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Abstract: In this paper, we introduce the definition of the FS normal operator, another special type of FS linear operators in the FS

Hilbert space based on the FS inner product space definition, initiated by Faried, Ali and Sakr [1]. Moreover, one example supporting FS

normal operators and another one that is against them are established. Furthermore, related results including the FS spectral theorems

and many other results are investigated. Finally, the connection between the FS normal operators and the FS hermitian operators is

introduced.
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1 Introduction

Zadeh [2] introduced an extension of ordinary sets to deal
with uncertainty namely the theory of the fuzzy sets. The
fuzzy set is determined by its characteristic function from
the domain X to the interval [0,1]. After that, Molodtsov
[3] proposed another extension of ordinary sets to solve
complicated problems and overcome uncertainties, which
is the soft set theory. It is very useful in solving difficult
issues that can not be solved by ordinary methods in
many fields of science such as: physics, decision-making,
engineering, medicine, computer science, game theory,
economics and many other areas. The soft set is a
parameterized collection of subsets of universal set. Thus,
Maji, Biswas and Roy [4] combined the fuzzy and soft
concepts in one concept and named it FS set. Then, many
researchers used the FS notion and introduced some new
concepts such as FS point [5], FS normed spaces [6] and
FS metric spaces [7]. Recently, Faried, Ali and Sakr [1]
gave the definition of FS inner product on FS linear
spaces along with introducing the properties and some
other related results of them. After that, Faried, Ali and
Sakr [8] introduced the FS Hilbert space definition along
with establishing the properties and many other related
results of it. In addition, Faried, Ali and Sakr [9] defined
the FS linear operator in the FS Hilbert space along with
its related theorems involving the spectral theory. Finally,
Faried, Ali and Sakr defined the FS symmetric operator

[10] and the FS hermitian operator [11] along with their
related examples and theorems.

In this work, we define another particular FS linear
operator as a special type, namely the FS normal
operators, establish their related theorems involving the
FS point spectrum, one example which is in favor of the
FS normal operator and also another one which is not
supporting it and show the connection between the FS
normal operators and the FS hermitian operators.

2 Preliminaries

In this section, we state definitions, preliminaries and
notations which are important in the following obtained
results.

Definition 2.1.[4] Suppose that U is a universal set, E is a
parameter set. Let A ⊆ E . Then, (G,A) is said to be an FS
set over U , G is a map defined by G : A → F (U), where
F (U) is the collection of all fuzzy subsets of U . In case
that all parameter sets are the same, then one can denote
(G,A) by FSS(U)A = FSS(Ũ).

Definition 2.2.([1],[5]) (G,A) ∈ FSS(Ũ) is said to be an
FS point over the universal set U , denoted by ũ fG(e)

, if we

have for e ∈ A and for u ∈U :

fG(e)(u) =

{
α , i f u = u0 ∈U and e = e0 ∈ A,
0 , i f u ∈U −{u0} or e ∈ A−{e0}

,
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where α ∈ (0,1] is the value of degree of membership. One
can consider the FS point as the quadruple (u0,e0,G,α).

R(A) denotes the set of all FS real numbers and C(A)
denotes the set of all FS complex numbers. Moreover,
θ̃ = (0̃, 0̃, 0̃, 0̃) and j̃ = (1̃, 1̃, 1̃, 1̃).

Theorem 2.1.[1] Suppose that (Ũ , <̃ ·, ·>) is an FS inner
product space, then

˜|< ṽ1
f1G(e1)

, ṽ2
f2G(e2)

> |
2

≤̃

˜< ṽ1
f1G(e1)

, ṽ1
f1G(e1)

> ˜< ṽ2
f2G(e2)

, ṽ2
f2G(e2)

>,

for every ṽ1
f1G(e1)

, ṽ2
f2G(e2)

∈̃FSV(Ũ).

Definition 2.3.[1] Suppose that (Ũ , <̃ ·, ·>) is an FS inner
product space and ṽ1

f1G(e1)
, ṽ2

f2G(e2)
∈̃H̃. ṽ1

f1G(e1)
is said to be

FS orthogonal to ṽ2
f2G(e2)

(denoted by, ṽ1
f1G(e1)

⊥̃ṽ2
f2G(e2)

) if

˜< ṽ1
f1G(e1)

, ṽ2
f2G(e2)

>=̃0̃.

Theorem 2.2.[1] For FS orthogonal complement, we have
the following properties:

1.{θ̃}⊥̃=̃Ũ and Ũ ⊥̃=̃{θ̃}.

2.ω̃∩̃ω̃⊥̃=̃{θ̃}.

3.ω̃⊥̃⊥̃=̃ω̃ .
4.If ω̃1⊂̃ω̃2, then ω̃⊥̃

2 ⊂̃ω̃⊥̃
1 .

Definition 2.4.[8] Suppose that (Ũ , <̃ ·, ·>) is an FS inner
product space. The FS complete space in the induced FS
norm is, then, called an FS Hilbert space, denoted by H̃.
Every FS Hilbert space is clearly an FS Banach space.

Theorem 2.3.[9] Suppose that H̃ is an FS inner product
space and T̃ ∈̃L̃(H̃). We, then, have

R̃(T̃ )⊥̃=̃ ˜N (T̃ ∗̃),

where R̃(T̃ ) is FS range of T̃ and ˜N (T̃ ∗̃) is FS kernel of

T̃ ∗̃.

Theorem 2.4.[9] We have

‖̃T̃ ∗̃T̃‖=̃‖̃T̃‖
2

=̃‖̃T̃ T̃ ∗̃‖,

where H̃ is an FS Hilbert space and T̃ ∈̃B̃(H̃).

Definition 2.5.[9] The eigenvalue λ̃ ∈̃C(A) is called an FS
approximate eigenvalue of an FS linear operator T̃ if there
exists an FS sequence of FS elements {ṽn

fnG(en)
} in H̃ such

that ˜‖ṽn
fnG(en)

‖=̃1̃ and T̃ ṽn
fnG(en)

− λ̃ ṽn
fnG(en)

→ 0̃. The set of

every those λ̃ is called the FS approximate point spectrum
of an FS linear operator T̃ , denoted by σ̃a(T̃ ). We have

σ̃a(T̃ )⊂̃σ̃(T̃ ). (1)

Definition 2.6.[9] Since, for T̃ ∈̃B̃(H̃), where H̃ is an FS
Hilbert space, σ̃(T̃ ) is a non-empty FS compact set (FS
closed and FS bounded), we can define

r̃σ̃ (T̃ )=̃ ˜sup{|λ̃ | : λ̃ ∈̃σ̃(T̃ )}.

We call r̃σ̃ (T̃ ) the FS spectral radius of an FS linear
operator T̃ .
Also, we can show that:

r̃σ̃ (T̃ )=̃ lim
n→∞

‖̃T̃ n‖
1
n
.

Definition 2.7.[9] The set of every eigenvalues λ̃ ∈̃C(A)

such that λ̃ Ĩ− T̃ is FS injective, but its FS range is not FS
dense in H̃, denoted by σ̃r(T̃ ), is said to be the FS residual
spectrum of an FS linear operator T̃ , i.e.,

σ̃r(T̃ )=̃σ̃Com(T̃ )\σ̃p(T̃ ). (2)

Definition 2.8.[9] The set of every eigenvalues λ̃ ∈̃C(A)

such that λ̃ Ĩ− T̃ is FS injective and has FS dense range in
H̃, but is FS singular (i.e. has no FS inverse), denoted by
σ̃c(T̃ ), is said to be the FS continuous spectrum of an FS
linear operator T̃ . Note that

σ̃p(T̃ )∪̃σ̃c(T̃ )⊂̃σ̃a(T̃ ), (3)

and
σ̃(T̃ )=̃σ̃p(T̃ )∪̃σ̃c(T̃ )∪̃σ̃r(T̃ ), (4)

the terms on the right are mutually disjoint.

Definition 2.9.[9] Suppose that H̃ is an FS Hilbert space. If
ṽ fG(e)

=̃(ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

)∈̃H̃. Then, one can define

the FS operator R̃ as follows:

R̃ṽ fG(e)
=̃R̃(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
)

=̃(0̃, ṽ1
f1G(e1)

, ṽ2
f2G(e2)

).
(5)

The FS operator R̃ can be considered as an FS right shift
operator.

Example 2.1.[9] Suppose that H̃=̃ℓ2(A) is the space of
every FS square-summable sequences. If
ṽ fG(e)

=̃(ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .)∈̃ℓ2(A). By applying

the FS operator (5) from Definition (2.9), we can give the
definition of the FS right shift (unilateral shift) operator Ũ

in ℓ2(A) as the following:

Ũ ṽ fG(e)
=̃Ũ(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)

=̃(0̃, ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .).
(6)

In addition, we have:

Ũ ∗̃ṽ fG(e)
=̃Ũ ∗̃(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)

=̃(ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .).
(7)
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Equation (7) represents the FS adjoint of the FS unilateral
shift operator, which is called an FS left shift operator.

Definition 2.10.[11] Suppose that H̃ is an FS Hilbert
space. Then, T̃ ∈̃B̃(H̃) is said to be an FS hermitian
operator if

T̃ =̃T̃ ∗̃. (8)

3 Main Results

In this section, the definition of the FS normal operator in
the FS Hilbert space is introduced. Moreover, some
related theorems including its FS eigenvalues and its FS
eigenvectors are established. Furthermore, one example
which is supporting FS normal operators and also another
one which is not supporting them are investigated.

Definition 3.1.(FS normal operator) Suppose that H̃ is
an FS Hilbert space and T̃ ∈̃B̃(H̃). Then, T̃ is said to be an
FS normal operator if

T̃ T̃ ∗̃=̃T̃ ∗̃T̃ . (9)

Remark 3.1. Any FS hermitian operator can be considered
as an FS normal operator.

Proof. For, T̃ T̃ ∗̃=̃T̃ T̃ =̃T̃ ∗̃T̃ .

Example 3.1. The FS operator 2̃ĩĨ is FS normal.

Solution. For,

(2̃ĩĨ)(2̃ĩĨ)∗̃=̃(2̃ĩĨ)(−2̃ĩĨ∗̃)

=̃(2̃ĩĨ)(−2̃ĩĨ)

=̃(−2̃ĩĨ)(2̃ĩĨ)

=̃(2̃ĩĨ)∗̃(2̃ĩĨ).

Example 3.2. The FS right shift operator on FS square-
summable sequences space ℓ2(A) is not FS normal.

Solution. Let T̃ be the FS right shift operator on ℓ2(A).
From (6) and (7) in Example (2.1), we have:

T̃ ṽ fG(e)
=̃T̃ (ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)

=̃(0̃, ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .),

and

T̃ ∗̃ṽ fG(e)
=̃T̃ ∗̃(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)

=̃(ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .),

for every ṽ fG(e)
=̃(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)∈̃ℓ2(A).

Therefore,

T̃ T̃ ∗̃ṽ fG(e)
=̃T̃ (T̃ ∗̃ṽ fG(e)

)

=̃T̃ (T̃ ∗̃(ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .))

=̃T̃ (ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .)

=̃(0̃, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .),

(10)

and

T̃ ∗̃T̃ ṽ fG(e)
=̃T̃ ∗̃(T̃ ṽ fG(e)

)

=̃T̃ ∗̃(T̃ (ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .))

=̃T̃ ∗̃(0̃, ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .)

=̃(ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .),

(11)

for every ṽ fG(e)
=̃(ṽ1

f1G(e1)
, ṽ2

f2G(e2)
, ṽ3

f3G(e3)
, . . .)∈̃ℓ2(A).

Therefore, from (10) and (11), we obtain that:

(0̃, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .)=̃T̃ T̃ ∗̃

˜6=T̃ ∗̃T̃ =̃(ṽ1
f1G(e1)

, ṽ2
f2G(e2)

, ṽ3
f3G(e3)

, . . .).

Hence, T̃ is not FS normal operator.

Theorem 3.1. Suppose that H̃ is an FS Hilbert space and
T̃ ∈̃B̃(H̃). Then, T̃ is FS normal operator if and only if

˜‖T̃ ∗̃ṽ fG(e)
‖=̃ ˜‖T̃ ṽ fG(e)

‖, for every ṽ fG(e)
∈̃H̃.

Proof. Let T̃ be an FS normal operator. Then, using (9)
from Definition (3.1), we get:

˜‖T̃ ṽ fG(e)
‖

2

=̃ ˜< T̃ ṽ fG(e)
, T̃ ṽ fG(e)

>

=̃ ˜< ṽ fG(e)
, T̃ ∗̃T̃ ṽ fG(e)

>

=̃ ˜< ṽ fG(e)
, T̃ T̃ ∗̃ṽ fG(e)

>

=̃ ˜< T̃ ∗̃ṽ fG(e)
, T̃ ∗̃ṽ fG(e)

>

=̃ ˜‖T̃ ∗̃ṽ fG(e)
‖

2

,

for every ṽ fG(e)
∈̃H̃.

Hence, we get that ˜‖T̃ ∗̃ṽ fG(e)
‖=̃ ˜‖T̃ ṽ fG(e)

‖.

Conversely, let ˜‖T̃ ∗̃ṽ fG(e)
‖=̃ ˜‖T̃ ṽ fG(e)

‖, for every ṽ fG(e)
∈̃H̃.

Then, we obtain that:

˜< T̃ T̃ ∗̃ṽ fG(e)
, ṽ fG(e)

>=̃ ˜< T̃ ∗̃ṽ fG(e)
, T̃ ∗̃ṽ fG(e)

>

=̃ ˜‖T̃ ∗̃ṽ fG(e)
‖

2

=̃ ˜‖T̃ ṽ fG(e)
‖

2

=̃ ˜< T̃ ṽ fG(e)
, T̃ ṽ fG(e)

>

=̃ ˜< T̃ ∗̃T̃ ṽ fG(e)
, ṽ fG(e)

>,

for every ṽ fG(e)
∈̃H̃.

Then, ˜< (T̃ T̃ ∗̃− T̃ ∗̃T̃ )ṽ fG(e)
, ṽ fG(e)

>=̃0̃, for every

ṽ fG(e)
∈̃H̃. Thus, (T̃ T̃ ∗̃ − T̃ ∗̃T̃ )ṽ fG(e)

=̃θ̃ , for every
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ṽ fG(e)
∈̃H̃. Therefore, T̃ T̃ ∗̃ − T̃ ∗̃T̃ =̃0̃ (FS zero operator).

Hence, we get that T̃ T̃ ∗̃=̃T̃ ∗̃T̃ , i.e. T̃ is FS normal
operator.

Theorem 3.2. If T̃ is an FS normal operator in FS Hilbert

space, then r̃σ̃ (T̃ )=̃‖̃T̃‖, where r̃σ̃ (T̃ ) is the FS spectral
radius of T̃ , stated in Definition (2.6).

Proof. First, by replacing ṽ fG(e)
by T̃ ṽ fG(e)

in Theorem

(3.1), we have:

˜‖T̃ ∗̃T̃ ṽ fG(e)
‖=̃ ˜‖T̃ 2ṽ fG(e)

‖, for every ṽ fG(e)
∈̃H̃. So, we have

‖̃T̃ 2‖=̃‖̃T̃ ∗̃T̃‖. Therefore, with help of Theorem (2.4), we
obtain that:

‖̃T̃ 2‖=̃‖̃T̃ ∗̃T̃‖

=̃‖̃T̃‖
2

.

(12)

Since T̃ is FS normal operator, T̃ and T̃ ∗̃ commutes, and

(T̃ n)∗̃=̃(T̃ ∗̃)n, then

(T̃ n)(T̃ n)∗̃=̃T̃ n(T̃ ∗̃)n

=̃(T̃ T̃ ∗̃)n

=̃(T̃ ∗̃T̃ )n

=̃(T̃ ∗̃)nT̃ n

=̃(T̃ n)∗̃T̃ n.

Hence, T̃ n is FS normal operator.
Therefore, by mathematical induction, from (12), we get

that ‖̃T̃ m‖=̃‖̃T̃‖
m

for every m of the form 2k,
k = 1,2,3, · · · .
Now, we have:

r̃σ̃ (T̃ )=̃lim
n
‖̃T̃ n‖

1
n

=̃lim
n
‖̃T̃ 2n

‖

1
2n

=̃lim
n
(‖̃T̃ 2n

‖)
1

2n

=̃lim
n
‖̃T̃‖

=̃‖̃T̃‖.

Remark 3.2. Since any FS hermitian operator is an FS

normal operator, then we get that r̃σ̃ (T̃ )=̃‖̃T̃‖, for any FS
hermitian operator T̃ ∈̃B̃(H̃).

Theorem 3.3. Suppose that T̃ is an FS normal operator in

the FS Hilbert space H̃. If λ̃ ∈̃σ̃p(T̃ ), then we have

λ̃ ∈̃σ̃p(T̃
∗̃).

Proof. We prove that (T̃ − λ̃ Ĩ) is FS normal as follows:

(T̃ − λ̃ Ĩ)(T̃ − λ̃ Ĩ)∗̃=̃(T̃ − λ̃ Ĩ)(T̃ ∗̃− λ̃ Ĩ)

=̃T̃ T̃ ∗̃− λ̃ T̃ ∗̃− λ̃ T̃ + |λ̃ |2 Ĩ

=̃T̃ ∗̃T̃ − λ̃ T̃ − λ̃ T̃ ∗̃+ |λ̃ |2 Ĩ

=̃(T̃ ∗̃− λ̃ Ĩ)(T̃ − λ̃ Ĩ)

=̃(T̃ − λ̃ Ĩ)∗̃(T̃ − λ̃ Ĩ).

Then, (T̃ − λ̃ Ĩ) is FS normal operator, and using Theorem
(3.1), we get that

˜‖(T̃ − λ̃ Ĩ)ṽ fG(e)
‖=̃

˜
‖(T̃ ∗̃− λ̃ Ĩ)ṽ fG(e)

‖. Now, let λ̃ ∈̃σ̃p(T̃ ),

then T̃ ṽ fG(e)
=̃λ̃ ṽ fG(e)

, ṽ fG(e)
˜6=θ̃ . That is to say that

(T̃ − λ̃ Ĩ)ṽ fG(e)
=̃0̃, ṽ fG(e)

˜6=θ̃ . Therefore,

(T̃ ∗̃ − λ̃ Ĩ)ṽ fG(e)
=̃0̃. Hence, λ̃ is an FS eigenvalue of T̃ ∗̃,

i.e., λ̃ ∈̃σ̃p(T̃
∗̃).

Theorem 3.4. Suppose that T̃ is an FS normal operator in
the FS Hilbert space H̃, then the FS eigenvectors
corresponding to different FS eigenvalues are FS
orthogonal.

Proof. Suppose that T̃ is an FS normal operator, and

T̃ ṽ fG(e)
=̃λ̃ ṽ fG(e)

and T̃ ũ fG(e)
=̃µ̃ ũ fG(e)

; λ̃ ˜6=µ̃ ,

ṽ fG(e)
, ũ fG(e)

˜6=θ̃ . Then, by using Theorem (3.3), we obtain

that T̃ ∗̃ũ fG(e)
=̃µ̃ ũ fG(e)

, and thus we have:

λ̃ ˜< ṽ fG(e)
, ũ fG(e)

>=̃ ˜
< λ̃ ṽ fG(e)

, ũ fG(e)
>

=̃ ˜< T̃ ṽ fG(e)
, ũ fG(e)

>

=̃ ˜< ṽ fG(e)
, T̃ ∗̃ũ fG(e)

>

=̃ ˜< ṽ fG(e)
, µ̃ ũ fG(e)

>

=̃µ̃ ˜< ṽ fG(e)
, ũ fG(e)

>.

Therefore, (λ̃ − µ̃) ˜< ṽ fG(e)
, ũ fG(e)

>=̃0̃. But λ̃ ˜6=µ̃ , i.e.,

λ̃ − µ̃ ˜6=0̃, then ˜< ṽ fG(e)
, ũ fG(e)

>=̃0̃. Thus, ṽ fG(e)
and ũ fG(e)

are FS orthogonal.

Theorem 3.5. Let H̃ be an FS Hilbert space and T̃ ∈̃B̃(H̃)
be FS normal operator. Then, σ̃r(T̃ )=̃φ .

Proof. Let λ̃ be any FS scalar such that λ̃ ∈̃σ̃Com(T̃ ).

Then, the FS range of λ̃ Ĩ − T̃ is not FS dense in H̃, i.e.,

R̃(λ̃ Ĩ − T̃ ) ˜6=H̃, and thus, by using (1) from Theorem

(2.2), we have R̃(λ̃ Ĩ − T̃)
⊥̃

˜6={θ̃}. But, from Theorem
(2.3), we obtain:

{θ̃} ˜6=R̃(λ̃ Ĩ − T̃ )
⊥̃

⊂̃R̃(λ̃ Ĩ − T̃ )⊥̃

=̃ ˜N (λ̃ Ĩ− T̃ ∗̃).
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Therefore, ˜N (λ̃ Ĩ − T̃ ∗̃) ˜6={θ̃}. Since T̃ is FS normal

operator, then (λ̃ Ĩ − T̃ ) is also FS normal operator, and

˜N (λ̃ Ĩ− T̃ )=̃ ˜N (λ̃ Ĩ− T̃ ∗̃) from Theorem (3.3). Then,
˜N (λ̃ Ĩ − T̃ ) ˜6={θ̃}, and so there is some non-zero FS

elements ṽ fG(e)
∈̃H̃ such that

(λ̃ Ĩ − T̃ )ṽ fG(e)
=̃0̃, that is to say that T̃ ṽ fG(e)

=̃λ̃ ṽ fG(e)
, i.e.,

λ̃ ∈̃σ̃p(T̃ ). Hence, for any FS scalar with R̃(λ̃ Ĩ − T̃) ˜6=H̃

(i.e., λ̃ ∈̃σ̃Com(T̃ )), we have λ̃ ∈̃σ̃p(T̃ ). Therefore, by
using Equation (2) from Definition (2.7) of FS residual
spectrum, we obtain that σ̃r(T̃ )=̃φ .

Corollary 3.1. Suppose that T̃ is an FS normal operator in
the FS Hilbert space H̃, then we have σ̃ (T̃ )=̃σ̃a(T̃ ).

Proof. Since T̃ is FS normal operator, then, by using the
above Theorem (3.5), we have σ̃r(T̃ )=̃φ . Now, recall
Equations (3) and (4) from Definition (2.8) of FS
continuous spectrum which are σ̃p(T̃ )∪̃σ̃c(T̃ )⊂̃σ̃a(T̃ )
and σ̃(T̃ )=̃σ̃p(T̃ )∪̃σ̃c(T̃ )∪̃σ̃r(T̃ ). Therefore,

σ̃(T̃ )⊂̃σ̃a(T̃ )∪̃σ̃r(T̃ )=̃σ̃a(T̃ ), that is to say that
σ̃(T̃ )⊂̃σ̃a(T̃ ). But, from Equation (1) in Definition (2.5),
we obtain that σ̃a(T̃ )⊂̃σ̃(T̃ ). Thus, σ̃(T̃ )=̃σ̃a(T̃ ).

Theorem 3.6. Suppose that T̃ is an FS hermitian operator
in the FS Hilbert space H̃, then σ̃(T̃ )=̃σ̃a(T̃ )⊂̃R(A).

Proof. First, since we know from Remark (3.1) that any
FS hermitian operator is an FS normal operator, then, by
using Corollary (3.1), we get that σ̃(T̃ )=̃σ̃a(T̃ ).
Now, we prove that σ̃(T̃ )⊂̃R(A). We have for any

λ̃ ∈̃C(A) with Imλ̃ ˜6=0̃ and for ṽ fG(e)
˜6=θ̃ , that

0̃<̃|λ̃ − λ̃ | ˜‖ṽ fG(e)
‖2=̃|λ̃ − λ̃ | ˜< ṽ fG(e)

, ṽ fG(e)
>

=̃|λ̃ ˜< ṽ fG(e)
, ṽ fG(e)

>− λ̃ ˜< ṽ fG(e)
, ṽ fG(e)

>|

=̃|λ̃ ˜< ṽ fG(e)
, ṽ fG(e)

>− ˜< T̃ ṽ fG(e)
, ṽ fG(e)

>

− λ̃ ˜< ṽ fG(e)
, ṽ fG(e)

>+ ˜< T̃ ṽ fG(e)
, ṽ fG(e)

>|

=̃| ˜
< (λ̃ − T̃ )ṽ fG(e)

, ṽ fG(e)
>−

˜
< (λ̃ − T̃ )ṽ fG(e)

, ṽ fG(e)
>|

=̃| ˜
< (λ̃ Ĩ− T̃ )ṽ fG(e)

, ṽ fG(e)
>− ˜

< ṽ fG(e)
,(λ̃ Ĩ − T̃ ∗̃)ṽ fG(e)

>|

=̃| ˜
< (λ̃ Ĩ− T̃ )ṽ fG(e)

, ṽ fG(e)
>− ˜

< ṽ fG(e)
,(λ̃ Ĩ − T̃ )ṽ fG(e)

>|

≤̃| ˜
< (λ̃ Ĩ− T̃ )ṽ fG(e)

, ṽ fG(e)
>|

+ |− ˜
< ṽ fG(e)

,(λ̃ Ĩ− T̃ )ṽ fG(e)
>|.

Then, by using FS Cauchy-Schwartz Inequality in
Theorem (2.1), we have:

0̃<̃|λ̃ − λ̃ | ˜‖ṽ fG(e)
‖2≤̃2̃

˜‖(λ̃ Ĩ − T̃)ṽ fG(e)
‖‖̃ṽ fG(e)

‖. (13)

If λ̃ ∈̃σ̃(T̃ )=̃σ̃a(T̃ ), thus, by using Definition (2.5) of FS
approximate point spectrum, we obtain that there exists
an FS sequence of FS elements {ṽn

fnG(en)
} in H̃ such that

˜‖ṽn
fnG(en)

‖=̃1̃ and
˜‖(λ̃ Ĩ − T̃)ṽn

fnG(en)
‖ → 0̃. Therefore, from

(13), we get:

0̃<̃|λ̃ − λ̃ |≤̃2̃
˜‖(λ̃ Ĩ− T̃ )ṽn

fnG(en)
‖→ 0̃.

Thus, |λ̃ − λ̃ |=̃0̃, i.e., λ̃ − λ̃=̃0̃. That is to say that λ̃ =̃λ̃ ,

i.e., λ̃ is FS real scalar. Hence, σ̃(T̃ )⊂̃R(A) and this
completes the proof.

4 Conclusions

The soft or fuzzy versions of some topics such as normed
space, metric space, or Hilbert space has been introduced
by many researchers. While, combining the fuzzy and the
soft concepts together in one concept gives more
generalized, extended and more accurate results. Some
mathematicians have studied a few of these generalized
extended definitions. In our paper, one of the special types
of the FS linear operators, namely the FS normal operator
is defined. Furthermore, one example which is in favor of
it and also another one that is against it, are investigated.
In the end, related results involving the FS spectral
theorems and the relations between the FS normal
operator and the FS hermitian operator are introduced.
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