
Appl. Math. Inf. Sci. 7, No. 2L, 639-646 (2013) 639

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/072L38

HMDC: Live Virtual Machine Migration Based on Hybrid
Memory Copy and Delta Compression

Liang Hu1, Jia Zhao1, Gaochao Xu1, Yan Ding1 and Jianfeng Chu1

1College of Computer Science and Technology, Jilin University, Changchun, China

Received: 7 Jun. 2012, Revised: 21 Sep. 2012, Accepted: 23 Sep. 2012
Published online: 1 Jan. 2013

Abstract: Live VM (virtual machine) migration has become a research hotspot of virtualized cloud computing architecture. We present
a novel migration algorithm which is called HMDC. Its main idea includes two parts. One is that it combines memory pulling copy
with memory pushing copy to achieve hybrid memory copy. The other one is that it uses a delta compression mechanism during dirty
pages copy, in which source host makes use of memory cache to get XOR delta pages, and then compresses delta pages which are easy
to compress by the XOR binary RLE (run-length encoding) algorithm. Source host transmits delta compression pages instead of dirty
pages to target host. HMDC increases throughput and decreases total migration data by using delta compression and thus to achieve
dirty pages copy quickly. The experimental results demonstrate that HMDC evidently reduces total migration time, VM downtime and
total migration data compared with Pre-copy and XBRLE algorithm. It makes the process of memory migration more high-effective
and transparent.

Keywords: Virtual Machine, Live Migration, Hybrid Memory Copy, Delta Compression, Pre-paging

1 Introduction

Cloud computing has become the most promising
research direction in the field of distributed systems. Iaas
(Infrastructure as a Service) [1] is considered to be a
pioneer in cloud computing. The VM technology [2,3] is
the most crucial to Iaas for achieving high flexibility and
scalability. Live VM migration technology is the
significant application and embody of the flexibility and
availability of VM technology. Currently, live migration
is widely used for the maintenance management in
virtualized cloud computing data centers. When the
workload of some host is too heavy, we can move its VMs
which are providing services to an idle host to achieve
load balance through live migration. When some host
needs shutdown for maintenance, we can move its VMs to
other hosts transparently through live migration. We can
move the VMs providing services to clients through live
migration in order to achieve high-efficient local services.

It is the key for live VM migration technology to
achieve a high-efficient replication of memory status
between source and target host. Therefore, a good
memory migration algorithm for live VM migration is
extremely important. It has abilities in directly

determining whether live VM migration succeeds or not.
The current most virtualization platforms all provide the
live migration function. However, the algorithms are
restrained by their own characteristics, which cant get the
ideal migration efficiency. In addition, virtualized cloud
computing systems need to achieve resources sharing, so
in general it isnt allowed to exclusively use physical
resources. The existing memory migration mechanisms in
a resource-constrained environment often show either the
inefficient performance or a failure sometimes. In
addition, some migration operation may damage the
demands of other entities for physical resources and itself
be limited by the physical resources occupied by other
entities in the environment with shareable physical
resources.

Aiming at the lack of the performance of existing
memory migration mechanisms and the characteristics of
cloud computing environment that physical resources are
shared and limited, this paper proposes a novel memory
migration algorithm based on hybrid memory copy and
delta compression to address some traditional issues and
challenges of memory migration.

The rest of this paper is organized as follows. In
Section 2, we present the related work of memory

∗ Corresponding author e-mail: zhaiyj049@sina.com
c⃝ 2013 NSP

Natural Sciences Publishing Cor.



640 L Hu, J Zhao, G Xu, Y Ding and J Chu: HMDC

migration briefly and the prerequisites that should be
satisfied are shown clearly. In Section 3, we introduce the
main idea and implementation of HMDC in detail. In
Section 4, the experimental results and analysis on Xen
platform are given. Finally, in Section 5, we summarize
the full paper and future work is put forward.

2 Related work

At present, there are mainly two kinds of popular memory
migration algorithms based on memory-to-memory: Pre-
copy and Post-copy.

Pre-copy [4] is proposed and implemented by Clark et
al. Recently, the most popular virtualization platforms
such as Xen, KVM, VMware and so on all implement the
algorithm, thereby Pre-copy widely is used for live VM
migration in Lan. In Pre-copy algorithm, memory
migration is divided into three stages: total memory copy,
iterative copy and stop-and-copy. Pre-copy algorithm not
only shortens VM downtime but also avoids the
unpredictable overhead and errors caused by too long VM
downtime. However, Pre-copy has a convergence problem
since it needs many rounds of iterative copy to achieve
memory migration but Pre-copy cant predict or control
memory update rate itself. Jin et al. [5] present memory
compression mechanism to decrease total data
transmitted. Hai Jin et al. [6] present a CPU scheduling
approach to control memory update rate. Johan Tordsson
et al. [7] present the dynamic page transfer reordering and
compression mechanism and Bolin Hu et al. [8] present
the K/N time-series mechanism. The two approaches are
used to control total data transmitted of every round of
iterative copy. However, these improvements are still
based on Pre-copy and essentially dont break away from
the migration pattern of Pre-copy. What is more, they
fundamentally dont eliminate the dependency on iterative
copy of dirty pages during the migration.

Post-copy [9] is implemented by Hines et al. It
postpones memory migration until target VM begins
running. Post-copy ensures that every memory page is
only copied to target host once during the migration.
However, in Post-copy algorithm memory migration is
based on demand-paging, which makes target VM
suspend and resume running frequently. Therefore,
Post-copy has a performance problem. In addition, if
some memory pages are never accessed by target VM,
memory migration wont end within a long time. In the
subsequent research, Hines et al. [10] present dynamic
self-ballooning and pre-paging to improve its efficiency.
However, these approaches just make Post-copy
optimized in a certain range and dont resolve the existing
problems.

Noack et al. present the idea of hybrid copy first in
[11]. Its main idea is that source host performs total
memory copy with source VM running. Subsequently
source VM suspends running and transmits the situation
about which memory pages are dirtied to target host.

Then target VM resumes running and begins demand
paging. The idea, which doesnt have a specific
mechanism to be implemented, remains in the research
stage. HMDC is a kind of specific implementation based
on hybrid memory copy and delta compression.

In this paper, HMDC has two prerequisites: data
transfer rate is less than network bandwidth; memory
cache opened up by source host is large enough. We
assume HMDC runs in the environment with enough
network bandwidth. HMDC is affected by the size of
memory cache. It is determined that the size of memory
cache at least matches the set size of memory pages
whose updating is the most frequent in VM. Pre-copy
assumes that network transfer rate is faster than memory
update rate. If not, dirty pages cant be converged during
iterative copy. This will lead to that memory migration
cant enter the next stage and fails. The prerequisite of
Pre-copy is essential for it, whereas that of HMDC is only
used to better show the performance.

3 The proposed HMDC Algorithm

3.1 Main idea

The main ideas are what combines hybrid memory copy
with delta compression. It reduces total migration time,
VM downtime and total transmitted data so that the
efficiency is improved evidently.

Hybrid memory copy is what combines active push
with demand paging to achieve fast memory copy.
Memory migration is also divided into three stages by
HMDC as illustrated in Fig.1. Active push of source host:
in the first stage it transmits total memory to target host;
in the second stage it transmits two bitmaps to target host
with VM suspended; in the third stage source host
periodically transmits dirty pages to target host. Demand
paging of target host: it only works during dirty pages
copy. The third stage begins with that target VM resumes
running. Target host requests dirty pages from source host
during target VM running. At the same time, pre-paging
is integrated into demand paging. Delta compression

Fig. 1: The process of HMDC memory migration

works in the third stage of dirty pages copy. Its principle
is that if in source host the old versions of dirty pages to

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2L, 639-646 (2013) / www.naturalspublishing.com/Journals.asp 641

be transmitted are cached, source host will compute
smaller delta compression pages of dirty pages and
transmits them to target host. After target host receives
the delta compression pages, will rebuild the new versions
of dirty pages by using the delta compression pages.

3.2 Implementation

The implementation of three stages is as follows:
Stage 1(total memory copy): source host utilizes

dynamic ballooning to recycle idle pages of source VM to
reduce total data transmitted. Source host opens up
memory cache of source VM. HMDC transmits total
memory to target host with source VM running. During
this process, if some page is to be overwritten, HMDC
will copy its original data to memory cache at first.
HMDC marks all pages dirtied to dirtypage bitmap and
idle dirty pages are marked using a special mark during
total memory copy. While total memory copy is
completed, Source VM stops running.

Stage 2(bitmaps copy): according to dirtypage bitmap
and memory cache, HMDC generates a new bitmap
called cache bitmap. Source host copies the two bitmaps
to target VM. After target host receives them, performs
some settings and then target VM begins running.

In HMDC,a novel approach, whose purpose is to
resolve the contradiction between demand paging and
delta compression, is proposed. This approach involves
two bitmaps and a mapping table. The specific processes
are as follows: after source VM stops running, source host
looks up cache blocks of dirty pages marked in
dirtypage bitmap. If the old version of a dirty page is
cached in memory cache, the flag bit of the memory page
is denoted by ”1”. If not, is denoted by ”0”. After all dirty
pages have been checked, source host generates a new
bitmap called cache bitmap, which marks all dirty pages
whose old versions are cached in source host. Then
source host copies the two bitmaps to target VM. As
illustrated in Fig.2, after target VM receives them,
according to the number of dirty pages marked in
cache bitmap, target host opens up memory cache and
caches the corresponding memory pages to memory
cache. At the same time, an AMT (address mapping table)
to maintain the cache mapping is created. Finally, HMDC
sets the lowest EPT (Extending Page Table) items of all
dirty pages to non-present according to dirtypage bitmap.
This approach not only resolves the problem of the
automatic page request of dirty pages but also provides
original data for delta compression. Memory cache of
source and target will be recycled once its data has been
used so that the approach doesnt generate extra space
overhead. Stage 3(dirty pages copy): Once target VM
resumes running, source host begins pushing dirty pages
periodically. HMDC sets a timer. If the timer times out,
according to dirtypage bitmap, HMDC copies non-idle
dirty pages to a pushing queue until it is full or dirty
pages are exhausted. After a process of active push is

Fig. 2: The process of bitmaps copy

completed, the timer restarts. If during timing receiving a
page request, source host immediately suspends the timer
and copies the page requested to the pushing queue.
Subsequently according to pre-paging, also copies its left
and right neighbor dirty pages to the pushing queue until
it is full or the dirty pages are exhausted. The timer
resumes timing after sending the queue. If the dirty pages
to be transmitted have the cache of old versions, HMDC
performs delta compression on the dirty pages. HMDC
firstly computes the delta page by applying XOR on the
current and previous version of a page, and then get the
delta compression page by compressing the delta page
using XOR binary RLE algorithm [12]. Finally, a delta
compression flag is set in the page header. Source host
replaces dirty pages with their delta compression pages
and sends the queue to target host. Finally, the
corresponding cache blocks are recycled by VMM
(virtual machine monitor). If the old versions of pages
dont exist in memory cache, source host directly transmits
dirty pages to target host. Delta compression should
consume a minimum of CPU resources, both for cache
hits and cache misses to not slow down the migration
process or disrupt the performance of VM. Therefore, we
employ a 2-way set associative caching scheme.

At the same time when target VM resumes running,
target host begins performing demand paging. While the
pages marked in dirtypage bitmap are accessed, memory
access faults will occur and then be fallen into VMM
kernel to be captured by HMDC. If the page isnt an idle
dirty page, with target VM suspended HMDC will send a
page request to source host. Source host transmits a set of
pages which include the requested page to target host as
its response. Target host receives the response and updates
memory pages accordingly. Then target VM resumes
running. If the requested page is an idle dirty page, target
host doesnt send the request to source host but directly
allocates a memory page to target VM from the local.
Subsequently target VM immediately resumes running.
During target VM running, target VM will receive dirty
pages from source VM periodically. For target VM, both

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



642 L Hu, J Zhao, G Xu, Y Ding and J Chu: HMDC

the response of a dirty page request and the active push of
source host are checked whether they have delta
compression flags. If yes, HMDC firstly decompresses
the pages to get delta pages and then rebuilds the new
pages by applying XOR on the delta pages and the old
versions cached in target host. HMDC updates the
memory pages using the new rebuilt pages and recycles
the cache blocks to VMM. If no, HMDC directly updates
the pages. According to dirtypage bitmap, while all dirty
pages have been synchronized, memory migration ends.

Let us consider pre-paging above in another view. It is
also a K-means clustering process. The reason is: firstly
we can regard the set of dirty pages which a pre-paging
process refers to as a cluster and regard all dirty pages
which are transmitted from source to target host through
pre-paging as N data objects of a K-means clustering.
During memory migration, K dirty pages to cause
demand paging are K clustering central points of the
initial clusters. Pre-paging is the process that it copies
dirty pages, which relate to the page requested, to target
host in order to reduce subsequent demand paging. It is a
clustering process to decide which of dirty pages are
carried by which one of all requested pages of demand
paging. If we regard K pre-paging processes as a whole,
exactly it is a K-means clustering.

Starting from this intuition, HMDC gives
consideration to both total migration time and VM
downtime to balance the migration process so that
HMDC has a high availability. Our starting point is what
combines the advantages of Pre-copy with the advantages
of Post-copy, abandons their drawbacks and further has
complementary advantages to implement a new migration
framework with hybrid memory copy. On beginning
memory migration, with source VM running, HMDC
copies total memory pages of source VM to target host in
order to make most memory pages synchronized through
once copy. Within VM downtime, to be copied and sent is
only two small bitmaps, whose sizes dont change under
the different workload conditions. In order to reducing
redundant traffic and thus to increase migration
throughput, we employ the idea of delta compression to
transmit the dirty pages. The dirty pages copy is finished
by source and target host together to utilize the computing
power of target to improve the efficiency and reduce
migration time. During memory migration, it is consistent
with original intension. The overhead of an XOR
operation is negligible. Moreover, the XOR binary RLE
compression algorithm, whose overhead is quite small, is
well-known to be fit to efficiently compress memory
pages with the binary characteristic. All the features
guarantee the feasibility and superiority of HMDC.

At the beginning of total memory copy, there are
some idle pages in source VM. We should take measures
to deal with them. The way is an open issue. In HMDC,
we employ dynamic ballooning mechanism to recycle the
idle pages to VMM in order to decrease total migration
data.

At the beginning of total memory copy, there are
some idle pages in source VM. We should take measures
to deal with them. The way is an open issue. In HMDC,
we employ dynamic ballooning mechanism to recycle the
idle pages to VMM in order to decrease total migration
data.

At this time when HMDC sets the mapping states to
non-present in the target host, target host needs to
maintain a copy of dirtypage bitmap in VMM kernel to
avoid that the state is frequently switched between kernel
and user state to look over the bitmap. What is more, the
copy is used to determine whether memory migration is
finished. Once target host receives dirty pages, HMDC
updates the bitmap copy. And then HMDC checks it. If it
shows that all dirty pages are synchronized successfully,
target host sends a signal which indicates memory
migration is finished to source host. According to the
signal and the bitmap of dirtypage bitmap which has been
kept in source host, source host judges whether memory
migration is completed. If it shows all dirty pages are
transmitted completely, source host sends an
acknowledgement to target host. After target host
receives, memory migration ends.

4 Evaluation

In this section, we will experimentally verify the
proposed HMDC algorithm. On XEN [13] platform, we
compare HMDC with Pre-copy and XBRLE [14]which
combines delta compression with Pre-copy by total
migration time, VM downtime and total data transmitted.
We prepare four different kinds of test cases of VMs. The
results demonstrate that HMDC reduces not only total
migration data and the loss of the VM performance but
also migration time compared to Pre-copy and XBRLE.
Especially for the test case under the intensive workload,
HMDC evidently shows the stability and high-efficiency.

4.1 Experimental Scenarios

The VMs to migrate is as follows:

–The VM of 1GB RAM, 1 VCPU, fast Ethernet,
running two instances of the LMbench [15] memory
write benchmark of 256 MB each;

–The VM of 1GB RAM, 1 VCPU, fast Ethernet,
running a HD video transcoding server;

–The VM of 8GB RAM, 4 VCPUs, Gigabit Ethernet,
running a SAP CI ERP system server with one hundred
concurrent users;

–The VM of 1GB RAM, 1 VCPU, Gigabit Ethernet,
running a apache2 server with 50 concurrent users
downloading the file.

The ERP case is performed on two Intel 3GHz 4x
Dual Core Xeon servers with 32GB of RAM running

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2L, 639-646 (2013) / www.naturalspublishing.com/Journals.asp 643

Ubuntu10.4. The size of 2-way set associative cache is
1GB. Other cases are performed on two Intel 2.66 GHz
core2quad servers with 16GB of RAM running Ubuntu9.
The size of 2-way set associative cache is 512MB. All
VM disks are stored on an iSCSI server with 16GB of
RAM and gigabit Ethernet card. All VMs are connected
to Ethernet using bridge connection. Linux kernel version
is 2.6.32-24. Xen version is 3.4.4. Every test is run ten
times and the result is the average of ten times.

4.2 Live migration under memory press
workload

Aiming to verify the efficiency and availability of HMDC
under different memory press workload, a benchmark is
used. It continuously updates memory pages by using the
LMbench memory write tool in a specified rate. After 15
seconds, VM begins migrating. As illustrated in Fig.3,
when the rate increases from 0 to 10240p/s, the
performance of Pre-copy will decline sharply. Its total
migration time rises from the initial 8.26s to 185.75s. In
the tests, it is found that when memory update rate is
greater than 15978p/s, the migration of pre-copy cant be
finished correctly and even fails. Thus, we only give the
experimental results under this case that memory update
rate is less than 10240p/s. The above results show that

Fig. 3: Total migration time of Pre-copy and XBRLE with
memory update rate rising

memory update rate evidently restricts the migration
performance of pre-copy. As illustrated in Fig.4, the VM
downtime of pre-copy is roughly the same under the
different workload because of being limited by the
minimum remaining dirty pages. However, the stability is
on this condition that the remaining dirty pages can
converge and at the cost of extending the total migration
time. XBRLE employs delta compression, so both VM
downtime and total migration time are shorter than those
of pre-copy. However, as mentioned earlier, the
improvement is limited. On the contrary, HMDC doesnt
rely on iterative copy. Although memory update rate is
much faster than network transfer rate, HMDC also has

Fig. 4: Total migration time of HMDC with memory update rate
rising

the abilities in completing the migration efficiently. As
illustrated in Fig.4, when the rate rises to 65536p/s, the
average migration time is 29.5s. Fig.5 shows the
comparison on VM downtime. We find that VM
downtime of HMDC is significantly shorter, while the
rate is small. This is because HMDC only needs to
generate and transmit two bitmaps and the delay of
setting cache and mapping states is shorter than that of
transmitting the rest of dirty pages of the other two. With
the rate further rising, the number of dirty pages increases
and the delay increases in VM downtime. When the rate
rises to a certain level, VM downtime of HMDC becomes
longer. However, we find an interesting feature in the
tests. Even if the rate rises to 65536p/s, HMDC only
causes 280ms of downtime. As illustrated in Fig.6, we
give the comparison about total migration data and can
see it clear that with the rate rising, the gap between
HMDC and the other two is widened rapidly. The reason
is that with memory update rate rising, for pre-copy and
XBRLE the number of memory pages which are
repeatedly copied sharp increases during the migration,
whereas for HMDC not only dirty pages as one part of
memory pages merely are copied additional once but also
are performed delta compression handling. Moreover, the
result of dealing with the idle pages and the idle dirty
pages further decrease total data transmitted.

Fig. 5: VM downtime with memory update rate rising

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



644 L Hu, J Zhao, G Xu, Y Ding and J Chu: HMDC

Fig. 6: The ratio of migration data with memory update rate
rising

4.3 Live migration of HD video transcoding
server VM

The video service is a typical service that is widely used
in the network. Its memory update rate is quite great. The
data is not very compressible as the content of the
streaming buffer changes constantly and the difference
between subsequent video frames can be large. So delta
compression cant fully show its advantage in the case.
However, HMDC employs the way to combining pushing
with pulling and integrates the idle pages optimizing into
our algorithm, so HMDC still reduces migration time and
increases the migration throughput evidently. As
illustrated in Fig.7 and Fig.8, compared to Pre-copy, the
total migration time is decreased from 26s to 15s and the
VM downtime is decreased from 2s to 28ms and the
migration throughput is increased from 11.39MB/s to
15.63MB/s; compared to XBRLE, the total migration
time is decreased from 28s to 15s and the VM downtime
is decreased from 0.9s to 28ms and the migration
throughput is increased from 12.38MB/s to 15.63MB/s.

Fig. 7: Migration time

Fig. 8: Migration throughput

4.4 Live migration of ERP system VM

Aiming to further test its performance, we select the VM
running a SAP CI ERP system server as the migration
object. It has a CPU-intensive and memory-intensive
workload. In addition, it is sensitive to network time-out
since the ERP system depends on transactions. As
illustrated in Fig.9, compared to Pre-copy, total migration
time is decreased from 235s to 95s and the VM downtime
is increased from 3s to 3.8s; compared to XBRLE, the
total migration time is decreased from 139s to 95s and the
VM downtime is increased from 1.5s to 3.8s. The ERP
system VM is considered notoriously hard to migrate. In
the tests HMDC reduces total migration time evidently.
For VM downtime, as mentioned earlier, the downtime of
HMDC is longer. However, it should be clarified that the
migration using Pre-copy has failed for several times and
total migration time of Pre-copy and XBRLE is longer
than that of HMDC. After all, VM downtime is one part
of total migration time. If the downtime doesnt seriously
affect the performance of VM itself, total migration time
is more important. Therefore, the performance and
efficiency of HMDC is much better than that of the other
two algorithms.

Fig. 9: Migration time

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 7, No. 2L, 639-646 (2013) / www.naturalspublishing.com/Journals.asp 645

Fig. 10: Pre-copy

Fig. 11: XBRLE

4.5 Live migration of Apache2 server VM

We track and analyze the change of output bandwidth in
this case of concurrent access. In the experiments, we
simulate 50 concurrent clients on the hosts to download a
512KB static file continuously. As illustrated in Fig.10,
Fig.11 and Fig.12, the three output bandwidth curves all
have instantaneous decline and recovery. However, the
duration of HMDC from the lowest bandwidth to the
normal fluctuation is shorter. This reason is that before
target VM begins running, in advance HMDC establishes
the address mapping for dirty pages in the EPT tables by
setting the non-present states for dirty pages. When later
VM again accesses the pages, doesnt need to again enter
the kernel to deal with the mapping states. For Pre-copy
and XBRLE as the EPT tables are empty when the
migration is finished, they need to dynamically establish
EPT tables for memory pages. For this reason, after the
migration ends, the time which it takes to resume VM
performance completely is as follows. Pre-copy costs 6s;
XBRLE costs 4s; HMDC merely costs 2s. The above
results demonstrate even though VM has a high workload
of concurrent I/O, HMDC still can make VM applications
have a more stable and high-efficient I/O performance.

5 Conclusion and future work

In this paper, a novel memory migration algorithm
HMDC is proposed and we give its main idea,

Fig. 12: HMDC

implementation and evaluation. It employs hybrid
memory copy and delta compression. The hybrid memory
copy makes full use of the computing power of two sides
by active push and demand paging to achieve fast
memory migration. During dirty pages migration, we
employ delta compression to increase the migration
throughput and improve the migration efficiency. While
source host responds to the page request of target host,
will also copy its neighbor dirty pages to target host
together. Pre-paging reduces the number of demand
paging to guarantee the performance of target VM and
quicken dirty memory migration. HMDC achieves the
efficiency and transparency of memory migration. It not
only evidently shortens migration time but also increases
the migration throughput, decreases total data transmitted
and protects the performance of VM running. The final
experimental results show that HMDC is an effective
memory migration algorithm.

Aiming to further improve the performance of HMDC,
we plan to study the robustness of HMDC in the next step
work. If the power outage or crash, etc. happens, HMDC
should have abilities in recovering the original VM. In this
paper, HMDC is used for memory migration in LAN. In
the future, we will extend HMDC in WAN.

Acknowledgement

The authors would like to thank the editors and anonymous
reviewers for their valuable comments.

References

[1] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica and
M. Zaharia, Above the clouds: A Berkeley view of cloud
computing, Technical Report EECS-2009-28 (2009).

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A.
Ho, R. Neugebauer, I. Pratt and A. Warfield, Xen and the Art
of Virtualization, In Proc. of the 19th ACM Symposium on
Operating Systems Principles, 164-177 (2003).

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



646 L Hu, J Zhao, G Xu, Y Ding and J Chu: HMDC

[3] Y. Li, W. Li and C. Jiang, A survey of virtual machine system:
Current technology and future trends, Electronic Commerce
and Security (ISECS), 2010 Third International Symposium,
332-336 (2010).

[4] C. Clark, K. Fraser, S. Hand, J. Hansen, E. Jul, C. Limpach,
I. Pratt and A. Warfield, Live migration of virtual machines,
In Proc. of the 2nd Conference on Symposium on Networked
Systems Design & Implementation, 273-286 (2005).

[5] H. Jin, L. Deng, S. Wu, X. Shi and X. Pan X, Live Virtual
Machine Migration with Adaptive Memory Compression,
IEEE International Conference on Cluster Computing (2009).

[6] H. Jin, W. Gao, S. Wu, X. Shi, X. Wu and F. Zhou, Optimizing
the live migration of virtual machine by CPU scheduling,
Journal of Network and Computer Applications, 1088-1096
(2011).

[7] P. Svärd, J. Tordsson, B. Hudzia and E. Elmroth, High
performance live migration through dynamic page transfer
reordering and compression, In Proc. of 2011 3rd IEEE
International Conference on Cloud Computing Technology
and Science, 542-548 (2011).

[8] B. Hu, Z. Lei, Y. Lei, D. Xu and J. Li, A Time-Series Based
Precopy Approach for Live Migration of Virtual Machines,
2011 IEEE 17th International Conference on Parrallel and
Distributed Systems, 947-952 (2011).

[9] MR. Hines, U. Deshpande and K. Gopalan, Post-copy live
migration of virtual machines, SIGOPS Operating Systems
Review, 14-26 (2009).

[10] MR. Hines and K. Gopalan, Post-Copy Based Live
Virtual Machine Migration Using Adaptive Pre-Paging and
Dynamic Self-Ballooning, In Proc. of the 2009 ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 51-60 (2009).

[11] M. NOACK, Comparative evaluation of process migration
algorithms, Masters thesis, Dresden University of
Technology - Operating Systems Group (2003).

[12] D. Pountain, Run-length encoding. Byte, 317-319 (1987).
[13] XEN, http://xen.org, visited March (2012).
[14] P. Svard, B. Hudzia, J. Tordsson and E. Elmroth, Evaluation

of delta compression techniques for efficient live migration
of large virtual machines, In Proc. of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments, 111-120 (2011).

[15] L. McVoy, S. Graphics, C. Staelin and Hewlett-Packard
Laboratories, Lmbench: Portable Tools for Performance
Analysis, In Proc. of the USENIX 1996 Annual Technical
Conference (1996).

Liang Hu was born
in 1968. Currently, he is the
professor and PhD supervisor
of College of Computer
Science and Technology, Jilin
University, China. His main
research interests include
distributed systems, computer
networks, communications
technology and information

security system, etc.

Jia Zhao was born in
Changchun of Jilin province
of China in 1982. Currently
he is a PhD candidate of the
college of computer science
and technology of Jilin
University. His main research
interests include distributed
system, cloud computing,
network technology. He has

participated in several projects.

Gaochao Xu was born
in 1966. Currently, he is the
professor and PhD supervisor
of College of Computer
Science and Technology, Jilin
University, China. His main
research interests include
distributed system, grid
computing, cloud computing,
Internet of things, etc.

Yan Ding was born
in Yichun , Heilongjiang
, China in 1988. Now he is a
postgraduate candidate of the
college of computer science
and technology of Jilin
University. His main research
interests include distributed
system, cloud computing
and virtualization technology.

Jianfeng Chu was
born in 1978, Ph.D. ,
Now he is the teacher
of the College of Computer
Science and Technology,
Jilin University, Changchun,
China. His current research
interests focus on information
security and cryptology.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


