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Abstract: This article provides both the theoretical and experimental analysis for Bayesian multilevel regression model via
fully specified random and fixed effects, coupled with variance error. The dependent variables for the multilevel Bayesian
regression that are usually supported by distributions that are regarded as horseshoe priors for Bayesian multilevel
regression analysis. The classes of horseshoe priors for multilevel regression used in this research are referred to as
horseshoe flat priors for count and continuous regression multilevel responses that might be via non-linear and linear
multilevel regression models with options for covariance structures, autocorrelation of covariates or responses. Among the
horseshoe flat prior used to estimate the corresponding posteriors regression means and predictive checks are Binomial,
Poisson, and Negative-Binomial; and Gamma, Lognormal for count and continuous responses respectively.
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1 Introduction

Hierarchical models otherwise known as multilevel models do provide immense flexibility, dynamics, and diversity to
regression analysis. In a different term, they are models that do allow observations to be measured on separate levels at
the same time interval [1, 2]. However, when the observations are collected or collated in hierarchical or clumping
structures, the accordant generalization would be multilevel models. Multilevel models usually account for correlations
among or between observations within a given group by integrating cluster-specific random and fixed effects, such that
the random and fixed effects are nested [3].

The response variable must be analyzed as rank, hierarchical, clump, or multilevel analysis with appropriate probability
function that suits it, in comparison with cluster-specified parameters across clusters [4]. Many at times, it is
considerably essential in many problems to use the observed data to estimate some hidden aspects of the population.
Hierarchical regression models usually use parameters to fit to data with the use of observational and marginal
distributions to structure-out dependency into parameters in order to avoid problem of parsimony [5]. For instance, in a
biochemistry laboratory with population of different cadre molecular biologists (undergraduate, masters, PhD, and
Postdoc candidates) that perform the same task. This appears naturally in accordance to model such as hierarchical
structure to derive estimate for each cadre, provide cadre based predictions of future observations, and make conclusion
about general population of the cadre biologists [6, 7].

Bayesian methods of inference have widely gained ground in range of scientific and medical fields — meteorology,
ecology, and biostatistics due to its adaptability to yield probabilistic-oriented deductions that usually outstripped the
deterministic approach. Among the advantages of Bayesian methods are, to lean on the strength of harmonizing pre-
knowledge about the model coefficients with grounded information from the data; describe data generating process,
derive boundaries for confidence intervals of estimated parameters; and to make predictions [8, 9]. Bayesian inference
has been described as intractable in deriving model parameters in hierarchical models, but became tractable when the
data to be analyzed often have a hierarchical structure [10, 11]. Employing Bayesian analysis for solving multilevel
models makes it possible to pliability specify hierarchical structure parameters using priors; ability to manage small
sample size and over-parameterization of likelihoods and information criteria via well-chosen priors; and ability to
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spontaneously derive and interpret results of credible intervals [12, 13]. These highlighted features of Bayesian methods
for shaping multilevel regression analysis can be estimated via Markov Chain Monte Carlo (MCMC), Gibbs-sampling,
or Metropolis-Hastings algorithms. Among the problems of these algorithms are they usually possessed slow rate of
convergence when dealing with high and ultra-dimensional models with influence of collinearity effects among or
between parameters; requirement of the prior to be conjugate of the likelihood of the parameter among others [14, 15]. It
was in line of the lacunas of the aforementioned algorithms that Stan implemented Hamiltonian Monte Carlo called
“Stan” algorithm — the algorithm was known for its quick convergence for Bayesian high and ultra-dimensional models
regardless of whether a conjugate or non-informative priors were specified [16, 17]. In line with the usefulness of the
Stan algorithm, the Stan algorithm will be employed as alternative algorithm for the mentioned algorithms for the
Bayesian multilevel regression model in this work [18].

The class of priors to be chosen for Bayesian multilevel regression models might be difficult to ascertain due to the fact
covariate(s) and response measurements must be supported by appropriate probabilistic functions (either Probability
Density Function (PDF) or Probability Mass Function (PMF)). According to [19], most of the probabilistic functions are
always carved-out in line with the distribution of the response variable with the support of added parameters like
location, scale, shape, hurdle, Beta etc. These supported distributions are most regarded as the priors for Bayesian
multilevel regression analysis. According to [20, 21], the class of priors for multilevel regression analyses are sometimes
referred to as horseshoe prior. However, changing of priors based on response observations of the hierarchical
regression has been partially criticized in order to avoid the problem of too much informative default priors [22]. The
problematic aspect is that not all researchers are well educated about reasonable default priors for Bayesian methods. In
fact, in some instances priors have to be test run, especially when one is not certain about the most robust prior in a class
of appropriate distributions for response variable [23]. [24] adopted Bayesian approach in estimating Maximum a
Posteriori (MAP) via Schuster method for making deductive inference about rates of heartbeats of newly born babies’
variability at exactly an hour and two hours after birth. Instead of adopting either a count or continuous likelihood with
appropriate class of prior, an alternate periodogram and time axe Bayesian inferential statistics via known and unknown
white noise was adopted, but pinpointed that it might fail in the presence hierarchical dataset. [25] and [26] juxtaposed
evidence based standard approach and Bayes factor approach of modeling multilevel Bayesian regression that involves
complex data with different levels of stratification. They employed simplest linear-type models with unrealistic priors,
but came to term that direct statistical computation is unrealistic. They came into conclusion that sequential Markov
Chain Monte Carlo sampling algorithm yielded estimates that are more consistent, but not very clear how well the
technique performs particularly on data with hierarchical structure.

[27] and [28] juxtaposed valid inference from Bayesian multilevel regression and post stratification regression of
hierarchical sampling scheme from non-probabilistic surveys. They adopted prior distributions of specified variance
parameter and pinpointed that choice of prior distribution will be more challenging when observations are from highly
selective sampling stage. They evaluated the choice of biasedness effect estimation of different distribution via Monte
Carlo simulation and concluded that biasedness will be effective for proportion based sampling scheme. [29] concluded
that high autocorrelation usually occur frequently in hierarchical Bayesian model models, especially when model
simplifications or informative priors are often needed. He also affirmed that group-specific effects normally occur at
different hierarchical levels anytime nested is needed, with an assumption that groups usually vary randomly with
Gaussian distribution as a priori. He now affirmed that some special type of priors might be needed.

The core objectives of this research work are: (1) A full sketch Bayesian multilevel model with complete conditional
posterior distribution for fixed and random effects will be specified with their associated deductive inference via the use
of horseshoe flat prior. (2) The complete conditional posterior distribution of the variance-covariance matrix of the
random effect will be derived as well. (3) Objectives one and two will be derived for some selected count and
continuous likelihoods like — Negative-Binomial, Lognormal, Gamma, Poisson. (4) The hierarchical clustering of three
varieties of grains — Kama wheat, Rosa wheat, and Canadian wheat; and readings of rate of heartbeats of newly born
babies will be subjected to estimated solutions in (1), (2), and (3) for deductive inference.

Motivation for the study: Multilevel Bayesian model has received little attention, because of the uncertainty surrounding
the appropriate class of prior to be employed that will yield reliable and deductive posterior coefficients and well-
informed information criteria that will be effective for large and small sample sizes’ scenarios. However, Markov Chain
Monte Carlo (MCMC) and Gibbs-sampling algorithms have once been used to mend-up some conjugate and non-
informative priors for multilevel Bayesian regression, but they possessed slow rate of convergence. It is because of the
slow rate of convergence by these mentioned algorithms that we carried out this research with rare horseshoe flat prior
for some selected count and continuous likelihood via Stan implemented Hamiltonian Monte Carlo algorithm called
“Stan”, in order to improve the slow rate of convergence.

In this light, this work shall widen the scope of distributional priors to a wide range of probabilistic functions for
multilevel regression models. Among the wide range of distributions and link functions to be subjected to horseshoe flat
prior multilevel regression models are Binomial, Poisson, and Negative-Binomial for count responses in order to
estimate the associated posterior-predictive checks, performance criteria, credible interval, and leave-one-out cross
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validation. For nonlinear and linear multilevel regression models with continuous-type related responses and options for
covariance structures, autocorrelation of covariates horseshoe flat prior specification via Gamma, Lognormal, etc. will
be employed to estimate the associated posterior-predictive checks, performance criteria, credible interval, and leave-
one-out cross validation.

2 Model Specifications

Let "y" be a response of linear combination of predictors, say it can be transformed by an inverse link function say
" o "that assumes certain distribution for the response variable "y". Then,
g P y

Vi ND(g(n;)aﬂ) (1)

i is the data point. "D"is usually regarded as the “family”. The parameter 4 delineates supplementary family of
stipulated coefficients that do not vary across data points, such that coefficients can be standard deviation o associated

[T L)

to the Gaussian models, shape coefficient in Gamma, “p” in Binomial, or Negative-Binomial distributions. It is to be
noted that the distribution of the response variable "D" can be any type of distribution. The predictor can be written in
matrix form as:

n=Xp+Zu @
The population-level and group-level coefficients are  and u respectively, while X and Z are their corresponding
design matrices for the response variable " y" that make-up the data. B and 4 are fixed and random effects are model
parameter to be estimated respectively.

2.1 Bayesian Multilevel Model Specification

Assuming a two-level normal model of y; of the response variable measured for each observation ; in clusters #

with mean 7, then
g(my) =x; B+2;6 +u, 3)
85, ~N(0,0) 4)
w; ~N(0,07) (5)

> X, is ( pxl) and z; is (k><1) design vectors for fixed effects # and random effects 0,; p and k are numbers of

fixed and random effects. 0, is a (k X 1) vector of random effects for cluster i . g(7;) is the link function. ® and & f,
stand for the model covariance matrix of the random effects and error variance respectively. The prior specification for

®, and the marginal priors for ® and 0'/2, components are of interest.

2.2 Complete Derivation for Posterior Distributions

Let X be (n X p) design matrix for X; ; S be the fixed effects and Z; be ( Jx k)design matrix for random effects >

k is the design vector for random effects vector /3.

2.3 The Complete Conditional Posterior for Fixed Effects ()

The complete conditional posterior for fixed effects is the fixed effects proportional to product of the likelihood and
fixed effects of horseshoe prior. That is, when the normalizing factor has been factored-out.

P(B1y.2,X.,5,,0,0.) © P(y/ B, Z,X,65,0,0,)P(B) (6)
Where,
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n_J
P(y/ B.2.X.5.0.0,)=[ [T 1P(»,/ B x, +3/ z,.0.0)) (7)
i=1 j=1
1
oexp| — 757 RSS ®)
u
Such that, Residual Sum of Square
n_J
RSSZZZ()’&' -B'x, —5,.Tz,.j) ©)
i=1 j=1
Let, ;/l.j =Y, —é',.TZ,.j

n Jo_ )
Then RSS:ZZ(y[j —ﬁrx,.j)

i=1 j=1
Writing RSS in a matrix form

— T ,—
RSS:(y—X[)’) (y—Xﬂ) (10)
RSS=y y=28"Xy+ B X" Xp (11)
It implies that,
P(y/ﬂ,Z,X,é},@,ai) 0 exp{_z%()_}T)—}_zﬂT)()_/JFIBTXTXIB)} (12)
(e}
u

According to some authors, reasonable non-informative horseshoe prior distribution of P( ﬂ)ool and P (O'i) 0 0'/21

recommended to have significant effect on making inferences on random and fixed effects.
Combining equation (12) with P( p ) oo | gives:

T T
P(y/ §,2,X.6,0,07 ) exp| - | 22 |-Lpr| 2L | g (13)
o, 2 o,
a0 O
X'x| x' X'x
ﬂ~N[ ] zy,[ J (14)
o, c, o,
2.4 The Complete Conditional Posterior for Random Effects (51 )
P(8,/y.2.X.5,,0.0, )= P(y,/ .2.X.5,,0,0, ) P(5,) (15)
Having ascertained that,
1
P(y, /@) =T1P(y, /B x,+5 2.0, ) exp(—z - RSSJ (16)
u

RSS = i(y,.j ~B'x; -0 z,)

J=1

Letting J_/,-j =Yy _ﬁrxzf

RSS=3 (v, - #'x, )
=l

z(;_éiTZi )T (;_é‘iTZi) (17)
o _
=y y_zé‘iTZiy+é;TZiTZié‘i (18)
P(y,/(9)) exp[—212 (}T}—za}TZi}mfoz@)} (19)
"

It is also known that the prior is of 2-stage equation
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6~ N(0.6)
P(5) exp{—%(éf@é} -25'0™ o)} (20)
Combining (19) and (20), that is, the combination of the sampling model and horseshoe prior
6~ N(0.0)
1 - 1
P(o exp| ———(0"278 -26"Z y)-=(670"'6. -257®'0 21
() xp[zaz(”, '2,y)-5 (01075 ~257@70) @1
7'z, zry,
—exp| 157 | @ + 220 |5 57| @04 221 (22)
2 o, o,
-1 — -1
56| (Zy, AVA
é:/(.)NN (@l_"_ 121] [ lzyzj’(Gl_"_ tzzj (23)
Oy O, Oy

2.5 The Complete Posterior Distribution for the Error Variance (O ;21)

Expressing O'j complete conditional posterior as:

P(c}/y.Z2,.X,5,.8.0)=P(y/B.5,.2.X.5,.0,0, ) P(o},) (24)
The sampling model for the complete conditional distribution of S
n_J
P(y/p.2.x.0.0,)=T][1P(»;/ B'x, +8z,.0.07) (25)
=1 j=1
2
no L Vi _ﬂTxi' _51’TZI“
= H(27ra;2 )exp —< d — /) (26)
i=l j=1 20‘[
Since our interest is on 0'; , then
n_ J . 7‘ P
N Z(yij -p xzy_é: Zy)
P(y/B,Z,X,0,6°) o () 2 exp| - =L (27)
(15.2.x.0.02) 0 (02)  exp
N RSS
oo(az) exp[— J (28)
u 2
20,

3 n+n,+tn, = Z n, = N is the entire sample size, (That is, the complete observations within specified clusters).

i=1

The total horseshoe prior is P (0'; ) © O'fl , the complete conditional posterior is as:

,ﬁ,] 1
P(Gj/y,Z,X,d,ﬁ,@): (O'/zl) 2 exp{—?RSSJ (29)
u
N RSS
PG| —, — 30
T (2 2 ) (39)

IG is the Inverse Gamma.

2.6 The Complete Conditional Posterior Distribution of the Random Effect Variance- Covariance Matrix

P(6,/©) |®|_% exp(—%tr(l/bG)1 )j (€29)
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= 1 . .. . . .
Where V, = Z é‘lé‘lT , Where V', = — Zé'lé'lr is the empirical variance-covariance, "tr" stands for the trace matrix.
1 n 1

Given a horseshoe flat prior

P(@) oo 1
The complete conditional posterior for ® is
P(@)/(o))oo |®|_g exp(—%tr(l/b(al )j (32)
o I (n—k-1, Y. 557 ) (33)
IW stands for the Inverse-Wishart distribution
Given the Inverse-Wishart horseshoe prior
©) o I (v,Y",8,6; ) (34)
7—(v+k+1) 1 .
0 |®| 2 exp(—ztr(VbG )j (35)
The complete conditional posterior for ® is
(n+v+k+1)
P(®/e)n |0 > exp(—%tr(zoﬁ(ﬁor +zi§i5f)®1) (36)
0 IW(n+v,ZO5O5OT +zic3:.5ir) (37)
Given the Negative-Binomial horseshoe prior
©) 0 NB(r, )", 8,5, ) (38)
(r+1)
0|0 2 exp[—%tr(Zié‘l_é;T)@)lj (39)
The complete conditional posterior for ® is
(n+r+1)
P(©/e)n |0 > exp(—%tr(zoéoég +Zﬁ5f)®"j (40)
0 B(a+rn,ﬂ+(zo5o5or +z,5t5lr)) 41)
Given the Lognormal horseshoe prior
P(©) LN (rv, Y 5,5/ ) (42)

(v+1)

_— exp(—%tr(Zigié‘iT)®lj (43)

The complete conditional posterior for ® is

(n+v+1)
P(@/o)oo |®|7 2 exp[—%tr(zoé'oég +Z[5i5,-T)®_l) (44)
© LN(log(v+n), log(zoéoﬁor +zi5i5,.r )) (45)
Given the Gamma horseshoe prior
P(©) o Gamma (a+ﬂ,zoé‘0§§) (46)
7—(a+ﬂ+]) 1 .
w |6 2 exp[—atr(l/;(ﬂ )j (47)
The complete conditional posterior for ® is
(n+a+p+1)
P(©/e)x |0 exp(—%tr(zoéoég +zi5i5ir)@—1j (48)
0 Gamma(n(zoé'oé'g+zi5[é}r)+a, n+,3) (49)

Given the Poisson horseshoe prior
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P(©) = Poi(4, Y, 8,6, ) (50)
_—(/1+l) 1 »
oo exp(—ztr(VbG) )} (51
The complete conditional posterior for ® is
(n+2+1)
P(®/e)w |0 2 exp (—%tr(zoaoag +> 85 )@)*J (52)
w Poi(n(Y, 8,6, +.,6,8] )+4 ) (53)

3 Numerical Analysis

The hierarchical clustering of grain samples was worked-out with in this section. The grains are in three varieties —
Kama wheat, Rosa wheat, and Canadian wheat, such that their measurements were provided in terms of area and
perimeter of land planted; the spatial space between / among planted varieties (that is the compactness); the length and
width of the planted grains; the occupying space (occupying space) and the long narrow furrow cut by a natural process,
such as erosion (groove). The sample of the grain varieties with aforementioned measurements are of 210 sample points.
The dataset can be obtained from the website- https://github.com/benjaminwilson/python-hierarchical-clustering-
exercises/blob/master/datasets/seeds-less-rows.csv. The three varieties of grains make it to be a three level of
hierarchical dataset with associated measurements that defined there outcome.

=
@
o
=
[}
2 S % =
.8 2 5 B
8 3 g g 8
© |
s £ £ B &8 £ 3 s
< 3 8 K] = 8 > >
1
area | 1.00 0.99 0.61 0.95 0.97 0.86 o8
perimeter  0.99 | 1.00 0.97 0.94 0.89 0.6
compactness | 0.61 1.00 0.76 0.4
0.2
length | 0.95 0.97 1.00 0.86 0.93
o)
width | 0.97 0.94| 0.76 0.86 1.00 0.75 oz
asymmetry_coefficient 1.00 0.58 0.4
groove_length | 0.86 | 0.89 0.93 0.75 1.00 06
0.8
grain_variety 0.58 1.00

-1
Fig.1: Correlation Plot of the Measurements of the Grains.

There is a strong positive correlation between the area of the soil the varieties of grains were planted in and its
perimeter, compactness, length, width, and groove length, where there is a weak negative correlation between the area of
the soil the varieties of grains planted in and its asymmetry. There is a strong positive correlation between perimeter of
the soil the varieties of the grains were planted in and its compactness, length, width and its groove; whereas there is a
weak negative correlation between its asymmetry coefficient. In a similar vein, the spatial space of grains possessed a
positive correlation between its area, perimeter, length, width, and groove; whereas a negative correlation exists between
compactness and its asymmetry coefficient. Same positive association goes for length and width with other
measurements expect for asymmetry (See fig. 1 above).

Table 1: Family of Prior Distributions for the Grains Measurements.

Criteria Binomial | Zero inflated | Poisson Zero inflated Negative Binomial Zero Inflated
(B) Binomial Poisson (NB) NB
elpd waic -115.1 -107.3 -207.4 -208.4 -208.5 -209.5
(8.3) 8.7 (8.0) (8.0) (8.1) 8.1)
p_waic 4.8 59 2.4 2.4 24 2.4
© 2023 NSP
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0.7 (1.0) (0.3) 0.3) (0.3) 0.3)
waic 230.2 214.6 414.9 416.8 417.0 418.9
(16.5) 17.3) (16.0) (16.1) (16.1) (16.2)
elpd _loo -115.1 -107.3 -207.5 -208.4 -208.5 -209.5
(8.3) 8.7 (8.0 (8.0) (8.1) 8.1)
p_loo 4.8 6.0 2.4 2.4 24 2.4
0.7 (1.0) (0.3) 0.3) (0.3) 0.3)
looic 230.2 214.6 414.9 416.8 417.0 419.0
(16.5) 17.4) (16.0) (16.1) (16.1) (16.2)

In brackets are standard errors of estimates. Keys: Zero Inflated Binomial=ZIB; Zero Inflated Poisson=ZIP;
Negative Binomial=NB; Zero Inflated=ZI

Table 2: Posterior Regression Coefficients of the Population-Level Effects of the Grains.

Population- Est. Est. Error | 1-95% CI | u -95 %CI | Bulk ESS | Tail ESS
Level Effects:
Intercept 39.93 17.17 6.85 73.72 1850 2171
Groove length 3.38 0.62 2.19 4.63 2438 2504
Width -0.79 2.11 -4.96 3.22 2678 2832
Length -3.71 1.22 -6.11 -1.32 2704 2702
Compactness | -21.38 12.78 -46.23 3.54 2179 2423
Perimeter -2.53 1.23 -5.00 -0.12 1781 2192
Area 1.34 0.62 0.17 2.55 1892 2292
Asymmetry 0.15 0.06 0.04 0.26 2925 2565
coefficient

Keys: Est. = Estimate; ESS=Estimated Sample Size
Table 3: Zero-Inflated Binomial Family Specific Parameters.
Criteria | Est. Est. Error 1-95% CI | ©-95% CI | Bulk_ESS | Tail_ESS
Shape 104.88 78.63 22.11 313.78 3453 2831
Zi 0.86 0.01 0.00 0.03 2643 1515

Table 1 to table 3, Widely Applicable Information Criterion (WAIC), otherwise known as Watanbe-Akaike Information
Criteria (WAIC) viewed as an improvement for Deviance Information Criterion (DIC) for Bayesian models, as well as
Leave-One-Out Information Criterion (LOOIC) for cross-validation will be adopted to measure or juxtapose reduced
posterior error performance. WAIC is fully for Bayesian and closely approximates Bayesian cross-validation. Unlike
DIC, WAIC is an invariant to parameterization and works for singular models as well. Expected Log Point-Wise
Predictive Density for observations (ELPD) for WAIC and LOO are specified as elpd waic and elpd loo respectively,
while their p-values are p waic and p loo respectively. Zero-Inflated Binomial prior produced the same minimum
reduced error performance estimate for WAIC and LOOIC, valued at 214.6 among the discrete distributional priors
studied. However, according to [30], whenever p_waic estimates is greater than 0.4, loo is usually recommended, but in
this scenario the P-value of WAIC (that is p-waic) is far greater than 0.4, that is, 5.9 > 0.4, yet WAIC and LOOIC still
coincides (See Table 1 to 3).

The positive posterior mean estimates of 3.38, 1.34, and 0.15 with standard errors of 0.62, 0.62, and 0.06 for Groove
length, Area and Asymmetry coefficient covariates implies that they contribute positively to the chance of a grain being
either Kama wheat, Rosa wheat, or Canadian wheat keeping other factors constant. While negative posterior mean
estimates of -0.79, -3.71, -21.38, and -2.53 with standard errors of 2.11, 1.22, 12.78, and 1.23 for Width, Length,
Compactness, and Perimeter covariates implies they do not contribute towards ascertaining whether a grain is either
Kama wheat, Rosa wheat, or Canadian wheat. The two-sided posterior of the means at 95% credible intervals (1-95% CI
and u-95% CI) based on quantiles confirmed that they are true estimates, because they fall within the intervals. The

Bulk Estimated Sample Size (Bulk ESS) and Tail Estimated Sample Size (Tail ESS) values are estimation of the
effective large and small sample sizes that the posterior distribution would needed independently to produce the same
standard error of the posterior mean as if the dependent samples return by MCMC algorithm. The zero-inflated
probability zi is very much large with mean of 86%. This connote that there is 0.14% chance of the measurements not
contributing to the chance of not having any of the grains (See Figure 2 below).
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Fig. 2: Posterior Distributions of the Covariates Contributions to Varieties of Grains.

From figure 2 above, the posterior distributions of covariate contributions of multilevel regression intercept, groove
length, width, length, area, and asymmetry coefficients for the hierarchical clustering of grain samples — Kama wheat,
Rosa wheat, and Canadian wheat with family of prior distributions possessed nearly perfect symmetry distributions
respectively. While distributions of the perimeter and the parameter of the Zero-Inflated Binomial coefficients possessed

right and left skewed distribution respectively.

It is to be noted that the posterior predictive distribution of the Zero-Inflated Binomial possessed a three distributive
switching non-asymmetry distributions (See figure 5 of the Appendix).
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3.1 Section 2

In this section, a secondary dataset of readings of rate of heartbeats of just born babies in a teaching hospital, Lagos
University Teaching Hospital (LUTH) would be used. These rates of heartbeats were recorded in successive hours of
one, two, and three immediately after delivery (that is, after birth) with the use of Electrocardiogram (ECG). The
readings were recorded for nine hundred and fifty (950) babies, such that the readings of heartbeats after three hours
(HR3) depend on the successive hours of the first (HR1) and second (HR2) hours of the readings.

HR3
HR2

o
b

HR3 1.00

HR2 1.00 r O

HRA1 1.00

Fig.3: Correlation Plot of the three Successive Hours after Birth.

There is a weak negative correlation between heartbeats of babies recorded after an hour (HR1) and two hours (HR2)
after birth. There is a weak positive correlation between heartbeats of babies recorded after three hours (HR3) and an
hour (HR:) after birth. There is also a weak positive correlation between heartbeats of babies recorded after three hours
(HR3) and two hours (HR?) after birth (See figure 3 above).

Table 4: Family of Prior Distributions for the Hours of Heartbeats.

Criteria Lognormal | Gaussian | Asym_Laplace | Ex-Gaussian | Exponential | Fréchet | Hurdle Gamma
elpd_waic -2476.5 -2513.5 -2431.1 -2396.6 -4819.9 -2402.2 -2488.9
(36.4) (39.8) (28.6) (27.8) (1.8) (25.8) (37.2)
p_waic 53 5.6 6.2 4.8 0.0000 4.1 52
0.7) (0.8) (0.2) (0.3) (0.000) (0.4) (0.6)
waic 4953.0 5026.9 4862.3 4793.1 9639.8 4804.4 4977.7
(72.7) (79.7) (57.1) (55.7) (3.6) (51.6) (74.4)
elpd loo -2476.5 -2513.5 -2431.1 -2396.6 -4819.9 -2402.2 -2488.9
(36.4) (39.8) (28.6) (27.8) (1.8) (25.8) (37.2)
p_loo 5.4 5.6 6.2 4.8 0.000 4.1 52
0.7) (0.8) (0.2) (0.3) (0.000) (0.4) (0.6)
looic 4953.0 5026.9 4862.3 4793.1 9639.8 4804.5 4977.7
(72.7) (79.7) (57.1) (55.7) (3.6) (51.6) (74.4)
Criteria | Hurdle Shifted Skew-Normal | Student-t | Weibull
Lognormal | Lognormal
elpd wai -2477.4 -2404.7 -2426.9 -2422.9 -2753.3
c (36.4) (27.4) (29.3) (32.0) (42.0)
p_waic 52 5.0 5.6 3.8 10.5
(0.6) (0.4) (0.5) (0.2) (2.8)
waic 4954.7 4809.4 4953.0 4845.9 5506.7
(72.9) (54.9) (72.7) (64.0) (84.0)
elpd loo -2477.4 -2404.7 -2426.9 -2422.9 -2753.3
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(36.4) (27.4) (29.3) (32.0) (42.0)
p_loo 52 5.0 5.6 3.9 10.5
(0.6) (0.4) (0.5) 0.2) 2.8)
looic 4954.7 4809.4 4853.9 4845.9 5506.6
(72.9) (54.9) (58.6) (64.0) (83.9)

Keys: Asym._Laplace=Asymmetric Laplace; Ex-Gaussian=Exponentiated Gaussian;
Exp.=Exponential

Table S: Posterior Regression Coefficients of the Population-Level Effects of the Hours of Heartbeats.

Population- Est. Est. Error | 1-95% CI | u -95% CI | Bulk ESS | Tail ESS
Level Effects:
Intercept 50.34 2.36 45.98 55.06 4402 2496
HR: 0.03 0.02 0.00 0.06 4749 3226
HR: 0.05 0.02 0.02 0.09 4177 2820
Table 6: Ex-Gaussian Family Specific Parameters
Family Specific Est. | Est. Error | 1-95% CI 1 -95% CI | Bulk ESS Tail ESS
Parameters:
Sigma (o) 1.86 0.09 1.68 2.04 3995 2957
Beta (f) 2.65 0.15 2.37 2.94 3365 2621

Keys: Est. Error= Estimated Error

Table 4 to table 6, Weibull distribution produced the reduced-error model performance for elpd waic valued at -2753.3,
but its p-value for the p-waic = 10.5 is greater than four, that is, 10.5 > 0.4. Since its elpd’s p-value is greater than four
(4), its model performance is not reliable and not recommended. However, the LOO model performance will be
switched to, among the pool of continuous distributions for LOO; Ex-Gaussian produced the barely minimum reduced-
error performance with its Leave-One-Out Information Criterion (LOOIC) valued to be 4793.1. The positive posterior
mean estimates of 0.03 and 0.05 with coincide standard error of 0.02. The near posterior mean estimate for (HR:) and
(HR2) and coincide standard error of 0.02 makes it reasonable that the successive record of heartbeats after an hour and
two hours after birth will constitute and influence the impulse readings after three hours of birth. The estimated sigma of
1.86 for the family of the Ex-Gaussian parameter connotes a not too far variation among the observations, while the
estimated Beta value of 2.65 speaks volume of a relatively low volatility (See Table 4 to 6).
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Fig. 4: Posterior Distributions of the Successive Hours of Heartbeats after Birth.
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From figure 4 above, the posterior distributions of heartbeats of newly born babies of the intercept, one and two hours
after birth for multilevel regression coefficients, as well as the sigma(o)and Beta (/) coefficients of the posterior

distribution of the Ex-Gaussian family specific parameters possessed a bell-shape distribution for all.
It is to be noted that the posterior predictive distribution of the Ex-Gaussian family specific parameters possessed a
negative skewed distribution (See figure 6 of the Appendix).

4 Conclusions

In conclusion, Bayesian multilevel hierarchical regression model was proposed in its full specifications with associated
complete conditional posterior for fixed effects (), complete conditional posterior for random effects (6'[) and

complete posterior distribution for the error variance (o'j) Additionally, the Residual Sum of Squares (RSS) for the
model was factored-out and used to assign horseshoe flat prior distributions to the fixed and random effects, as well to
the variance error (0;). Among the specified posteriors for the model are Inverse-Wishart distribution, Gamma,

Lognormal; and Negative-Binomial, Geometric, and Poisson for continuous and discrete observations respectively.
Three levels of grains clustering samples were worked-out with Binomial, Zero-Inflated Binomial, Poisson, Zero-
Inflated Poisson, Negative-Binomial, and Zero-Inflated Negative-Binomial. Zero-Inflated Binomial gave a reduced
coincide WAIC and LOOIC, valued at 214.6 to best represent the generalization. Additionally, Ex-Gaussian posterior
gave a perfect representation of babies impulses recorded in a succession of an hour, two hours, and three hours after
birth.
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Fig 5: The Predictive Distributions of the Measurements for Varieties of Grains.
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Fig. 6: The Predictive Distributions of the Heartbeats.
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