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Abstract: Nonlinear dynamics and chaos theory have been used in neurophysiology with the aim to understand the complex brain
activity from electroencephalographic (EEG) signals. Although linear methods have been the most used in EEG analysis,nonlinear
approaches have been increased their presence because theyreveal aspects that cannot be measured from linear approaches. However,
published works in this scientific field is still very low. This work describes the fundamentals of EEG signals and its basic concepts
related with nonlinear dynamics and chaotic measures of complexity and stability. After that, a short review of the mostcommon
EEG-based applications is given in medical and non-medicalcontexts.
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1 Introduction

Many complex real-world phenomena are characterized
by nonlinear dynamics and the chaos theory [1]. This
important mathematical subject has aroused great interest
in a lot of scientific fields as physics, chemistry,
economics, electronics, biomedical engineering, just to
name a few. From the first studies of Pointcaré in 1890
[2], distinguished mathematicians have significantly
contributed in the field of chaotic dynamics, such as
Birkhoff, Kolmogorov, Cartwright, Littlewood, Smale,
Lorenz, Mandelbrot, among others. At this point, we
would like to highlight the recent notable contributions of
Prof. Jose Sousa-Ramos in this research field [3,4,5,6]
and its multidisciplinary applications, ranging from
electronic circuits [7,8], economics [9] and biological
systems [10].

Since biomedical data can be properly acquired
through sensors and peripheral devices, the analysis of
biosignals [11], which reflects typically complex
dynamics, has been widely studied in the area of
nonlinear analysis. During the last years, nonlinear

dynamic methods have been successfully used in
biomedical applications based on electrocardiogram
(ECG), electromyogram (EMG), electrooculogram
(EOG), magnetoencephalogram (MEG) and
electroencephalogram (EEG) data. In particular, this work
is focused in nonlinear brain dynamics. As it is widely
accepted [12,13], a brain is considered a chaotic
dynamical system and, then, their generated EEG signals
are generally chaotic. Besides that, an EEG signal is
chaotic in another sense, because its amplitude changes
randomly with respect to time. In this review paper, we
give the mathematical background of the most
widely-used nonlinear dynamic methods for EEG data
and, also, an state-of-the-art of some of the most relevant
and recent EEG-based applications with nonlinear
methods.

The rest of this paper is organized as follows. Section
2 describes the fundamentals of EEG signals and, then, in
section 3, the basic concepts related with nonlinear
dynamics and chaos are introduced for time series
analysis. Section 4 describes the notions of the most
popular nonlinear methods to measure the level of chaos
in EEG data: measures of complexity (correlation and
fractal dimension) and stability (Lyapunov exponents and
entropy). In section 5, we give a short review about
applications of nonlinear analysis and characterization of

∗ Corresponding author e-mail:german.rodriguez@cud.upct.es, pedroj.garcia@cud.upct.es

c© 2015 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/090512
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Fig. 1: EEG signal in the time (a) and frequency (b) domain.

EEG signals. Finally, the paper ends with the main
concluding remarks.

2 EEG signals: notions

The EEG signals measure the electrical activity of the
brain [14], which is recorded at many locations
simultaneously by one electrode at each position on the
human scalp (the termchannelis usually used to refer to
a recording position). Note that EEG signals are electrical
potentials with respect to a reference electrode (usually
placed at the earlobe) and the number of required
electrodes depends on the application (from 2 to 128
positions). As the recorded signals are in the order of
±100 µV, acquired EEG values are amplified (e.g. to±5
V) before the signals are sampled. Sampling frequencies
above 256 Hz are enough to typical EEG signals, which
have frequency components of 0 Hz to approximately 100
Hz. The standard EEG frequency bands are the delta (0.1
to 3.5 Hz), theta (4 to 7.5 Hz), alpha (8 to 13 Hz), and
beta (14 to 30 Hz) bands [14,13]. EEG signals with
frequencies greater than 30 Hz are known as gamma
waves and they have been found in the cerebellar
structures of animals. In general, an EEG signal has
complex behavior with nonlinear dynamic properties and
it can be represented after digitization as a sequence of
time samples [13]. Figure 1(a) shows a time series of 10
seconds duration recorded via an EEG channel; and its
corresponding Power Spectral Density (PSD) is shown in
Figure 1(b). As we can observe in Figure 1(b), the most
energy of the EEG signal is located below 30 Hz. The
same figure also shows the effects of a notch filter at 50
Hz, which is typically used for avoiding artifact caused by
power line interference.

2.1 Linear and nonlinear analysis of EEGs

As it is explained in Section 5, there are a broad range of
cutting-edge EEG-based applications and, depending on

the specific application, different relevant descriptors
(also known asfeatures) have to be extracted from EEG
signals, which can be generally divided in two main
feature categories [13]: linear andnonlinear.

Linear analysis of EEG signals includes frequency
analysis (e.g. Fourier and Wavelet Tranforms) and
parametric modeling (e.g. autoregressive models). In
general, linear methods can be successfully applied in the
study of several problems [15,16,17,18,19,20,21].
However, despite good results have been obtained with
linear techniques, they only provide a limited amount of
information about the electrical activity of the brain
because they ignore the underlying nonlinear EEG
dynamics. As it is widely accepted, the underlying
subsystems of the nervous system that generates the EEG
signals are considered nonlinear or with nonlinear
counterparts [22]. Even in healthy subjects, the EEG
signals show the chaotic behavior of the nervous system.
Therefore, due to this nonlinear nature of EEGs,
additional information provided by techniques from
nonlinear dynamics has been progressively incorporated
in order to reveal aspects that cannot be measured from
linear methods [23]. Nonlinear dynamic measures of
complexity (e.g., the correlation dimension) and stability
(e.g., the Lyapunov exponent and Kolmogorov entropy)
quantify critical aspects of the brain dynamics. Before
describing the most widely-used nonlinear methods in
Section 3, the basic concepts related with chaos are now
introduced.

3 Basic concepts of nonlinear dynamics and
chaos theory

Given a dynamical system [24], its stateis given by a set
of values of all variables that describe the system at a
particular time; while, itsdynamicsis a set of ordinary
differential equations (for continuous-time dynamical
system) or a mapping function (for discrete-time
dynamical system) that describes how the state changes
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over time. According the nature of the dynamics, we can
distinguish betweenlinear and nonlinear dynamical
systems [1,24]. A dynamical system is linear if all the
corresponding equations of its dynamics are linear;
otherwise, it is nonlinear.

Considering that a system is defined bym variables,
its state in a particular moment in time can be represented
by a point in anm-dimensional space [1]. This space is
usually known asstate spaceor phase space. The
sequence of consecutive states over the time defines a
curve in the phase space which is calledtrajectory. In
some cases, after observing the evolution of a dynamical
system for a sufficiently long time, its trajectory tends to
converge to a bounded subspace of the phase space. This
kind of dynamical system is known as dissipative:
systems with a volume contraction in the phase space.
This bounded subspace is referred to as anattractor,
because it attracts trajectories from all initial conditions.
According to the resulting geometrical object, attractors
can be grouped in [1,25]:

–Steady State (Fixed Point). The attractor evolves
towards a point (steady state), whatever the initial
conditions. A classical example is a damped
pendulum.

–Limit Cycle. The attractor is a closed one-dimensional
curve, which represents a periodic motion. An
example is the heartbeat while resting.

–Limit Torus. The attractor is a toroidal surface (in an
integer dimension). It represents a quasiperiodic
motion with an integer number of incommensurable
frequencies.

–Strange or Chaotic. The system exhibits complex
behaviors (chaos) and its attractor is a complex object.
In this case, points that are initially close in the phase
space, may become exponentially separated after
time. The dynamics corresponding to a strange
attractor is deterministic chaos: same initial
conditions converge to same final state; but the final
state is very different for small changes to initial
conditions.

To characterize attractors, and then the corresponding
dynamics of the system, different measures can be used.
In one hand, the dimension of the attractor measures the
spatial distribution of the corresponding geometrical
object, i.e., its ‘complexity’. A point attractor has
dimension zero, a limit cycle is one-dimensional, a torus
has an integer dimension corresponding to the number
superimposed periodic oscillations and, lastly, a strange
attractor has a non integer dimension, i.e., afractal
dimension. The dimension do not give information on the
evolution of trajectories over time and, then, it is an static
measure. There are several techniques for estimating the
dimension of the attractor [26], being the correlation
dimension (D2) the most popular approach. On the other

hand, there are dynamic measures, such as Lyapunov
exponents [27] and entropy measures, that give
information about the ‘stability’ of the attractor, i.e.,
quantify the chaos of the attractor. Among the different
available methods used to study dynamical systems in the
state space, the next section describes the most popular
and widely-used nonlinear approaches for EEG signal
processing.

4 Nonlinear dynamic analysis

In a EEG-based study, there is a set of observations in the
form of an EEG record, i.e., a time series of the electrical
activity of the brain. The nonlinear dynamic analysis with
time series entails two main steps: (i) reconstruction of
the dynamics in state space from observations; (ii)
characterization of the resulting attractor by nonlinear
dynamic measures. Once these measures have been
computed, this information can be used as characteristic
features of the analyzed EEG signals in the corresponding
application.

The aim of this section is to give a brief and intuitive
explanation of these two steps of nonlinear dynamic
analysis. A more extensive and detailed study can be
found in [28,29]. With respect to available software
implementations, the TISEAN project
(http://www.mpipks-dresden.mpg.de/∼tisean) and the
TSTOOL package (http://www.physik3.gwdg.de/∼tstool/)
can be outlined.

4.1 Embedding: reconstruction of the state
space

The technique of representing a state space of a dynamic
system from a single time series is calledstate space
reconstruction, or embedding of the time series. There are
two main approaches for reconstructing the state space:
(i) time-delay embeddingand (ii) spatial embedding. We
first describe the time-delay approach, which is the most
extended procedure in practice for nonlinear dynamical
analysis of EEG.

In the case of thetime-delay embedding, let xt be an
instantaneous measure of the dynamical system, i.e., a
sample of the time series obtained by sampling a given
variable of the system. Note that, for our interests, the
dynamical system is the neural networks of the brain and
the time series is given by the EEG signal. An
m-dimensional state space reconstruction with the
time-delay approach is

xt =
(

xt ,xt+τ , · · · ,xt+(m−1)τ
)

(1)

The lag or delay time, τ, is the time difference between
the successive components of the state vectorxt , andm is
the embedding dimension. The sequence of the
embedding vectors given by (1) forms the reconstructed
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attractor in the state space ast increases. Thus, time-delay
embedding is characterized by two parameters: the time
lag, τ, and the embedding dimension,m. The selection of
both parameters is a key and difficult step in nonlinear
analysis. Since an inappropriate election could lead to
wrong results, several criteria have been proposed in
practice. With respect toτ, in one hand, if it is very small,
the m components ofxt will be very close and the
geometry of the attractor could be lost. On the other hand,
if τ is very high, the components of each embedding
vector will become totally unrelated to each other. In
practice,τ is usually chosen as the first minimum of the
mutual information between the components of the
vectors in the state space or as the first zero of the
time-domain autocorrelation of the data [30]. The value of
m has to be chosen in order to the dynamics of the system
in the state space are preserved. According to Taken’s
theorem [31], if the underlying state space of a system has
d ‘true’ dimensions, the embedding dimension should be
chosen at least twice the dimension of the attractor, i.e.,
m> 2d. In this case, one first criteria is to takem> 2D2
[31], but it assumes a previous estimation of the
correlation dimension,D2. A possible and pragmatic
solution is to repeat the computation ofD2 for increasing
values of m until the Taken’s criterion is fulfilled.
Nevertheless,m and τ are interdependent and, then, the
estimations of each parameter depend on the combination
of both [32]. For solving it, thefalse nearest neighbors
method [33] provides an estimation of a minimumm. The
main idea is that the calculation must be repeated if for a
given m nearest neighbors in the state space still remain
close for a dimensionm+ 1. Otherwise, the attractor is
not correctly reconstructed andm must be higher. This
procedure is repeated until neighbors remain close.

In contrast to the time-lag approach, thespatial
embeddingprocedure can be realized whenm time series
of independent EEG signals are available instead of a
single one. In this approach, them components of each
vector in the state space are given by them values of each
time series at a particular time [34,35]. Then, the
embedding dimensionm is equal to the number of EEG
channels and there is an equivalence between the inter
electrode distance and the time lag,τ. Using the spatial
embedding procedure, it constructs an unique attractor
representing the neuronal dynamics [36]. Other option
would be to perform an individual time-delay embedding
on each of them time series, i.e., a different attractor for
each EEG signal. The major drawback of the spatial
embedding approach is the ‘spatial lag’ (i.e., the distance
between EEG channels), which is typically fixed
depending on the application and, then, it cannot be
optimally selected [23]. In general, it is not possible to
establish which embedding approach is better. However,
it should be emphasized that the scientific community
usually prefers the time-delay approach because it allows
to study the interactions between different brain regions
[37] and, also, the use of spatial embedding has been
debated in literature [34,38,39].

4.2 Characterization of the attractor: nonlinear
measures

Once the equivalent attractor in the state space has been
reconstructed, the next step is to characterize it using
nonlinear measures of its complexity and its stability.
Here, these nonlinear measures are described by
assuming the time-delay approach.

4.2.1 Correlation dimension

The correlation dimension (D2) is a measure of
complexity of a dynamical system related with the
topological dimension of its attractor. It is an estimation
of the fractal dimension of the attractor.D2 is based upon
the correlation integral,C(r), which is a function of
variable distancesr defined as:

C(r) = lim
N→∞

1
N(N−1)

N−1

∑
i=0

N−1

∑
j=i+1

Θ
(

r −
∣

∣xi − x j
∣

∣

)

(2)

whereN is the number of data points (i.e. the length of the
reconstructed attractor) andΘ is the Heaviside function.
Thus,C(r) is a measure of the probability that pairwise
points (xi andx j ) in the attractor will be separated is less
than or equal to a distancer. In [40], it is proposed that
the vectors to be compared whenC(r) is computed should
be separated at leastw data points (|i − j|> w) in order to
correct for autocorrelation effects in the time series.

According to [41,42], C(r) follows this relation:

C(r) ∝ rD2, (3)

and, then, the correlation dimension,D2, can be estimated

D2 = lim
r→0

log(C(r))
log(r)

, (4)

if the number of points and the embedding dimension are
sufficiently large. As the topology of the attractor is
usually unknown, it is necessary to calculateC(r) for
different values ofm and, for deterministic signals, the
convergence of the computation ofD2 can be reached.
Different enhancements have been proposed in order to
computeD2 in a faster way [43,44,45,46] and to reduce
the amount of noise in the signals [47,48,49].

4.2.2 Additional measures for computing fractal
dimensions

BesidesD2, many other methods have been also proposed
for computing the fractal dimension of the attractor [50,
51,52]. Among them, the following measures can be
highlighted:
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–Katz dimension. According to [53], the fractal
dimension of the EEG signal can be computed as

DK =
log10(s)

log10(s)+ log10(a/L)
, (5)

whereL is the length of the EEG time series,a is the
planar extent of the signal ands= L/Ā is the number
of steps of the waveform, beinḡA is the average
distance between successive points. Given thatdista,b
denotes the distance measured betweenxa andxb, the
length of the waveform (L) is given by the sum of the
distances between two consecutive points,
L = sum(disti,i+1); and the planar extent is
a= max(dist1,i).

–Higuchi dimension. Higuchi’s method [54] estimates
the fractal dimension of a sample as follows: first,
data subsets are constructed from the time series data
composed ofN samples:

x j
k =

{

x j+ik
}⌊(N− j)/k⌋

i=0 , (6)

where j ∈ [1,k] is the initial time andk ∈ [1,kmax] the
delay between points. Note thatkmax is a parameter to
be experimentally chosen (p.e. Higuchi originally fixed
kmax= 8). Then, the length of each subset is computed
by:

L j (k) =
∑

⌊

N− j
k

⌋

i=1

∣

∣x j+ik −x j+(i−1)k

∣

∣(N−1)/(⌊(N− j)/k⌋k)

k
⌊

N− j
k

⌋ , (7)

being N the length of the time series and
⌊

N− j
k

⌋

a

normalization factor. Total average length,L(k), is
computed for all time series for eachk (ranging from
1 to kmax): L(k) = ∑k

j=1L j(k). Finally, according to
the Higuchi’s method [54], the fractal dimension (DH)
is solved from:

L(k) ∝ k−DH (8)

Thus, in the representation of ln(L(k)) with respect to
ln(1/k), the estimate ofDH is given by the slope of
the least-squares linear fit.

–Petrosian dimension. In this method [55], the EEG
signal is first converted to a binary signal according to
a predefined procedure. For example, a common
procedure is the following: the differences between
consecutive samples are equal to one or zero
depending on whether it exceeds or not a standard
deviation magnitude. Once the binary signal has been
constructed, the fractal dimension is:

DP =
log10(L)

log10(L)+ log10(
L

L+0.4B)
, (9)

whereL is the length of the signal andB is the number
of bit changes in the resulting binary sequence.

Finally, we would like to outline theHurst Exponent
[56,57,58], which is used to evaluate the long-memory
dependence and its degree in a time series. The Hurst
exponent,H, is a measure of the smoothness of a time
series data based on the asymptotic behavior of the
rescaled range of the process [59] and it is given by:

H =
log10(R/S)
log10(T)

, (10)

whereT is the duration of the time series data andR/S is
the rescaled range, which characterizes the divergence of
time series, defined as the range of the mean-centered
values for a given duration (T) divided by the standard
deviation for that duration. From [56], R/S ∝ TH . It
should be noted that there is a linear relationship between
the fractal dimension (D), a measure of roughness, and
the Hurst coefficient (0≤ H ≤ 1): D+H = 1+E, where
E is the Euclidean dimension. The more jagged the EEG
signal, the closer its Hurst coefficient will be to 0 [58].

4.2.3 Lyapunov exponents: Measuring stability

In a chaotic attractor, trajectories typically evolves
following two steps: (i)expansion process, the trajectories
diverge exponentially fast from similar initial conditions
(nearby points in the state space); (ii)folding process, the
trajectories will have to fold back into it as time evolves.
The Lyapunov exponentsmeasure the average rate of
expansion and folding that occurs along the local
eigen-directions within an attractor [13]. When an
attractor is chaotic, the Largest Lyapunov Exponent
(LLE) should be positive. A negative exponent entails that
the trajectories tends to common fixed point; and a zero
exponent means that the trajectories maintain their
positions: they are on a stable attractor. Note that if the
state space ism-dimensional, we can theoretically
measure up tom Lyapunov exponents.

There are several procedures for computing the LLE
from EEG data [13,23,60]. Now, we introduce the
well-known Wolf’s algorithm [27]. The nearest neighbor
to the initial state vector of the attractor
(xt0 =

(

xt0,xt0+τ , · · · ,xt0+(m−1)τ
)

) is located, beingL(t0)
the distance between these two vectors. At a later time
t1 = t0+T, this initial length will beL′(t1), whereT is a
fixed time known as evolution time. This process is
repeated by computing the successive distances until the
separation is greater than a certain value (δmax). Then, a
new state space vector (replacement vector) is searched as
close as possible to the first one. Finally, the Lyapunov
exponent, which measures the mean exponential
divergence of two initially nearby state space orbits, is
characterized by:

λ =
1

(tM − t0)

M

∑
i=0

log
L′(ti)

L′(ti−1)
, (11)
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whereM is the number of evolution steps. With respect to
its implementation, and according to [61], an embedding
dimension (m) between 5 and 20 and a delay time (τ) of 1
should be chosen for computing the Lyapunov exponent
for EEG data. In addition, note that the parametersδmax
and T must be also tuned. Other popular procedure for
calculating the Lyapunov exponent is the Rosenstein’s
method [62].

4.2.4 Entropy

The entropy of an attractor is the rate of information loss
of its dynamics [23]. When the LLE is positive, the rate of
expansion is greater than the rate of folding (i.e. a
production rather than destruction of information) [13],
the Lyapunov exponents are strongly related with concept
of entropy. In fact, the Kolmogorov entropy is equal to the
sum of all positive Lyapunov exponents [63]:

K2 = ∑
λ>0

λi , (12)

and a positive entropy denotes chaos. Entropy has been
computed in different formals [13], such as (i)
Kolmogorov entropy[42] and (ii) approximate entropy
(ApEn) [64], both are descriptors of the changing
complexity in embedding space; (iii)spectral entropy,
which evaluates the energy distribution in wavelet
subspace [65] or uniformity of spectral components [66];
and (iv) amplitude entropy, a direct uncertainty measure
of the signal in the time domain [67].

5 Review of neuroscience applications with
nonlinear methods

The research of EEG signals with nonlinear methods is
able to open a new window to understand the brain
function, i.e, to analyze the dynamical properties
underlying the acquired EEG in subjects. This nonlinear
analysis is applied in healthy subjects in different
scenarios, during no-task resting states, perceptual
processing, performance of cognitive tasks and different
sleep stages [23]. Also it has been used to detect
abnormal function of the brain like seizures, dementia,
schizophrenic, depression, autism, Alzheimer’s disease,
Creutzfeldt-Jakob’s disease and to detect and quantify
toxic states [23]. Besides medical applications, the
information extracted in this type of analysis has been
used for non-medical purposes [68,69,70]. This section
gives to the reader an overview of the state of the art of
the neuroscience applications with nonlinear methods. It
is important to remark that there are applications that
have been developed along the last twenty years; while
others have been recently developed and, therefore, there
are few works published about them. In this work, we
have classified some of the most common applications in
medical and non-medical contexts.

5.1 Medical applications

It is assumed that the EEG must reflect the dynamic of the
brain and, of course, psychiatric disorders and
pathological states. Additionally, it is widely accepted the
use of EEG analysis for early detection of several brain
disorders and diseases, such as epilepsy, autism,
depression and Alzheimer, and for measuring the depth of
anesthesia [71].

5.1.1 Epilepsy

Epilepsy is a neurological disorder in which patients
suffer spontaneous seizures. In each seizure, brain
produces unexpected electrical discharges in a oscillatory
state [72]. It is a common neurological disorder: about 60
million people worldwide are affected and suffered
recurrent seizures [12,73]. The most common and
traditional analysis is still the visual inspection of the
EEG signals by experienced professionals. Fortunately, in
recent years, there have appeared scientific papers that
present results by applying signal processing techniques
to predict epileptic seizures in a efficient, automatic and
objective way [12].

From the different proposed methods, linear
approaches do not allow to detect the previous changes in
EEG to seizures due to fact that the the brain activity is a
dynamic system and the epileptic neuron is inside
nonlinear networks with nonlinear responses. The
nonlinear analysis and quantification of EEG signals
could detect changes in the brain activity and, then, get
enough information to predict seizures [12]. Different
techniques have been proposed along the last years to
improve the prediction and detection of seizures. One of
the most used methods to detect seizures is to compute
the LLE. It was introduced in 1991 to predict seizures by
Iasemediset al. [72]. Along the last years, LLE have been
used alone or combined with other methods. In 2007,
Adeli et al. [74] presented a ‘wavelet-chaos methodology’
for analysis five sub-bands of EEGs for detection of
seizure and epilepsy. The nonlinear dynamics of the
original EEGs were quantified in the form of theD2 and
the LLE. It was concluded that, in the higher frequency
beta and gamma subbands, theD2 differentiates among
three different groups: healthy subjects, epileptic subjects
during a seizure-free interval and epileptic subjects during
a seizure (ictal EEG); whereas in the lower frequency
alpha subband, the LLE differentiates between the three
groups. Other nonlinear measure have been applied to
epilepsy, such as fractal dimension. As an example, in
2011, Easwaramoorthyet al. [75] proposed an improved
version of generalized fractal dimension to discriminate
between healthy and epileptic subjects. Le Van Quyenet
al. introduces the correlation density [76] and, besides
that, his research group proposed new techniques, such as
the ‘dynamical similarity index’ [77], that compares and
gives a measure of similarity between two signals
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captures in different times. In 2005, Kannathalet al. [78]
compared different entropy estimators when applied to
EEG data from normal and epileptic subjects.

In addition, many studies and experiments about
epilepsy are developed using ECoG signals [12]. ECoG
signals are captured using intracraneal sensors that
provide clean signals with high amplitude. In contrast,
EEG signals are captured placing sensors over scalp and
collect noise from the environment and low amplitude
signal but they allow to measure the electrical brain
activity without clinical intervention. This is the reason
that there are different works that clean the noise of EEG
signals in order to enhance the seizure and epilepsy
detection [12]. More recently, Quanget al. [73] combined
the ICA (Independent Component Analysis) method and
the LLE to clean the EEG signal.

5.1.2 Depth of anesthesia

The monitoring of anesthesia is very important to provide
an adequate level that ensures a safety and comfortable
scenario to work during a medical intervention. We also
note that a high level of anesthesia could produce an over
dosing effects, but a low level of substance is
contraindicated because patients could suffer
intra-operative awareness [79]. Therefore, it is needed to
obtain an objective and quantitative measure of the depth
of anesthesia (DA) in the operating room.

In the last 10 years, several linear and nonlinear
methods have been applied to this matter. This work is
focused in nonlinear methods and, then, they are now
exposed in some examples. In 2006, Jordanet al. [80]
introduced approximated entropy combined with the
weighted spectral median frequency and got an EEG
indicator based on fuzzy logic that let to separated
wakefulness from unconsciousness patients. In 2007,
Ferenetset al. [81] introduced spectral entropy combined
with approximated entropy, Higuchi’s fractal dimension,
Lempel-Ziv complexity, relative β ratio, and the
SyncFastSlow measure to evaluate the effect of
remifentanil in EEG measures to detect the DA. In 2008,
Roca et al. [82] evaluated Lyapunov exponents to get a
short-term predictability from EEG signals. In 2012,
Klockars et al. [83] used spectral entropy as a measure of
depth of hypnosis and the hypnotic drug effect in children
during total intravenous anesthesia. They reported a an
age influence and recommended to use an other
complementary indicators to the doctors.

The industry of medical equipment have developed
different standard indexes, such as the Patient State Index
(PSI) [84] or the Narcotrend monitoring [85], to help in
the operating room, being the Bispectral Index Score
(BIS) the reference procedure [79]. As a example to
estimate the BIS index, Ahmadiet al. [86] compared the
correlation dimension and the Higuchi’s fractal
dimension, by obtaining in general better results using the
second approach. However, Errandoet al. [87] published

that, despite the use of these medical equipments,
incidence of awareness continues. Due to these
drawbacks, research about EEG to monitoring the DA has
a long way to run along the next years.

5.1.3 Autism

Autism disease (ASD) is defined as a disorder of neural
development characterized by impaired social interaction
and verbal and non-verbal communication, and by
restricted, repetitive or stereotyped behavior [79].

The use of chaos theory to extract features to analyze
ASD is relatively recent [79]. A very active group in this
field is Ahmadlou’s group. In 2010, Ahmadlouet al. [88]
introduced a new methodology called ‘Fractality and a
Wavelet-Chaos-Neural Network’ for ASD diagnosis. In
[88], they evaluated the use of Fractal dimension
computed by Higuchi or Katz’s method and got better
results with the Katz’s aproach. More recently, in 2012,
[89] proposed a diagnosis system more robust which
improved performance of the power of scale-freeness of
visibility graph. As a final example of published works
about analysis of EEG signal in ASD, in 2011, the group
of Catarino [90] applied a multiscale entropy analysis in
order to test difference in complexity between people
with ASD and healthy subjects, obtaining a positive
response.

5.1.4 Depression

Depression is a mental disorders that produces low mood,
lack of interest, low self-esteem, and poor concentration.
Sometimes depression could even produce the suicide of
the patients. It is one of the most common brain disorder
and affects about 121 million people worldwide: it is
expected that this number will be increased in the future
[91]. The quantitative analysis of EEG signals reflects
objective information about the changes in brain activity
produced by depression [91,92].

Mostly of results have been obtained using linear
methods, such as band power features in order to to detect
changes in frontal interhemispheric asymmetries [93,94,
95]. Although the study of frontal asymmetry is one of
the most used methods, there are some doubts about it as
a marker for depression [96]. Some research groups
recently have applied nonlinear methods to diagnosis
depression disease [91,92,97] but the number of
published works is still very low. In 2012, Ahmadlouet
al. [97] presented an investigation of the frontal brain of
major depressive disorder patients using the
wavelet-chaos methodology and Katz’s and Higuchi’s
fractal dimensions as measures of nonlinearity and
complexity. [97] reported that Higuchi’s fractal dimension
gets the better results. The study by Hosseinifardet al.
[91] performed a nonlinear analysis of EEG signal for
discriminating depression patients and normal controls.
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2316 G. Rodrı́guez-Bermúdez, P. J. Garcı́a-Laencina: Analysis of EEG Signals using...

To develop this interesting work, the power of four EEG
bands and four nonlinear features (e.g. fractal dimensions
and LLE) were extracted from EEG signals. Finally,
Bachmann et al. [92] compared two EEG analysis
methods for detection of depression: a linear approach,
spectral asymmetry index; and a nonlinear approach,
Higuchi’s fractal dimension. Their results indicated that
both methods got a good sensitivity for detection of
characteristic features of depression.

5.1.5 Alzhehimer’s disease

Alzheimer’s disease (AD) is suffered by 35 million
people worldwide and it is expected that the number will
be increased to 115 million by the year 2050 [71]. This is
a type of dementia and it is characterized by the gradual
destruction of the brain cells of the patient, neurofibrillary
tangles, and senile plaques in different widespread brain
regions [98]. There is an intermediate step between a
healthy subject and Alzheimer’s disease called ‘Mild
cognitive impairment’ (MCI) which presents symptoms.
The most usual symptom is short term memory loss, but
this not enough to disturb routine in an adult and
sometimes people no need to go to the doctor. It is
important to remark that the MCI do not have to finish in
AD, because it may revert to a normal state, develop into
any of several forms of dementia or even revert back to a
normal state. In order to avoid the AD progression,
research effort have been done to get an early detection of
MCI [71].

Several studies have showed the usefulness of
nonlinear methods to analyze the EEG in patients with
AD [23]. Fractal dimension was introduced to detect AD
in 1997 by Besthornet al. [99]. After that, Jeonget al.
[100,101]applied the LLE and theD2 to detect AD. They
claimed that theD2 measured in the occipital region was
very useful for detecting AD because it presented a lower
level in patients with AD than in healthy subjects [100,
101]. Finally, entropy is one of the most used method’s to
diagnosis AD and different groups have reported
satisfactory results in this area [98,71,102,103,104].

5.2 Non-medical applications

5.2.1 Brain computer interface

A Brain Computer Interface (BCI) system acquires and
analyzes EEG signals in order to provide a direct
communication and control pathway from the human
brain to a computer/machine [105]. BCI research is a
growing area of research and this technology has been
already extended from assistive care to other non-medical
uses, such as gaming, assessment of driving performance
and safety/security applications [106]. According to
Bashashatiet al. [107], linear features have been widely
applied in many BCI systems but there are several works

that use nonlinear features. As we have no found medical
BCI applications using nonlinear analisys, BCIs have
been categorized in this work as a non-medical
application.

One of the most used nonlinear methods is the LLE,
which has been combined with other procedures in
different works [108]. For example, in 2009 Banitalebiet
al. [109] used LLE, mutual information,D2 and the
minimum embedding dimension as the features for the
classification of EEG signals to identify motor imagery of
the hands and foot. Esfahaniet al. [110] combined LLE
with the power spectral density of each EEG frequency
band to detect human satisfaction in human-robot
interaction. In the same year, Wanget al. [69] proposed a
new nonlinear fractal dimension based approach to
neuro-feedback implementation aimed at EEG-based
games design. Note that the use of fractal dimension in
BCI design was previously introduced in [111].

5.2.2 Emotion recognition

A computer that recognize human’s emotions could
improve the communication and get a more affective
environment for the user [112,113,114]. Emotion
recognition (ER) and affective computing are now two
growing research areas. In this fields, researchers have
used different methods (such as face expression and
speech analysis), and even biosignals measures (such as
EEG, ECG, EMG, skin conductance, peripheral
temperature [115,116].

There are works to get ER using linear and nonlinear
methods. Linear method usually computed power
spectrum features while nonlinear method applied several
different computations. In 2009, Khaliliet al. [115] used
the International Affective Picture System (IAPS), that is
a database of pictures used to elicit a range of emotions,
to produce three different emotions (calm, positively
excited, and negatively excited) and decided to combines
EEG with galvanic skin resistance, temperature, blood
pressure and respiration for ER. They used correlation
dimension as a strong nonlinear feature for EEG that
seem to perform better than other physiological signals.
Liu et al. [70,117] proposed a fractal dimension-based
algorithm for quantifying basic emotions and, also,
described its implementation as a feedback in 3D virtual
environments. Note that different sound clips from the
International Affective Digitized Sounds (IADS) were
used to elicit emotions. Recently, in 2013, Bajajet al.
[118] compute ratio of the norms based measure,
Shannon entropy measure, and normalized Renyi entropy
measure as features of the EEG signal obtained during
audio-video stimulus with good results.

5.2.3 Mental fatigue

Mental fatigue (MF) is an usual sense that is
characterized by a decreasing level of attention, sense of
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weariness, drowsiness and a low mental performance
[119]. These symptoms could produce performance
decrements in the productivity or even accidents in
industrial or commercial environments. There are several
scenarios in which an early detection of MF could be very
interesting, such as nuclear power industry, flight pilots or
car drivers [120]. There is not an unique method to
measure MF and it is usually recommended to combine
different biosignals, such as EEG, ECG, EOG and EMG.

In particular, analysis of EEG must reflect the changes
of the brain activity produced by MF. The most extended
technique is to compare the power spectrum between the
frontal and the occipital lobes to get a classification of
mental fatigue at different levels [121]. Recently,
nonlinear methods have been applied to MF but there are
a few works focused in this area. As a example, in 2010,
Sibsambhuet al. [122] proposed a new entropy-based
method for relative quantification of MF during driving
tasks. Liu et al. [68] used approximate entropy and
Kolmogorov complexity (K2) to characterize the
complexity and irregularity of EEG data under the
different mental fatigue states. Both parameters were very
useful due to significant drop in value with increasing MF.

6 Conclusions

As it is widely accepted, this work has considered the
brain as a chaotic system and, then, we have exposed how
the nonlinear methods have been successfully applied in
biomedical applications. We have categorized some of the
most common applications in medical and non-medical
contexts. In particular, this paper analyzes epilepsy, depth
of anesthesia, autism, depression and Alzheimer’s
disease, mental fatigue, brain computer interfaces and
emotion recognition. The most used nonlinear dynamics
methods for these EEG-based applications are correlation
and fractal dimension as complexity measures, and
Lyapunov exponents and entropy as stability measures.
Finally, it is important to remark that progress in
nonlinear dynamics and nonlinear time series analysis has
reached a level in which fruitful EEG-based applications
have become a reality for users.
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