx\| \leq k \|x\|, \text{ for all } x \in \mathcal{D}(T).$$

The sequences of bounded linear operators arise frequently in the abstract formulation of concrete situations, for instance, in connection with convergence problems of Fourier series or sequences of interpolation polynomials or methods of numerical integration, to name just a few. In such cases one is usually concerned with the convergence of those sequences of operators with boundedness of corresponding sequences of norms or with similar properties. We also study I-convergence of sequences of these operators and some related results.

Let $B_{\omega}(\mathcal{T})$ be denote the normed space of sequences of all bounded linear operators from a normed space X to a normed space Y normed by

$$\|F\| = \sup_k \|T_k(x)\| \text{ (see[14])}. \quad (1.3)$$

$B_{\omega}(\mathcal{T})$ is a Banach space if Y is a Banach space. Throughout, O and I represent zero and identity operators respectively.

It was due to J. Von Neumann (see [14, 22]), the following definitions were introduced.

Definition 1.2. Let X and Y be two normed linear spaces. A sequence (T_k) of operators $T_k \in B_{\omega}(\mathcal{T})$ is said to be:

1) Uniformly convergent if (T_k) converges in the norm on $B_{\omega}(\mathcal{T})$.
2) Strongly convergent if (T_kx) converges strongly in Y
for every $x \in X$.

3) Weakly convergent if $(T_k x)$ converges weakly in Y for every $x \in X$.

That is, if there is a linear operator $T: X \to Y$ such that $T_k \in \mathcal{B}_m(\mathcal{T})$ is:
1) Uniformly convergent if $\| T_k - T \| \to 0$.
2) Strongly convergent if $\| T_k x - T x \| \to 0$, for every $x \in X$.
3) Weakly convergent if $| f(T_k x) - f(T x) | \to 0$, for every $x \in X$ and $f \in Y'$.

Theorem 1.3. Let $T_k \in \mathcal{B}_m(\mathcal{T})$, where $k=1,2,3,\ldots$. Then $T_k \to T$ if and only if for every $\varepsilon > 0$, there is an N, depending only on ε, such that for all $k > N$ and all $x \in X$ of norm 1, we have,

$$
\| T_k(x) - T(x) \| < \varepsilon \text{(see [14]).} \tag{1.4}
$$

Let $\mathcal{C}(\mathcal{T})$ and $\mathcal{C}_0(\mathcal{T})$ be the convergent and null sequence spaces respectively of the sequence (T_k) of bounded operators defined as follows.

$$
\mathcal{C}(\mathcal{T}) = \left\{ T = (T_k) \in \mathcal{B}_m(\mathcal{T}) : \| T_k(x) - T(x) \| \to 0, \text{ for all } x \in X \right\}
$$

and

$$
\mathcal{C}_0(\mathcal{T}) = \left\{ T = (T_k) \in \mathcal{B}_m(\mathcal{T}) : \| T_k(x) - O(x) \| \to 0 \text{ for all } x \in X \right\}, \text{ (c.f. [14], [15]).}
$$

Then $\mathcal{C}(\mathcal{T})$ and $\mathcal{C}_0(\mathcal{T})$ are normed spaces with norm defined as above in (1.3),

Remark 1.4. $\mathcal{C}_0(\mathcal{T}) \subset \mathcal{C}(\mathcal{T}) \subset \mathcal{B}_m(\mathcal{T})$.

As a generalisation of usual convergence, the concept of statistical convergent was first introduced by Fast [2] and also independently by Buck [1] and Schoenberg[29] for real and complex sequences. Later on, it was further investigated from a sequence space point of view and linked with the Summability Theory by Fridy [3], Šalát [26], Tripathy [30] and many others.

Henceforth, in this paper, x is considered as an element of the normed space X.

Definition 1.5. A sequence $\mathcal{T} = (T_k) \in \mathcal{B}_m(\mathcal{T}) \subset \mathcal{L}(\mathcal{T})$ is said to be statistically convergent to an operator T if for every $\varepsilon > 0$, we have

$$
\lim_{k \to \infty} \frac{1}{k} \left\{ n \in \mathbb{N} : \| T_n(x) - T(x) \| \geq \varepsilon, \; n \leq k \right\} = 0, \tag{1.5}
$$

where vertical lines denote the cardinality of the enclosed set.

That is, if $\delta(A(\varepsilon)) = 0$, where

$$
A(\varepsilon) = \left\{ k \in \mathbb{N} : \| T_k(x) - T(x) \| \geq \varepsilon \right\}.
$$

The notation of ideal convergence (I-convergence) was introduced and studied by Kostyrko, Mačaj, Šalát and Wilczyński [11, 12]. Later on, it was studied by Šalát, Tripathy and Ziman [27, 28], Tripathy and Hazarika [31, 32], Mursaleen and Alotaibi [16], Mursaleen and Mohiuddin [17, 18, 19], Mursaleen and S.K.Sharma [20], Khan *et al* [6, 7, 8] and many others.

Here we give some preliminaries about the notion of I-convergence.

Definition 1.6. Let N be a non empty set. Then a family of sets $I \subset 2^N$ (power set of N) is said to be an ideal if
1) I is additive i.e $\forall A, B \in I \Rightarrow A \cup B \in I$
2) I is hereditary i.e $\forall A \in I$ and $B \subseteq A \Rightarrow B \in I$.

Definition 1.7. A non-empty family of sets $\Lambda(I) \subset 2^N$ is said to be filter on N if and only if
1) $\emptyset \notin \Lambda(I)$,
2) $\forall A, B \in \Lambda(I)$ we have $A \cap B \in \Lambda(I)$,
3) $\forall A \in \Lambda(I)$ and $A \subseteq B \Rightarrow B \in \Lambda(I)$.

Definition 1.8. An Ideal $I \subset 2^N$ is called non-trivial if $I \neq 2^N$.

Definition 1.9. A non-trivial ideal $I \subset 2^N$ is called admissible if

$$
\{ \{ x \} : x \in N \} \subseteq I.
$$

Definition 1.10. A non-trivial ideal I is maximal if there cannot exist any non-trivial ideal $J \neq I$ containing I as a subset.

Remark 1.11. For each ideal I, there is a filter $\Lambda(I)$ corresponding to I.

i.e $\Lambda(I) = \{ K \subset N : K^c \in I \}$, where $K^c = N \setminus K$.

Definition 1.12. A sequence $\mathcal{T} = (T_k) \in \mathcal{B}_m(\mathcal{T}) \subset \mathcal{L}(\mathcal{T})$ is said to be I-convergent to an operator T if for every $\varepsilon > 0$, the set

$$
\{ k \in N : \| T_k(x) - T(x) \| \geq \varepsilon \} \in I.
$$

In this case, we write $I - \lim T_k = T$.

Definition 1.13. A sequence $\mathcal{T} = (T_k) \in \mathcal{B}_m(\mathcal{T})$ is said to be I-null if $I = 0$. In this case, we write $I - \lim T_k = 0$.

Definition 1.14. A sequence $\mathcal{T} = (T_k) \in \mathcal{B}_m(\mathcal{T})$ is said to be I-Cauchy if for every $\varepsilon > 0$ there exists a number $m = m(\varepsilon)$ such that $\{ k \in N : \| T_k(x) - T_m(x) \| \geq \varepsilon \} \in I$.

Definition 1.15. A sequence $\mathcal{T} = (T_k) \in \mathcal{B}_m(\mathcal{T})$ is said to be I-bounded if there exists some $M > 0$ such that $\{ k \in N : \| T_k(x) \| \geq M \} \in I$.

Definition 1.16. A sequence space $E^\mathcal{T}$ (space of operators) said to be solid(normal) if $(a_k T_k) \in E^\mathcal{T}$ whenever $(T_k) \in E^\mathcal{T}$ and for any sequence (a_k) of scalars $a_k \to a$.
with $|\alpha_k| \leq 1$, for all $k \in \mathbb{N}$.

Definition 1.17. A sequence space $E^\mathcal{F}$ said to be symmetric if $(T \pi(k)) \in E^\mathcal{F}$ whenever $T_k \in E^\mathcal{F}$, where π is a permutation on \mathbb{N}.

Definition 1.18. A sequence space $E^\mathcal{F}$ said to be sequence algebra if $(T_k) * (S_k) = (T_k S_k) \in E^\mathcal{F}$ whenever $(T_k), (S_k) \in E^\mathcal{F}$.

Definition 1.19. A sequence space $E^\mathcal{F}$ said to be convergence free if $(S_k) \in E^\mathcal{F}$ whenever $(T_k) \in E^\mathcal{F}$ and $T_k = O$ implies $S_k = O$, for all k.

Definition 1.20. Let $K = \{k_1 < k_2 < k_3 < k_4 < k_5 \ldots \} \subset \mathbb{N}$ and $E^\mathcal{F}$ be a Sequence space. A K-step space of $E^\mathcal{F}$ is a sequence space $\lambda^E_{K} = \{(T_{k_n}) \in \mathcal{L}(\mathcal{F}) : (T_k) \in E^\mathcal{F}\}$.

Definition 1.21. A canonical pre-image of a sequence $(T_{k_n}) \in \lambda^E_{K}$ is a sequence $(T_k) \in \mathcal{L}(\mathcal{F})$ defined by

$$S_k = \begin{cases} T_{k_n}, & \text{if } k \in K, \\ O, & \text{otherwise}. \end{cases}$$

A canonical preimage of a step space λ^E_{K} is a set of preimages all elements in λ^E_{K} i.e. \mathcal{F} is in the canonical preimage of λ^E_{K} iff \mathcal{F} is the canonical preimage of some $\mathcal{F} \in \lambda^E_{K}$.

Definition 1.22. A sequence space $E^\mathcal{F}$ is said to be monotone if it contains the canonical preimages of its step space.

Definition 1.23. A map h defined on a domain $D \subset X$ i.e $h : D \subset X \rightarrow \rightarrow$ is said to satisfy Lipschitz condition if $|h(x) - h(y)| \leq K|x - y|$ where K is known as the Lipschitz constant. The class of K-Lipschitz functions defined on D is denoted by $h \in (D, K)$.

Definition 1.24. A convergence field of I-cov-ergence is a set

$$F(I) = \{x = (x_k) \in l_\infty : \text{there exists } I \rightarrow \text{lim } x \in \mathbb{R}\}.$$ The convergence field $F(I)$ is a closed linear subspace of l_∞ with respect to the supremum norm, $F(I) = l_\infty \cap l^I$ (see[27]).

Definition 1.25. A function $f : [0, \infty) \rightarrow [0, \infty)$ is called a modulus if

1. $f(t) = 0$ if and only if $t = 0$,
2. $f(t + u) \leq f(t) + f(u)$ for all $t, u \geq 0$,
3. f is increasing and
4. f is continuous from the right at zero.

For any modulus function f, we have the inequalities $|f(x) - f(y)| \leq f(|x - y|)$ and $f(nx) \leq nf(x)$, for all $x, y \in [0, \infty)$.

A modulus function f is said to satisfy Δ_2 – Condition for all values of u if there exists a constant $K > 0$ such that $f(Ku) \leq KLf(u)$ for all values of $L > 1$.

The idea of modulus function was introduced by Nakano in 1953.(See[21], Nakano, 1953).

Ruckle [23, 24, 25] used the idea of a modulus function f to construct the sequence space

$$X(f) = \{x = (x_k) : \sum_{k=1}^{\infty} f(|x_k|) < \infty\} = \{x = x_k : (f(|x_k|)) \in X\}.$$ This space is an FK-space and Ruckle [23, 24, 25] proved that the intersection of all such $X(f)$ spaces is ϕ, the space of all finite sequences. The space $X(f)$ is closely related to the space ℓ_1 which is an $X(f)$ space with $f(x) = x$ for all real $x \geq 0$. Thus Ruckle [23, 24, 25] proved that, for any modulus f,

$$X(f) \subset \ell_1 \text{ and } L(f)^\alpha = \ell_\infty$$

where

$$X(f)^\alpha = \{y = (y_k) : \sum_{k=1}^{\infty} f(|y_k x_k|) < \infty\}.$$ Spaces of the type $X(f)$ are a special case of the spaces structured by B.Gramsch [5]. From the point of view of local convexity, spaces of the type $X(f)$ are quite pathological. Symmetric sequence spaces, which are locally convex have been frequently studied by D.J.H Garling [4], G.Köthe [13] and W.H.Ruckle [23, 24, 25].

After then E.Kolk [7, 10] gave an extension of $X(f)$ by considering a sequence of moduli $\mathcal{F} = (f_k)$ and defined the sequence space

$$X(\mathcal{F}) = \{x = (x_k) : (f_k(|x_k|)) \in X\}.$$ We used the following lemmas for establishing some results of this article.

Lemma(I). Every solid space is monotone.

Lemma(II). Let $K \in I(I)$ and $M \subseteq N$. If $M \notin I$, then $M \cap K \notin I$.

Lemma(III). If $I \subseteq 2^N$ and $M \subseteq N$. If $M \notin I$, then $M \cap N \notin I$.

Throughout the article $\mathcal{L}^I(\mathcal{F})$, $\mathcal{E}_0^I(\mathcal{F})$, $\mathcal{B}^I(\mathcal{F})$, $\mathcal{M}_0^I(\mathcal{F})$ and $\mathcal{M}^I(\mathcal{F})$ are considered as the classes of all I-convergent, I-null, I-bounded, bounded I-convergent and bounded I-null sequences of bounded linear operators respectively.
2 Main Results

In this article, we introduce and study the following classes of sequences.

\[\mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) = \left\{ \mathfrak{T} = (T_k) \in \mathcal{R}_u(\mathfrak{T}) : I - \lim_{k \to \infty} f_k(\| T_k(x) - L_1 \|) = 0, \text{ for some } L \right\} \]

(2.1)

\[\mathcal{C}_0(\mathfrak{T}, \mathfrak{F}) = \left\{ \mathfrak{T} = (T_k) \in \mathcal{R}_u(\mathfrak{T}) : I - \lim_{k \to \infty} f_k(\| T_k(x) \|) = 0 \right\} \]

(2.2)

\[\mathcal{C}_{\infty}(\mathfrak{T}, \mathfrak{F}) = \left\{ \mathfrak{T} = (T_k) \in \mathcal{R}_u(\mathfrak{T}) : \exists K > 0 \text{ such that } \{ k \in \mathbb{N} : f_k(\| T_k(x) \|) \geq K \} \in I \right\} \]

(2.3)

\[\mathcal{B}(\mathfrak{T}, \mathfrak{F}) = \left\{ \mathfrak{T} = (T_k) \in \mathcal{R}_u(\mathfrak{T}) : \sup_{f_k(\| T_k(x) \|) < \infty} \right\} \]

(2.4)

We also denote

\[\mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) = \mathcal{R}_u(\mathfrak{T}) \cap \mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) \]

and

\[\mathcal{C}_{\infty}(\mathfrak{T}, \mathfrak{F}) = \mathcal{R}_u(\mathfrak{T}) \cap \mathcal{C}_{\infty}(\mathfrak{T}, \mathfrak{F}) \]

where \(\mathfrak{T} = (f_k) \) is a sequence of modulus functions.

Theorem 2.1. Let \(\mathfrak{T} = (f_k) \) be a sequence of modulus functions. Then, the classes of sequences \(\mathcal{C}^1(\mathfrak{T}, \mathfrak{F}), \mathcal{C}_0(\mathfrak{T}, \mathfrak{F}), \mathcal{C}_{\infty}(\mathfrak{T}, \mathfrak{F}) \) and \(\mathcal{B}(\mathfrak{T}, \mathfrak{F}) \) are linear spaces.

Proof. We shall prove the result for the space \(\mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) \).

For other spaces the results are similar.

For, let \(\mathfrak{T} = (T_k), \mathfrak{F} = (S_k) \) be two elements of \(\mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) \) and \(\alpha, \beta \) be scalars.

Now, since \(\mathfrak{T}_k, \mathfrak{S}_k \in \mathcal{C}^1(\mathfrak{T}, \mathfrak{F}) \). Then, there exists some \(L_1, L_2 \) such that

\[I - \lim_{k \to \infty} f_k(\| T_k(x) - L_1 \|) = 0 \]

and

\[I - \lim_{k \to \infty} f_k(\| S_k(x) - L_2 \|) = 0. \]

Then, for given \(\varepsilon > 0 \), the sets

\[\left\{ k \in \mathbb{N} : f_k(\| T_k(x) - L_1 \|) \geq \frac{\varepsilon}{2} \right\} \subset I \]

and

\[\left\{ k \in \mathbb{N} : f_k(\| S_k(x) - L_2 \|) \geq \frac{\varepsilon}{2} \right\} \subset I. \]

Let

\[A_1 = \left\{ k \in \mathbb{N} : f_k(\| T_k(x) - L_1 \|) < \frac{\varepsilon}{2} \right\} \subset \mathcal{E}(I) \]

and

\[A_2 = \left\{ k \in \mathbb{N} : f_k(\| S_k(x) - L_2 \|) < \frac{\varepsilon}{2} \right\} \subset \mathcal{E}(I) \]

be such that \(A_1^\prime, A_2^\prime \in I \). Now, since each \(f_k(k \in \mathbb{N}) \) is a modulus function, we have

\[A_3 = \left\{ k \in \mathbb{N} : f_k(\| (\alpha T_k(x) + \beta S_k(x) - (\alpha L_1 + \beta L_2) \|) < \varepsilon \right\} \subset \]
holds by subadditivity of \(g \), the sequence \(\{g(T_k)\} \) is bounded. Therefore,

\[
g\left(\lambda_k T_k - \lambda T\right) = g\left[\lambda_k T_k - \lambda T_k + \lambda T_k - \lambda T\right]
\leq g(\lambda_k T_k - \lambda T_k) + g(\lambda T_k - T)
\leq |(\lambda_k - \lambda)| g(x_k) + |\lambda| g(x_k - T) \to 0
\]
as \(k \to \infty \). That is to say that scalar multiplication is continuous.
Hence, \(M^1_p(\mathcal{F}, \mathbb{F}) \) is paranormed space.

For \(M^1_p(\mathcal{F}, \mathbb{F}) \), the result is similar.

Theorem 2.3. Let \(\mathcal{F} = (f_k) \) be a sequence of modulus functions. A sequence \(\mathcal{F} = (T_k) \in \mathcal{B}_m(\mathcal{F}) \) converges if and only if for every \(\varepsilon > 0 \), there exists \(N \in \mathbb{N} \) such that

\[
\left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) - T_N(x) \|\right) < \varepsilon \right\} \in \mathcal{E}(I).
\]

Proof. Let us suppose that \(\mathcal{F} = (T_k) \in \mathcal{B}_m(\mathcal{F}) \).
Let \(L = I - \lim \mathcal{F} \). Then, the set

\[
B_\varepsilon = \left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) - L \|\right) < \frac{\varepsilon}{2} \right\} \in \mathcal{E}(I) \text{ for all } \varepsilon > 0.
\]

Now, since each \(f_k, k \in \mathbb{N} \) is a modulus function. Fix an \(N \in B_\varepsilon \).
Then, we have

\[
f_k\left(\| T_k(x) - N_k(x) \|\right) \leq f_k\left(\| T_k(x) - L \|\right) + f_k\left(\| T_N(x) - L \|\right) < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon
\]
which holds for all \(k \in B_\varepsilon \).
Hence \(\left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) - N_k(x) \|\right) < \varepsilon \right\} \in \mathcal{E}(I) \).
Conversely, suppose that

\[
\left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) - N_k(x) \|\right) < \varepsilon \right\} \in \mathcal{E}(I) \).
\]

Since, each \(f_k, k \in \mathbb{N} \) is a modulus function and by basic norm and modulus inequalities, we have

\[
\left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) \|\right) - f_k\left(\| T_N(x) \|\right) < \varepsilon \right\} \in \mathcal{E}(I) \text{ for all } \varepsilon > 0.
\]
Then, the set

\[
C_\varepsilon = \left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) \|\right) \in \left[f_k\left(\| T_N(x) \|\right) - \varepsilon, f_k\left(\| T_N(x) \|\right) + \varepsilon\right]\right\}
\in \mathcal{E}(I) \text{ for all } \varepsilon > 0.
\]
Let \(J_\varepsilon = \left[f_k\left(\| T_N(x) \|\right) - \varepsilon, f_k\left(\| T_N(x) \|\right) + \varepsilon\right] \). If we fix an \(\varepsilon > 0 \) then, we have \(C_\varepsilon \in \mathcal{E}(I) \) as well as \(\widetilde{C}_\varepsilon \in \mathcal{E}(I) \).
Hence \(C_\varepsilon \cap \widetilde{C}_\varepsilon \in \mathcal{E}(I) \). This implies that

\[
J = J_\varepsilon \cap \widetilde{J}_\varepsilon \neq \emptyset.
\]
That is

\[
\left\{ k \in \mathbb{N} : f_k\left(\| T_k(x) \|\right) \in J \right\} \in \mathcal{E}(I).
\]
That is

\[
diam J \leq diam J_\varepsilon
\]
where the diam of \(J \) denotes the length of interval \(J \).
In this way, by induction we get the sequence of closed intervals

\[
J_\varepsilon = I_0 \supseteq I_1 \supseteq \ldots \supseteq I_k \supseteq \ldots \ldots
\]
with the property that \(diam I_k \leq \frac{1}{2} diam I_{k-1} \) for \(k=2,3,4,\ldots \)

Then there exists a \(\xi \in \cap I_k \) where \(k \in \mathbb{N} \) such that

\[
\xi = I - \lim f_k\left(\| T_k(x) \|\right) \text{ showing that } \mathcal{F} = (T_k) \in \mathcal{B}_m(\mathcal{F}) \text{ is } I\text{-convergent.}
\]
Hence, the result.

Theorem 2.4. Let \(\mathcal{F} = (f_k) \) and \(\mathcal{G} = (g_k) \) be two sequences of modulus functions and for each \(k \in \mathbb{N} \), \(f_k \) and \(g_k \) satisfying \(\Delta_2 \) Condition, then
(a) \(\mathcal{F}(\mathcal{F}, \mathcal{F}) \subseteq \mathcal{F}(\mathcal{F}, \mathcal{F} \circ \mathcal{G}) \)
(b) For all \(\mathcal{F} = \mathcal{F}' \cap (\mathcal{F}, \mathcal{F} + \mathcal{G}) \) for \(\mathcal{F} = \mathcal{F'}, \mathcal{G}', \mathcal{M}'_\varepsilon \) and \(\mathcal{M}_\varepsilon \).

Proof(a). Let \(\mathcal{F} = (T_k) \in \mathcal{C}_\varepsilon(\mathcal{F}, \mathcal{G}) \) be any arbitrary element. Then

\[
I - \lim g_k\left(\| T_k(x) \|\right) = 0
\]
that is, the set

\[
\left\{ k \in \mathbb{N} : g_k\left(\| T_k(x) \|\right) \geq \varepsilon \right\} \in \mathcal{F}(I).
\]
Let \(\varepsilon > 0 \) and choose \(\delta \) with \(0 < \delta < 1 \) such that for each \(k \in \mathbb{N} \), \(f_k(t) < \varepsilon \), \(0 \leq t \leq \delta \).
Let us denote

\[
S_k = g_k\left(\| T_k(x) \|\right)
\]
and consider

\[
\lim f_k(S_k) = \lim_{S_k \leq \delta, k \in \mathbb{N}} f_k(S_k) + \lim_{S_k > \delta, k \in \mathbb{N}} f_k(S_k).
\]
Now, since \(f_k \) for each \(k \in \mathbb{N} \) is an modulus function, we have

\[
\lim_{S_k \leq \delta, k \in \mathbb{N}} f_k(S_k) \leq f_k(2) \lim_{S_k \leq \delta, k \in \mathbb{N}} f_k(S_k).
\]
For \(S_k > \delta \), we have

\[
S_k < \frac{S_k}{\delta} < 1 + \frac{S_k}{\delta}.
\]
Now, since each \(f_k \) is non-decreasing and modulus, it follows that

\[
f_k(S_k) < f_k(1 + \frac{S_k}{\delta}) < \frac{1}{2} f_k(2) + \frac{1}{2} f_k(\frac{2S_k}{\delta}).
\]
Again, since f_k satisfies A_2 – Condition, we have

$$f_k(S_k) < \frac{1}{2} K \frac{(S_k)}{\delta} f_k(2) + \frac{1}{2} K \frac{(S_k)}{\delta} f_k(2)$$

Thus, $f_k(S_k) < K \frac{(S_k)}{\delta} f_k(2)$. Hence,

$$\lim_{S_k \in \delta, k \in \mathbb{N}} f_k(S_k) \leq \max\{1, K \delta^{-1} f_k(2) \} \lim_{S_k \in \delta, k \in \mathbb{N}} (S_k).$$

Therefore, from (2.11), (2.12) and (2.13), we have,

$$\mathcal{T} = (T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{T} \circ \mathcal{F}).$$

Thus, $\mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G}) \subseteq \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G})$. Hence, $\mathcal{X} = \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G})$ for $\mathcal{X} = \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{T} \circ \mathcal{F})$.

For $\mathcal{X} = \mathcal{C}_f^{\infty}, \mathcal{M}_f^{\infty}$ and \mathcal{M}_f^{∞}, the inclusions can be established similarly.

(b) Let $\mathcal{T} = (T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G})$.

$$I - \lim_k f_k(\|T_k(x)\|) = 0 \quad (2.14)$$

and

$$I - \lim_k g_k(\|T_k(x)\|) = 0. \quad (2.15)$$

Therefore, from (2.14) and (2.15), we have

$$I - \lim_k \left[f_k(\|T_k(x)\|) + g_k(\|T_k(x)\|) \right] = 0$$

implies that $\mathcal{T} = (T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{T} \circ \mathcal{F})$.

Thus, $\mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G}) \subseteq \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{T} \circ \mathcal{F})$.

Hence, $\mathcal{X} = \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{T} \circ \mathcal{F})$ for $\mathcal{X} = \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F} \circ \mathcal{G})$.

For $\mathcal{X} = \mathcal{C}_f^{\infty}, \mathcal{M}_f^{\infty}$ and \mathcal{M}_f^{∞}, the inclusions are similar.

For $g_k(x) = x$ and $f_k(x) = f(x), \forall x \in [0, \infty)$, we have the following corollary.

Corollary 2.5. $\mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$ for $\mathcal{X} = \mathcal{C}_f^{\infty}, \mathcal{M}_f^{\infty}$ and \mathcal{M}_f^{∞}.

Theorem 2.6. Let \mathcal{I} be an admissible ideal and $\mathcal{F} = (f_k)$ be a sequence of modulus functions. Then, the following are equivalent:

(a) $(T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$;

(b) there exists $(S_k) \in \mathcal{C}_f(\mathcal{T}, \mathcal{F})$ such that $T_k = S_k$, for a.a.k.r. I;

(c) there exists $(S_k) \in \mathcal{C}_f(\mathcal{T}, \mathcal{F})$ and $(U_k) \in \mathcal{C}_f(\mathcal{T}, \mathcal{F})$ such that $T_k = S_k + U_k$ for all $k \in \mathbb{N}$ and

$$\{ k \in \mathbb{N} : f_k(\|T_k(x)\| - L\|) \geq \epsilon \} \in \mathcal{I}.$$

(d) there exists a subset $K = \{ k_1 < k_2 < k_3 < ... \}$ of \mathbb{N} such that $K \in \mathcal{I}$ and

$$\lim_{n \in \infty} f_k(\|T_k(x)\| - L\|) = 0.$$

Proof. (a) implies (b). Let $(T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$. Then, for any $\epsilon > 0$, there exists some L such that the set

$$\{ k \in \mathbb{N} : f_k(\|T_k(x)\| - L\|) \geq \epsilon \} \in \mathcal{I}.$$

Let (m_i) be an increasing sequence with $m_i \in \mathbb{N}$ such that

$$\{ k \leq m_i : f_k(\|T_k(x)\| - L\|) \geq \epsilon \} \in \mathcal{I}.$$

Define a sequence (S_k) as

$$S_k = T_k, \text{ for all } k \leq m_1.$$

For $m_i < k \leq m_{i+1}, i \in \mathbb{N}$.

$$S_k = \begin{cases} T_k, & \text{if } f_k(\|T_k(x)\| - L\|) < t^{-1}, \\ L, & \text{otherwise.} \end{cases}$$

Then, $(S_k) \in \mathcal{C}(\mathcal{F}, \mathcal{G})$ and from the following inclusion

$$\{ k \leq m_i : T_k \neq S_k \} \subseteq \{ k \leq m_i : f_k(\|T_k(x)\| - L\|) \geq \epsilon \} \subseteq I.$$

We get $T_k = S_k$, for a.a.k.r. I.

(b) implies (c). For $(T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$, then, there exists

$(S_k) \in \mathcal{C}_f(\mathcal{T}, \mathcal{F})$ such that $T_k = S_k$, for a.a.k.r. I. Let $K = \{ k \in \mathbb{N} : T_k \neq S_k \}$, then $K \in \mathcal{I}$.

Define a sequence (U_k) as

$$U_k = \begin{cases} T_k - S_k, & \text{if } k \in K, \\ O, & \text{otherwise.} \end{cases}$$

Then $U_k \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$ and $S_k \in \mathcal{C}_f(\mathcal{T}, \mathcal{F})$.

(c) implies (d). Let $P_1 = \{ k \in \mathbb{N} : f_k(\|U_k(x)\|) \geq \epsilon \} \subseteq \mathcal{I}$ and

$$K = \{ k_1 < k_2 < k_3 < ... \} \in \mathcal{I}.$$

Then we have $f_k(\|T_k(x) - L\|) = 0$.

(d) implies (a). Let $K = \{ k_1 < k_2 < k_3 < ... \} \in \mathcal{I}$ and

$$\lim_{n \in \infty} f_k(\|T_k(x) - L\|) = 0.$$

Then, for any $\epsilon > 0$, and by Lemma (II), we have

$$\{ k \in \mathbb{N} : f_k(\|T_k(x) - L\|) \geq \epsilon \} \subseteq K \cup \{ k \in K : f_k(\|T_k(x) - L\|) \geq \epsilon \}.$$

Thus, $(T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$.

Hence the result.

Theorem 2.7. Let $\mathcal{F} = (f_k)$ be a sequence of modulus functions. Then, the inclusions

$$\mathcal{C}_f(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{P}(\mathcal{T}, \mathcal{F})$$

hold.

Proof. Let $(T_k) \in \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$. Then, there exists some L such that the set

$$\{ k \in \mathbb{N} : f_k(\|T_k(x) - L\|) \geq \epsilon \} \subseteq \mathcal{I}.$$

Since, each f_k is modulus, we have

$$f_k(\|T_k(x)\| - L) \leq f_k(\|T_k(x) - L\|) + f_k(\|L\|).$$

Taking supremum over k on both sides, we get

$$(T_k) \in \mathcal{P}(\mathcal{T}, \mathcal{F}).$$

The inclusion $\mathcal{C}_f(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F})$ is obvious.

Hence, $\mathcal{C}_f^{\infty}(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{C}_f(\mathcal{T}, \mathcal{F}) \subseteq \mathcal{P}(\mathcal{T}, \mathcal{F})$.

Theorem 2.8. Let $\mathcal{F} = (f_k)$ be a sequence of modulus functions with $f_k(x) = x$ for all $x \in [0, \infty]$ and $k \in \mathbb{N}$. Then, the function $h : \mathcal{M}_f^{\infty}(\mathcal{T}, \mathcal{F}) \to \mathbb{R}$ defined by
\[h(\mathcal{F}) = \| I - \lim \mathcal{F} \|, \] where \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) = B^\alpha_\infty(\mathcal{I}, \mathcal{F}) \cap C^1(\mathcal{I}, \mathcal{F}) \), is a Lipschitz function and hence uniformly continuous.

Proof. First of all, we show that the function \(h \) is well defined.

For, let \(\mathcal{I}, \mathcal{J} \) be two elements of \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) such that \(\mathcal{I} \subset \mathcal{J} \Rightarrow I - \lim \mathcal{I} = I - \lim \mathcal{J} \)

\[\Rightarrow \| I - \lim \mathcal{I} \| = \| I - \lim \mathcal{J} \| \Rightarrow h(\mathcal{I}) = h(\mathcal{J}). \]

Thus, \(h \) is well defined.

Next, let \(\mathcal{I} = (I_k), \mathcal{J} = (S_k) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}), \mathcal{I} \neq \mathcal{J}. \)

Then, the sets

\[A_{\mathcal{I}} = \left\{ k \in \mathbb{N} : f_k(\| T_k(x) - h(\mathcal{I}) \|) \geq \| \mathcal{I} - \mathcal{J} \| \right\} \in I. \]

\[A_{\mathcal{J}} = \left\{ k \in \mathbb{N} : f_k(\| S_k(x) - h(\mathcal{J}) \|) \geq \| \mathcal{I} - \mathcal{J} \| \right\} \in I. \]

Thus, the sets

\[B_{\mathcal{I}} = \left\{ k \in \mathbb{N} : f_k(\| T_k(x) - h(\mathcal{I}) \|) < \| \mathcal{I} - \mathcal{J} \| \right\} \in I. \]

\[B_{\mathcal{J}} = \left\{ k \in \mathbb{N} : f_k(\| S_k(x) - h(\mathcal{J}) \|) < \| \mathcal{I} - \mathcal{J} \| \right\} \in I. \]

Hence, \(B = B_{\mathcal{I}} \cap B_{\mathcal{J}} \in \mathcal{L}(I) \), so that \(B \neq \emptyset \).

Now taking \(k \in B \), we have

\[|h(\mathcal{I}) - h(\mathcal{J})| \leq \| h(\mathcal{I}) - T_k(x) \| + \| T_k(x) - S_k(x) \| \]

\[\leq \| S_k(x) - h(\mathcal{J}) \| + \| \mathcal{I} - \mathcal{J} \|. \]

Thus, \(h \) is Lipschitz function and hence uniformly continuous.

Theorem 2.9. Let \(\mathcal{F} = (f_k) \) be a sequence of modulus functions with \(f_k(x) = x \) for all \(x \in [0, \infty) \) and \(k \in \mathbb{N} \). If \(\mathcal{I} = (I_k), \mathcal{J} = (S_k) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) with \(T_k S_k(x) = T_k(x), S_k(x) \), then \((\mathcal{I}, \mathcal{J}) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) and \(h(\mathcal{I}) = h(\mathcal{J}) \), where \(h : \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \rightarrow \mathbb{R} \)

\[\text{defined by} \ h(\mathcal{I}) = \| I - \lim \mathcal{I} \|. \]

Therefore, from (2.16), (2.17) and (2.18), we have

\[|T_k S_k(x) - h(\mathcal{I}) h(\mathcal{J})| < M \epsilon + h(\mathcal{J}) \epsilon = \epsilon_{1}(\text{say}) \]

for all \(k \in B \), \(B \neq \emptyset \), \(\epsilon = \epsilon_{1} \). Hence \((\mathcal{I}, \mathcal{J}) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) and \(h(\mathcal{I}) = h(\mathcal{J}) \).

Theorem 2.10. Let \(\mathcal{F} = (f_k) \) be a sequence of modulus functions. Then, the spaces \(\mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \) and \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) are solid and monotone.

Proof. We shall prove the result for \(\mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \). For \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \), the result can be established similarly.

For, let \((I_k) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \). Then

\[\left\{ k \in \mathbb{N} : f_k(\| T_k(x) \|) \geq \epsilon \right\} \in I. \]

Let \((\alpha_k) \) be a sequence of scalars with \(|\alpha_k| \leq 1 \), for all
\(k \in \mathbb{N} \), then, the result follows from (2.19) and the following inequality

\[f_k(\| \alpha_k T_k x \|) \leq \| \alpha_k \| f_k(\| T_k x \|) \leq f_k(\| T_k x \|) \text{ for all } k \in \mathbb{N}. \]

That the space is monotone follows from lemma (I).

Theorem 2.11. Let \(\mathcal{F} = (f_k) \) be a sequence of modulus functions. If \(\mathcal{I} = (I_k), \mathcal{J} = (S_k) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) with \(T_k S_k(x) = T_k(x), S_k(x) \). Then, the spaces \(\mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \) and \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) are sequence algebra.

Proof. For, let \((I_k), (S_k) \in \mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \), then

\[I - \lim_k f_k(\| T_k(x) \|) = 0 \]

\[I - \lim_k f_k(\| S_k(x) \|) = 0. \]

Then, from (2.20) and (2.21), we have

\[I - \lim_k f_k(\| T_k S_k(x) \|) = I - \lim_k f_k(\| T_k(x), S_k(x) \|) = 0 \]

implies that \((T_k S_k) \in \mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \).

Hence, \(\mathcal{C}_\alpha^1(\mathcal{I}, \mathcal{F}) \) is a sequence algebra.

For \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \), the result is similar.

Theorem 2.12. Let \(\mathcal{F} = (f_k) \) be a sequence of modulus functions. Then \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) is closed subspace of \(\mathcal{B}_\infty(\mathcal{I}, \mathcal{F}) \).

Proof. Let \((T_k^{(n)}) \) be a Cauchy sequence in \(\mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \) such that \(T_k^{(n)} \rightarrow T \). We show that \(T \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \).

Since \((T_k^{(n)}) \in \mathcal{M}_\alpha^1(\mathcal{I}, \mathcal{F}) \), then there exists \(A_n \) such that

\[\left\{ k \in \mathbb{N} : f_k(\| T_k^{(n)}(x) - A_n \|) \geq \epsilon \right\} \in I. \]
We need to show that

(1) \((A_n) \) converges to \(A \).

(2) If \(U = \left\{ k \in \mathbb{N} : f_k(\| T_k(x) - A \|) < \varepsilon \right\} \), then \(U^c \in I \).

(1) Since \((T_k^{(n)}) \) is a Cauchy sequence in \(\mathcal{M}_U^{(n)}(F,F) \) \(\Rightarrow \) for a given \(\varepsilon > 0 \), there exists \(k_0 \in \mathbb{N} \) such that

\[
\sup_k f_k(\| T_k^{(n)}(x) - T_k^{(q)}(x) \|) < \frac{\varepsilon}{3},
\]

for all \(n, q \geq k_0 \).

For a given \(\varepsilon > 0 \), we have

\[
B_{mq} = \left\{ k \in \mathbb{N} : f_k(\| T_k^{(n)}(x) - T_k^{(q)}(x) \|) < \frac{\varepsilon}{3} \right\};
\]

\[
B_q = \left\{ k \in \mathbb{N} : f_k(\| T_k^{(q)}(x) - A_q \|) < \frac{\varepsilon}{3} \right\};
\]

\[
B_n = \left\{ k \in \mathbb{N} : f_k(\| T_k^{(n)}(x) - A_n \|) < \frac{\varepsilon}{3} \right\}.
\]

Then, \(B_{mq} \cup B_q \cup B_n \). Let \(B^c = B_{mq} \cup B_q \cup B_n \), where

\[
B = \left\{ k \in \mathbb{N} : f_k(\| A_q - A_n \|) < \varepsilon \right\}.
\]

Then, \(B^c \in I \). We choose \(k_0 \in B^c \), then for each \(n, q \geq k_0 \), we have

\[
\left\{ k \in \mathbb{N} : f_k(\| A_q - A_n \|) < \varepsilon \right\} \supseteq \left\{ k \in \mathbb{N} : f_k(\| A_q - T_k^{(q)}(x) \|) < \frac{\varepsilon}{3} \right\}
\]

\[
\cap \left\{ k \in \mathbb{N} : f_k(\| T_k^{(n)}(x) - T_k^{(q)}(x) \|) < \frac{\varepsilon}{3} \right\}
\]

\[
\cap \left\{ k \in \mathbb{N} : f_k(\| T_k^{(n)}(x) - A_n \|) < \frac{\varepsilon}{3} \right\}.
\]

Then \((A_n) \) is a Cauchy sequence in \(Y \), and \(Y \) is complete, so there exists an element \(A \) in \(Y \) such that \(A_n \to A \) as \(n \to \infty \).

(2) Let \(0 < \delta < 1 \) be given. Then we show that if

\[
U = \left\{ k \in \mathbb{N} : f_k(\| T_k(x) - A \|) < \delta \right\},
\]

then \(U^c \in I \).

Since \(T_k^{(n)} \to T \), then there exists \(q_0 \in \mathbb{N} \) such that

\[
P = \left\{ k \in \mathbb{N} : f_k(\| T_k^{(q_0)}(x) - T_k(x) \|) < \frac{\delta}{3} \right\}
\]

implies \(P^c \in I \).

The number \(q_0 \) can be chosen that together with (2.22), we have

\[
Q = \left\{ k \in \mathbb{N} : f_k(\| A_{q_0} - A \|) < \frac{\delta}{3} \right\}
\]
On I-convergence in random

Mursaleen.M and Alotaibi.A,

Mursaleen.M , Mohiuddine,S.A, and Edely,Osama H. H.,

Limaye,B.V .: Functional analysis

Kreyszig,E.: Introductory functional analysis with

Kostyrko,P .,Maˇ caj,M.,and ˇSal´ at,T.: Inclusion theorems for some sequence spaces

