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Abstract: Nonlinear dynamics and chaos theory have been used in riewgiofogy with the aim to understand the complex brain
activity from electroencephalographic (EEG) signalshailigh linear methods have been the most used in EEG anaigsinear
approaches have been increased their presence becauseviedyaspects that cannot be measured from linear apmaadbwever,
published works in this scientific field is still very low. Bhwwork describes the fundamentals of EEG signals and it loasicepts
related with nonlinear dynamics and chaotic measures ofplexity and stability. After that, a short review of the m@stmmon
EEG-based applications is given in medical and non-medimatexts.
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This paper is dedicated to the memory of Professordynamic methods have been successfully used in
José Sousa Ramos. biomedical applications based on electrocardiogram
(ECG), electromyogram (EMG), electrooculogram
(EOG), magnetoencephalogram (MEG) and
1 Introduction electroencephalogram (EEG) data. In particular, this work
is focused in nonlinear brain dynamics. As it is widely
ccepted 12,13, a brain is considered a chaotic
ynamical system and, then, their generated EEG signals
re generally chaotic. Besides that, an EEG signal is

Many complex real-world phenomena are characterize
by nonlinear dynamics and the chaos theoty: [This
Important mathemat!qal S.UbleCt has arou.sed great Interegy, - otic in another sense, because its amplitude changes
in a lot of scientific fields as physics, chemistry, ra '

economics, electronics, biomedical engineering, just togi\?ed OTr:)e/ Wﬁa‘[ﬁifne;[tict:l t'?géklgrghlji(;evﬁw t%aeperr’n\g:t
name a few. From the first studies of Pointcaré in 1890

1 distinquished mathematicians hav anificantl widely-used nonlinear dynamic methods for EEG data
(2, daistinguisned - mathematicians have  significa yand, also, an state-of-the-art of some of the most relevant
contributed in the field of chaotic dynamics, such as

Birkhoff, Kolmogorov, Cartwright, Littlewood, Smale, ﬁ]necihorg;:ent EEG-based applications with - nonlinear
Lorenz, Mandelbrot, among others. At this point, we '
would like to highlight the recent notable contributions of ~ The rest of this paper is organized as follows. Section
Prof. Jose Sousa-Ramos in this research fidld,5p,6] 2 describes the fundamentals of EEG signals and, then, in
and its multidisciplinary applications, ranging from section 3, the basic concepts related with nonlinear
electronic circuits T,8], economics 9] and biological dynamics and chaos are introduced for time series
systems10]. analysis. Section 4 describes the notions of the most
Since biomedical data can be properly acquiredpopular nonlinear methods to measure the level of chaos
through sensors and peripheral devices, the analysis dh EEG data: measures of complexity (correlation and
biosignals [1], which reflects typically complex fractal dimension) and stability (Lyapunov exponents and
dynamics, has been widely studied in the area ofentropy). In section 5, we give a short review about
nonlinear analysis. During the last years, nonlinearapplications of nonlinear analysis and characterization o

* Corresponding author e-magerman.rodriguez@cud.upct.es, pedroj.garcia@cudasgoct

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090512

2310 NS 2 G. Rodriguez-Bermudez, P. J. Garcia-Laencina: AnslysEEG Signals using...

1E+8[
20f

Amplitude (V)

| | | . . | . | | ) 1E-8 . . | .
5 7 8 9 10 0 20 40
Time (s)

| I
60 100 120
Frequency (Hz)

(@) (b)

Fig. 1: EEG signal in the time (a) and frequency (b) domain.

EEG signals. Finally, the paper ends with the mainthe specific application, different relevant descriptors
concluding remarks. (also known ageature$ have to be extracted from EEG
signals, which can be generally divided in two main
feature categoried f: linear andnonlinear.
2 EEG signals: notions Linear analysis of EEG signals includes frequency
) ) o analysis (e.g. Fourier and Wavelet Tranforms) and
The EEG signals measure the electrical activity of theparametric modeling (e.g. autoregressive models). In
brain [14], which is recorded at many locations general, linear methods can be successfully applied in the
simultaneously by one electrode at each position on thetudy of several problems 1§,16,17,18,19,20,21].
human scalp (the terchannelis usually used to refer to  However, despite good results have been obtained with
a recording position). Note that EEG signals are electricalinear techniques, they only provide a limited amount of
potentials with respect to a reference electrode (usuallynformation about the electrical activity of the brain
placed at the earlobe) and the number of requirethecause they ignore the underlying nonlinear EEG
electrodes depends on the application (from 2 to 128jynamics. As it is widely accepted, the underlying
positions). As the recorded signals are in the order ofsypsystems of the nervous system that generates the EEG
+100 pV, acquired EEG values are amplified (e.946  signals are considered nonlinear or with nonlinear
V) before the signals are sampled. Sampling frequenciegounterparts 42. Even in healthy subjects, the EEG
above 256 Hz are enough to typical EEG signals, whichsjgnals show the chaotic behavior of the nervous system.
have frequency components of 0 Hz to approximately 100therefore, due to this nonlinear nature of EEGs,
Hz. The standard EEG frequency bands are the delta (0.3ddjtional information provided by techniques from
to 3.5 Hz), theta (4 to 7.5 Hz), alpha (8 to 13 Hz), and ponlinear dynamics has been progressively incorporated
beta (14 to 30 Hz) bandsl4 13]. EEG signals with jn order to reveal aspects that cannot be measured from
frequencies greater than 30 Hz are known as gamM@near methods 43]. Nonlinear dynamic measures of
waves and they have been found in the cerebellagomplexity (e.g., the correlation dimension) and staypilit
structures of a_mmqls. In general, an _EEG S|gnal haS(e.g_, the Lyapunov exponent and Kolmogorov entropy)
complex behavior with nonlinear dynamic properties andquantify critical aspects of the brain dynamics. Before
it can be represented after digitization as a sequence Qdescribing the most widely-used nonlinear methods in

time samples13]. Figure 1(a) shows a time series of 10 section 3, the basic concepts related with chaos are now
seconds duration recorded via an EEG channel; and itfhtroduced.

corresponding Power Spectral Density (PSD) is shown in
Figure 1(b). As we can observe in Figure 1(b), the most
energy of the EEG signal is located below 30 Hz. The ; : :
same figure also shows the effects of a notch filter at 503 Basic concepts of nonlinear dynamics and
Hz, which is typically used for avoiding artifact caused by Chaos theory

power line interference. ) ) ) o
Given a dynamical systen2{l], its stateis given by a set

of values of all variables that describe the system at a
2.1 Linear and nonlinear analysis of EEGs particular time; while, itsdynamicsis a set of ordinary

differential equations (for continuous-time dynamical
As it is explained in Section 5, there are a broad range okystem) or a mapping function (for discrete-time
cutting-edge EEG-based applications and, depending odynamical system) that describes how the state changes
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over time. According the nature of the dynamics, we canhand, there are dynamic measures, such as Lyapunov
distinguish betweenlinear and nonlinear dynamical exponents 27] and entropy measures, that give
systems 1,24]. A dynamical system is linear if all the information about the ‘stability’ of the attractor, i.e.,
corresponding equations of its dynamics are linear;quantify the chaos of the attractor. Among the different
otherwise, it is nonlinear. available methods used to study dynamical systems in the
Considering that a system is defined tmyvariables, state space, the next section describes the most popular
its state in a particular moment in time can be representednd widely-used nonlinear approaches for EEG signal
by a point in anm-dimensional spacel]. This space is processing.
usually known asstate spaceor phase spaceThe
sequence of consecutive states over the time defines a
curve in the phase space which is calledjectory. In 4 Nonlinear dynamic analysis
some cases, after observing the evolution of a dynamical
system for a sufficiently long time, its trajectory tends to In a EEG-based study, there is a set of observations in the
converge to a bounded subspace of the phase space. Thirm of an EEG record, i.e., a time series of the electrical
kind of dynamical system is known as dissipative: activity of the brain. The nonlinear dynamic analysis with
systems with a volume contraction in the phase spacetime series entails two main steps: (i) reconstruction of
This bounded subspace is referred to asaginactor,  the dynamics in state space from observations; (ii)
because it attracts trajectories from all initial condio  characterization of the resulting attractor by nonlinear
According to the resulting geometrical object, attractorsdynamic measures. Once these measures have been
can be grouped inf 25]: computed, this information can be used as characteristic
features of the analyzed EEG signals in the corresponding
|application.
The aim of this section is to give a brief and intuitive
explanation of these two steps of nonlinear dynamic
analysis. A more extensive and detailed study can be

—Limit Cycle The attractor is a closed one-dimensional found in [2829]. With respect to available software

: P . implementations, the TISEAN project
g:;\/rﬁblg\glfhhe r:ggistfeearlct\?vhﬁe rpetasr;icr)gl.(: motion. - An (http://lwww.mpipks-dresden.mpg.désear) and the
TSTOOL packagehttp://www.physik3.gwdg.detstool)

can be outlined.

—Steady State (Fixed Point)The attractor evolves
towards a point (steady state), whatever the initia
conditions. A classical example is a damped
pendulum.

—Limit Torus The attractor is a toroidal surface (in an
integer dimension). It represents a quasiperiodic
motion with an integer number of incommensurable . .
frequencies. 4.1 Embedding: reconstruction of the state

space

—Strange or Chaotic The system exhibits complex
behaviors (chaos) and its attractor is a complex objectThe technique of representing a state space of a dynamic
In this case, points that are initially close in the phasesystem from a single time series is callsthte space
space, may become exponentially separated aftefeconstructionorembedding of the time seri€Bhere are
time. The dynamics corresponding to a strangetwo main approaches for reconstructing the state space:
attractor is deterministic chaos: same initial (i) time-delay embeddingnd (ii) spatial embeddingWe
conditions converge to same final state; but the finalfirst describe the time-delay approach, which is the most
state is very different for small changes to initial extended procedure in practice for nonlinear dynamical
conditions. analysis of EEG.

In the case of théime-delay embeddindet x; be an
stantaneous measure of the dynamical system, i.e., a
ample of the time series obtained by sampling a given
ariable of the system. Note that, for our interests, the
ynamical system is the neural networks of the brain and

dynamics of the system, different measures can be use
In one hand, the dimension of the attractor measures thg
spatial distribution of the corresponding geometricald

object, i.e., its ‘complexity’. A point attractor has the time series is given by the EEG signal. An

dimension zero, a limit cycle is one-dimensional, a tOrUS .\ yimensional  state space reconstruction with the
has an integer dimension corresponding to the numbe{-

superimposed periodic oscillations and, lastly, a strangelme delay approach is

attractor has a non ?nteger dimgnsjon, i.e._,fractal Xt = (Xt7xt+r,"' ,)<t+(m71)r) 1)
dimensionThe dimension do not give information on the

evolution of trajectories over time and, then, it is an stati The lag or delay time 1, is the time difference between
measure. There are several techniques for estimating thiéhe successive components of the state vegt@andmis
dimension of the attractor2p], being the correlation the embedding dimension The sequence of the
dimension D») the most popular approach. On the other embedding vectors given byl)(forms the reconstructed

To characterize attractors, and then the correspondin@
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attractor in the state spacetascreases. Thus, time-delay 4.2 Characterization of the attractor: nonlinear
embedding is characterized by two parameters: the timgneasures

lag, 7, and the embedding dimensian, The selection of

both parameters is a key anq difficult step in nonllnearOnce the equivalent attractor in the state space has been
analysis. Since an inappropriate election could lead to

S . reconstructed, the next step is to characterize it using
wrong results, several criteria have been proposed in

practice. With respect to, in one hand, if it is very small, nonlinear measures of its complexity and its stability.

the m components ofx, will be very close and the Here, these nonlinear measures are described by

geometry of the attractor could be lost. On the other hand:’:\ssumlng the time-delay approach.

if T is very high, the components of each embedding
vector will become totally unrelated to each other. In . ) ]
practice, T is usually chosen as the first minimum of the 4-2.1 Correlation dimension

mutual information between the components of the

vectors in the state space or as the first zero of theélThe correlation dimension D) is a measure of
time-domain autocorrelation of the da&0]. The value of  complexity of a dynamical system related with the
m has to be chosen in order to the dynamics of the systentopological dimension of its attractor. It is an estimation
in the state space are preserved. According to Taken'sf the fractal dimension of the attract@®; is based upon
theorem B1], if the underlying state space of a system hasthe correlation integralC(r), which is a function of

d ‘true’ dimensions, the embedding dimension should bevariable distancesdefined as:

chosen at least twice the dimension of the attractor, i.e.,

m > 2d. In this case, one first criteria is to take> 2D, .

[31], but it assumes a previous estimation of the C(r):[\leTocN(N—l) %Z O(r—pi-x) @
correlation dimensionD,. A possible and pragmatic =0 j=i+1

solution is to repeat the computation®@$ for increasing

N—-1 N-1

| F | the Taken' iterion is fulfilled whereN is the number of data points (i.e. the length of the
values of m until the Taken's criterion is fulfilled. qocqnsirycted attractor) ar@ is the Heaviside function.

Neyerthelessrfn anﬂr are mterddependdent arr:d, thegz th‘? Thus,C(r) is a measure of the probability that pairwise
estimations of each parameter depend on the combinatiogyints ¢ andx;) in the attractor will be separated is less

of both [32]. For solving it, thefalse nearest neighbors than or equal to a distanae In [40], it is proposed that

method B3] provides an estimation of a minimum The the vectors to be compared whétr) is computed should
main idea is that the calculation must be repeated if for g, separated at leastdata points|{ — j| > w) in order to
glivenl;n nea(rfst nei_ghborsi inotr;]e state sEace still remairy g et for autocorrelation effects in the time series.
close for a dimensiom+ 1. Otherwise, the attractor is : : .
not correctly reconstructed amd must be higher. This According to t1,42], C(r) follows this relation:
procedure is repeated until neighbors remain close.

In contrast to the time-lag approach, ttepatial
embeddingrocedure can be realized whertime series
of independent EEG signals are available instead of

C(r) OrP2, 3)

aand, then, the correlation dimensid@y, can be estimated

single one. In this approach, time components of each log(C(r))
vector in the state space are given by itihealues of each D, = lim “loalr) 4)
time series at a particular time34,35. Then, the >0 log(r)

embedding dimensiom is equal to the number of EEG . . . . .
channels and there is an equivalence between the inte'frthe number of points and the embedding dimension are

electrode distance and the time lag,Using the spatial Sufficiently large. AS. the topology of the attractor is
embedding procedure, it constructs an unique attractog.Sually unklnown, It is dnecessary to (_:al_culéler)lforh
representing the neuronal dynamics][ Other option ifferent values ofm and, for deterministic signals, the

would be to perform an individual time-delay embedding g?#;’fergtegﬁi;rjcggecnc;smﬁgf/a;'%ge?]fz Crinot;?a dreigcgr%%r o
on each of then time series, i.e., a different attractor for prop

each EEG signal. The major drawback of the spatialcompme'32 in a faster way 43,44,45,46] and to reduce

embedding approach is the ‘spatial lag’ (i.e., the olistancethe amount of noise in the signak 48,49,

between EEG channels), which is typically fixed

depending on the application and, then, it cannot be - )

optimally selected3]. In general, it is not possible to 4-2.2 Additional measures for computing fractal

establish which embedding approach is better. Howeverdimensions

it should be emphasized that the scientific community

usually prefers the time-delay approach because it allow8esidedD,, many other methods have been also proposed
to study the interactions between different brain regionsfor computing the fractal dimension of the attracté0,

[37] and, also, the use of spatial embedding has beer®1,52]. Among them, the following measures can be
debated in literature3f, 38,39]. highlighted:
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—Katz dimension According to B3], the fractal Finally, we would like to outline thédurst Exponent
dimension of the EEG signal can be computed as [56,57,58], which is used to evaluate the long-memory
dependence and its degree in a time series. The Hurst
Dk — 10910(5) (5)  exponentH, is a measure of the smoothness of a time
log;o(s) +logso(a/L)’ series data based on the asymptotic behavior of the
rescaled range of the proce&§|[and it is given by:

wherelL is the length of the EEG time seriesjs the

planar extent of the signal arsd= L/A is the number logyo(R/S)
of steps of the waveform, being is the average = %, (10)
distance between successive points. Given disij 1, 0010(T)

denotes the distance measured betweeandxy, the
length of the waveformL() is given by the sum of the
distances between two consecutive points
L = sun(dist;11); and the planar extent is
a=maxdisty ;).

whereT is the duration of the time series data &(5is

the rescaled range, which characterizes the divergence of
'time series, defined as the range of the mean-centered
values for a given durationT{) divided by the standard
deviation for that duration. From5f], R/SO TH. It
should be noted that there is a linear relationship between
the fractal dimensionL¥), a measure of roughness, and

e Hurst coefficient (& H < 1):D+H = 1+E, where

is the Euclidean dimension. The more jagged the EEG
signal, the closer its Hurst coefficient will be to ®4].

—Higuchi dimensionHiguchi’'s method $4] estimates
the fractal dimension of a sample as follows: first,
data subsets are constructed from the time series da%
composed oN samples:

' N—j)/k
XIJ< = {XjJrik}iLio J)/ J ’ (6)
wherej € [1,K] is the initial time andk € [1,kmay the ~ 4.2.3 Lyapunov exponents: Measuring stability
delay between points. Note thiafax is a parameter to

be experimentally chosen (p.e. Higuchi originally fixed ,

ks = 8). Then, the length of each subset is computedfn a chaotic attractor, trajectories typically evolves

ollowing two steps: (iexpansion procesthe trajectories

by: diverge exponentially fast from similar initial conditisn
| Ned ‘ - o (nearby points in the state space); {o)ding processthe
LK) = 2=t i =4 ‘fN D/AN=DMKW =~ ) trajectories will have to fold back into it as time evolves.

The Lyapunov exponentmeasure the average rate of
. expansion and folding that occurs along the local
beingN the length of the time series ar{d\%J a  eigen-directions within an attractorld. When an

normalization factor. Total average length(k), is  attractor is chaotic, the Largest Lyapunov Exponent
computed for all time series for eagh(ranging from  (LLE) should be positive. A negative exponent entails that
1 t0 kmax): L(K) = le(=1|—j(k)- Finally, according to the trajectories tends to common f|xeq pomt;_anql a zero
the Higuchi's methodd4], the fractal dimensiondy) exponent means that the trajectories maintain their

is solved from: positions: they are on a stable attractor. Note that if the
state space ism-dimensional, we can theoretically
L(k) O kP (8) measure up ton Lyapunov exponents.

. . . There are several procedures for computing the LLE
Thus, in the representation of(l_r(k)) with respect to from EEG data 132360. Now, we introduce the
Iﬂ(ll/k)' the estlm?te 02!* is given by the slope of e -known Wolf's algorithm 7]. The nearest neighbor
the least-squares linear fit. to the initial state vector of the attractor
. . . . (Xto = (X:Xtg+1:"** » %o+ (m-1)r)) IS located, beind.(to)
—Petrosian dimensianin this method $3, the EEG o gistance between these two vectors. At a later time

signal is first converted to a binary signal according totl —to+ T, this initial length will beL'(ty), whereT is a

a predefined procedure. For example, a commOn, oy time known as evolution time. This process is
procedure is the following: the differences between oo q104 by computing the successive distances until the
consecutive samples are equal to one or zer eparation is greater than a certain valdgaf). Then, a
dep.enldlng on yvhether It exceeds or not a standar ew state space vector (replacement vector) is searched as
deviation magnitude. Once the binary signal has beenose a5 possible to the first one. Finally, the Lyapunov
constructed, the fractal dimension is: exponent, which measures the mean exponential
logyo(L) divergence of two initially nearby state space orbits, is

Dp = ; (9)  characterized by:
logy0(L) +10910( 548) Y
whereL is the length of the signal arilis the number P i log L'(t) (11)
of bit changes in the resulting binary sequence. (tm —to) i; L'(tj_1)’
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whereM is the number of evolution steps. With respect to 5.1 Medical applications

its implementation, and according t61], an embedding

dimension fn) between 5 and 20 and a delay tintg ¢f 1 It is assumed that the EEG must reflect the dynamic of the

should be chosen for computing the Lyapunov exponenbrain and, of course, psychiatric disorders and

for EEG data. In addition, note that the paramet&®fgx pathological states. Additionally, it is widely acceptéeé t

and T must be also tuned. Other popular procedure foruse of EEG analysis for early detection of several brain

calculating the Lyapunov exponent is the Rosenstein’sdisorders and diseases, such as epilepsy, autism,

method B2]. depression and Alzheimer, and for measuring the depth of
anesthesiarl].

4.2.4 Entropy
i i i 5.1.1 Epilepsy

The entropy of an attractor is the rate of information loss
of its dynamics 23]. When the LLE is positive, the rate of gpijensy is a neurological disorder in which patients
expansion is greater than the rate of folding (i.e. agyffer spontaneous seizures. In each seizure, brain
production rather than destruction of informatiorig] roduces unexpected electrical discharges in a oscilator
the Lyapunov exponents are strongly related with concepgate 2. It is a common neurological disorder: about 60
of entropy. In fa_ct, the Kolmogorov entropy is equal to the ilion people worldwide are affected and suffered
sum of all positive Lyapunov exponent: recurrent seizures 1R,73. The most common and

Ko= S A (12) traditional analysis is still the visual inspection of the

’ EEG signals by experienced professionals. Fortunately, in

recent years, there have appeared scientific papers that
and a positive entropy denotes chaos. Entropy has beepresent results by applying signal processing techniques
computed in different formals 18], such as (i) to predict epileptic seizures in a efficient, automatic and
Kolmogorov entropy{42] and (ii) approximate entropy objective way 12).
(ApEn) [64], both are descriptors of the changing  From the different proposed methods, linear
complexity in embedding space; (iigpectral entropy  approaches do not allow to detect the previous changes in
which evaluates the energy distribution in wavelet EEG to seizures due to fact that the the brain activity is a

A>0

subspaceqdd] or uniformity of spectral component§§l;  dynamic system and the epileptic neuron is inside
and (iv) amplitude entropya direct uncertainty measure nonlinear networks with nonlinear responses. The
of the signal in the time domair6y]. nonlinear analysis and quantification of EEG signals

could detect changes in the brain activity and, then, get
) ] o ) enough information to predict seizure&2]. Different

5 Review of neuroscience applications with techniques have been proposed along the last years to
nonlinear methods improve the prediction and detection of seizures. One of

the most used methods to detect seizures is to compute
The research of EEG signals with nonlinear methods isthe LLE. It was introduced in 1991 to predict seizures by
able to open a new window to understand the brainlasemediet al.[72]. Along the last years, LLE have been
function, i.e, to analyze the dynamical propertiesused alone or combined with other methods. In 2007,
underlying the acquired EEG in subjects. This nonlinearAdeli et al.[74] presented a ‘wavelet-chaos methodology’
analysis is applied in healthy subjects in different for analysis five sub-bands of EEGs for detection of
scenarios, during no-task resting states, perceptuaeizure and epilepsy. The nonlinear dynamics of the
processing, performance of cognitive tasks and differenbriginal EEGs were quantified in the form of tie and
sleep stages2B. Also it has been used to detect the LLE. It was concluded that, in the higher frequency
abnormal function of the brain like seizures, dementia,beta and gamma subbands, g differentiates among
schizophrenic, depression, autism, Alzheimer’s diseasethree different groups: healthy subjects, epileptic sttlsje
Creutzfeldt-Jakob’s disease and to detect and quantifyluring a seizure-free interval and epileptic subjectsrayri
toxic states 23]. Besides medical applications, the a seizure (ictal EEG); whereas in the lower frequency
information extracted in this type of analysis has beenalpha subband, the LLE differentiates between the three
used for non-medical purpose88[69,70]. This section groups. Other nonlinear measure have been applied to
gives to the reader an overview of the state of the art ofepilepsy, such as fractal dimension. As an example, in
the neuroscience applications with nonlinear methods. 12011, Easwaramoorthst al. [75] proposed an improved
is important to remark that there are applications thatversion of generalized fractal dimension to discriminate
have been developed along the last twenty years; whildetween healthy and epileptic subjects. Le Van Qugen
others have been recently developed and, therefore, themd. introduces the correlation densityd and, besides
are few works published about them. In this work, we that, his research group proposed new techniques, such as
have classified some of the most common applications irthe ‘dynamical similarity index’ 77], that compares and
medical and non-medical contexts. gives a measure of similarity between two signals
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captures in different times. In 2005, Kannatkahl. [78] that, despite the use of these medical equipments,
compared different entropy estimators when applied toincidence of awareness continues. Due to these
EEG data from normal and epileptic subjects. drawbacks, research about EEG to monitoring the DA has
In addition, many studies and experiments abouta long way to run along the next years.
epilepsy are developed using ECoG signdlg.[ECoG
signals are captured using intracraneal sensors that
provide clean signals with high amplitude. In contrast, 5.1.3 Autism
EEG signals are captured placing sensors over scalp and
collect noise from the environment and low amplitude Autism disease (ASD) is defined as a disorder of neural
signal but they allow to measure the electrical braindevelopment characterized by impaired social interaction
activity without clinical intervention. This is the reason and verbal and non-verbal communication, and by
that there are different works that clean the noise of EEGrestricted, repetitive or stereotyped behavits]|
signals in order to enhance the seizure and epilepsy The use of chaos theory to extract features to analyze
detection 12]. More recently, Quanegt al.[73] combined  ASD is relatively recentq9]. A very active group in this
the ICA (Independent Component Analysis) method andfield is Ahmadlou’s group. In 2010, Ahmadiaa al. [88]
the LLE to clean the EEG signal. introduced a new methodology called ‘Fractality and a
Wavelet-Chaos-Neural Network’ for ASD diagnosis. In
[88], they evaluated the use of Fractal dimension
5.1.2 Depth of anesthesia computed by Higuchi or Katz’s method and got better
results with the Katz's aproach. More recently, in 2012,
The monitoring of anesthesia is very important to provide[89 proposed a diagnosis system more robust which
an adequate level that ensures a safety and comfortablenproved performance of the power of scale-freeness of
scenario to work during a medical intervention. We alsovisibility graph. As a final example of published works
note that a high level of anesthesia could produce an oveabout analysis of EEG signal in ASD, in 2011, the group
dosing effects, but a low level of substance is of Catarino P(] applied a multiscale entropy analysis in
contraindicated because patients could sufferorder to test difference in complexity between people
intra-operative awarenesg9. Therefore, it is needed to with ASD and healthy subjects, obtaining a positive
obtain an objective and quantitative measure of the depthesponse.
of anesthesia (DA) in the operating room.
In the last 10 years, several linear and nonlinear
methods have been applied to this matter. This work is5.1.4 Depression
focused in nonlinear methods and, then, they are now
exposed in some examples. In 2006, Jorearal. [80] Depression is a mental disorders that produces low mood,
introduced approximated entropy combined with thelack of interest, low self-esteem, and poor concentration.
weighted spectral median frequency and got an EEGSometimes depression could even produce the suicide of
indicator based on fuzzy logic that let to separatedthe patients. It is one of the most common brain disorder
wakefulness from unconsciousness patients. In 2007and affects about 121 million people worldwide: it is
Ferenetst al.[81] introduced spectral entropy combined expected that this number will be increased in the future
with approximated entropy, Higuchi’s fractal dimension, [91]. The quantitative analysis of EEG signals reflects
Lempel-Ziv complexity, relative 8 ratio, and the objective information about the changes in brain activity
SyncFastSlow measure to evaluate the effect ofproduced by depressiof,92).
remifentanil in EEG measures to detect the DA. In 2008, Mostly of results have been obtained using linear
Roca et al. 2] evaluated Lyapunov exponents to get a methods, such as band power features in order to to detect
short-term predictability from EEG signals. In 2012, changes in frontal interhemispheric asymmetri@3 94,
Klockars et al. 83] used spectral entropy as a measure of95]. Although the study of frontal asymmetry is one of
depth of hypnosis and the hypnotic drug effect in childrenthe most used methods, there are some doubts about it as
during total intravenous anesthesia. They reported a am marker for depression9f]. Some research groups
age influence and recommended to use an otherecently have applied nonlinear methods to diagnosis
complementary indicators to the doctors. depression disease91,92,97] but the number of
The industry of medical equipment have developedpublished works is still very low. In 2012, AhmadIei
different standard indexes, such as the Patient State Indexd. [97] presented an investigation of the frontal brain of
(PSI) [B4] or the Narcotrend monitoring8p], to help in  major depressive disorder patients using the
the operating room, being the Bispectral Index Scorewavelet-chaos methodology and Katz's and Higuchi’'s
(BIS) the reference procedur@9. As a example to fractal dimensions as measures of nonlinearity and
estimate the BIS index, Ahmast al. [86] compared the  complexity. B7] reported that Higuchi’s fractal dimension
correlation dimension and the Higuchi's fractal gets the better results. The study by Hosseinifetral.
dimension, by obtaining in general better results using thd91] performed a nonlinear analysis of EEG signal for
second approach. However, Erraretaal. [87] published  discriminating depression patients and normal controls.
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To develop this interesting work, the power of four EEG that use nonlinear features. As we have no found medical
bands and four nonlinear features (e.g. fractal dimension8CI applications using nonlinear analisys, BCls have
and LLE) were extracted from EEG signals. Finally, been categorized in this work as a non-medical
Bachmannet al. [92] compared two EEG analysis application.
methods for detection of depression: a linear approach, One of the most used nonlinear methods is the LLE,
spectral asymmetry index; and a nonlinear approachwhich has been combined with other procedures in
Higuchi’s fractal dimension. Their results indicated that different works [L0g. For example, in 2009 Banitalebt
both methods got a good sensitivity for detection ofal. [109 used LLE, mutual informationD2 and the
characteristic features of depression. minimum embedding dimension as the features for the
classification of EEG signals to identify motor imagery of
the hands and foot. Esfahaeit al. [11(0 combined LLE
5.1.5 Alzhehimer’s disease with the power spectral density of each EEG frequency
band to detect human satisfaction in human-robot
Alzheimer’'s disease (AD) is suffered by 35 million interaction. In the same year, Waatal.[69] proposed a
people worldwide and it is expected that the number willnew nonlinear fractal dimension based approach to
be increased to 115 million by the year 2050Q][ Thisis  neuro-feedback implementation aimed at EEG-based
a type of dementia and it is characterized by the graduafjames design. Note that the use of fractal dimension in
destruction of the brain cells of the patient, neurofibrjlla  BCI design was previously introduced ih[1].
tangles, and senile plaques in different widespread brain
regions P8. There is an intermediate step between a _ N
healthy subject and Alzheimer’s disease called ‘Mild 5-2.2 Emotion recognition
cognitive impairment’ (MCI) which presents symptoms.
The most usual symptom is short term memory loss, bu
this not enough to disturb routine in an adult and
sometimes people no need to go to the doctor. It is

important to remark that the MCI do not have to finish in : T
Qgrowing research areas. In this fields, researchers have

AD, because it may revert to a normal state, develop int q diff " thod h ¢ . d
any of several forms of dementia or even revert back to 4/Séd _different methods (such as face expression an

: : h analysis), and even biosignals measures (such as
normal state. In order to avoid the AD progressmn,Speec . :
research effort have been done to get an early detection dfEG. ECG, EMG, skin - conductance, peripheral
MCI [71]. temperature]15116. o .

Several studies have showed the usefulness of There are works to get ER using linear and nonlinear
nonlinear methods to analyze the EEG in patients withmethods. Linear method usually computed power
AD [23). Fractal dimension was introduced to detect AD spectrum features.whlle nonlinear mgt_hod applied several
in 1997 by Besthorret al. [99]. After that, Jeonget al. different computations. In 2009, Khalit al. [115 used

[100 103japplied the LLE and th®, to detect AD. They the Internationa! Affective Picture'S'ystem (IAPS), tha't is
claimed that theD, measured in the occipital region was a database of pictures used to elicit a range of emotions,

very useful for detecting AD because it presented a lowef® Produce three different emotions (calm, positively
level in patients with AD than in healthy subjectsop excited, and negatively excited) and decided to combines

101. Finally, entropy is one of the most used method’s to EEG with galvanic_ sk_in resistance, temperature, bIO.Od
diagnosis AD and different groups have reported pressure and respiration for ER. They used correlation

; R, dimension as a strong nonlinear feature for EEG that
satisfactory results in this are@d, 71,102 103 104]. . . ;
y 2103104 seem to perform better than other physiological signals.

Liu et al. [70,117 proposed a fractal dimension-based
algorithm for quantifying basic emotions and, also,
described its implementation as a feedback in 3D virtual
environments. Note that different sound clips from the
International Affective Digitized Sounds (IADS) were
used to elicit emotions. Recently, in 2013, Bagjal.
[11d compute ratio of the norms based measure,
Shannon entropy measure, and normalized Renyi entropy
measure as features of the EEG signal obtained during
ﬁ\udio—video stimulus with good results.

tA‘ computer that recognize human’s emotions could
improve the communication and get a more affective
environment for the wuser 112113114. Emotion

recognition (ER) and affective computing are now two

5.2 Non-medical applications
5.2.1 Brain computer interface

A Brain Computer Interface (BCI) system acquires and
analyzes EEG signals in order to provide a direct
communication and control pathway from the human
brain to a computer/machinel(5. BCI research is a
growing area of research and this technology has bee
already extended from assistive care to other non-medical

uses, such as gaming, assessment of driving performaneg? 3 mental fatigue

and safety/security applicationsldg. According to

Bashashatet al. [107, linear features have been widely Mental fatigue (MF) is an usual sense that is
applied in many BCI systems but there are several worksharacterized by a decreasing level of attention, sense of
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weariness, drowsiness and a low mental performance International Journal of Pure and Applied Mathematis

[119. These symptoms could produce performance 165-180 (2003).

decrements in the productivity or even accidents in [5] Correia-Ramos, C., Martins, N., Severino, R. & Sousa-

industrial or commercial environments. There are several Ramos, J. Noncommutative topological dynamicsaos,

scenarios in which an early detection of MF could be very Solitons & Fractals27, 15-23 (2006).

interesting, such as nuclear power industry, flight pilats o [6] Correia-Ramos, C., Martins, N. & Sousa-Ramos, J.

car drivers 120. There is not an unique method to Conductance and noncommutative dynamical systems.

measure MF and it is usually recommended to combine __Nonlinear Dynamicsl4, 127-134 (2006). _

different biosignals, such as EEG, ECG, EOG and EMG [7] Sousa-Ramos, J. Introduction to nonlinear dynamics of
In particular, analysis of EEG must reflect the changes ‘i‘f‘(’%’gg systems: TutorialNonlinear Dynamicsi4, 3—

of the brain activity produced by MF. The most extended '

techni is t th t betw th [8] Severino, R., Sharkovsky, A., J.Sousa-Ramos & Vinagre,
echnique is to compare thé power spectrum between the S. Topological invariants in a model of a time-delayed

frontal and the occipital lobes to get a classification of chua’s circuit.Nonlinear Dynamicgi4, 81-90 (2006).
mental fatigue at different levels121. Recently, [9] Gomes, O., Mendes, V. M., Mendes, D. A. & Sousa-
nonlinear methods have been applied to MF but there are " Ramos, J. Chaotic dynamics in optimal monetary policy.
a feW WOI’kS fOCUSBd il’l thIS area. AS a eXampIe, in 2010, The European Physica| Journa|w’ 195-199 (2007)
Sibsambhuet al. [12] proposed a new entropy-based [10] Silva, L., Duarte, J. & Sousa-Ramos, J. Low-dimensiona
method for relative quantification of MF during driving dynamics of cardiac arrhythmias. BCIT2004 - European
tasks. Liu et al. [68] used approximate entropy and Conference on lteration Theaqry55-68 (Batschuns,
Kolmogorov complexity K;) to characterize the Austria, 2004).

complexity and irregularity of EEG data under the [11]Palaniappan, R. Biological Signal Analysis(Ventus
different mental fatigue states. Both parameters were very Publishing, 2010).

useful due to significant drop in value with increasing MF. [12] Sanei, S. & Chambers, J. A.EEG Signal Processing
(JohnWiley & Son, New York, NY, USA, 2007).

[13] Tong, S. & Thankor, N. V. Quantitative EEG Analysis
Methods and Clinical Application@rtech House, 2009).
[14] Niedermeyer, E. Electroencephalography: Basic

- . . . Principles, Clinical Applications, and Related Fields
As it is widely gccepted, this work has considered the (Lippincott Williams & Wilkins, Philadelphia, PA, 1999),
brain as a chaotic system and, then, we have exposed how 4 ggn.

the nonlinear methods have been successfully applied in[15] Anderson, C., Stolz, E. & Shamsunder, S. Multivariate
biomedical applications. We have categorized some of the  autoregressive models for classification of spontaneous
most common applications in medical and non-medical electroencephalographic signals during mental ta§4sE
contexts. In particular, this paper analyzes epilepsyttdep Transactions on Biomedical Engineerirgp, 277-286

of anesthesia, autism, depression and Alzheimer's (1998).

disease, mental fatigue, brain computer interfaces and[16] Garrett, D., Peterson, D., Anderson, C. & Thaut, M.
emotion recognition. The most used nonlinear dynamics ~ Comparison of linear, nonlinear, and feature selection
methods for these EEG-based applications are correlation ~ methods for EEG signal classificatiolEEE Transactions
and fractal dimension as complexity measures, and  ©n Neural Systems and Rehabilitation Engineerity
Lyapunov exponents and entropy as stability measures. _ 141-144 (2003). , ,
Finally, it is important to remark that progress in [171Faust O. Acharya U.R. Min, L. & Sputh, B. Automatic
nonlinear dynamics and nonlinear time series analysis has ~ 'dentification of epileptic and background EEG signals

reached a level in which fruitful EEG-based applications using frequency domain parametelrsternational Journal
have become a reality for users of Neural System20, 159-176 (2010).
’ [18] Gandhi, T., Panigrahi, B. K. & Anand, S. A comparative
study of wavelet families for EEG signal classification.

Neurocomputing’4, 3051 — 3057 (2011).

6 Conclusions
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