The object of the present paper is to use the ideal properties to study ideal bitopological ordered space $(X, \tau_1, \tau_2, R, I)$ which is a generalization of the study of bitopological ordered spaces (X, τ_1, τ_2, R) and bitopological space (X, τ_1, τ_2). Every ideal bitopological ordered space $(X, \tau_1, \tau_2, R, I)$ can be regarded as a bitopological space (X, τ_1, τ_2) if R is the equality relation "Δ" and every bitopological space (X, τ_1, τ_2) can be regarded as a topological space (X, τ) if $\tau_1 = \tau_2 = \tau$. Also, every bitopological ordered space (X, τ_1, τ_2, R) can be regarded as a topological ordered space (X, τ, R) if $\tau_1 = \tau_2$. The relationship between these axioms and the axioms in [6, 12] have been obtained. Moreover, we show that the properties of being \mathcal{PT}_i-ordered spaces, $i = 0, 1, 2$ are preserved under a bijective, P-open and order (reverse) embedding mappings (see Theorems 3.2, 3.6). Furthermore, it is proved that the property of being \mathcal{PT}_i-ordered spaces, $i = 0, 1, 2$ is hereditary property (see Theorems 3.4, 3.7).
2 Preliminaries

In this section, we collect the relevant definitions and results from bitopological ordered spaces, lower separation axioms and mappings.

Definition 2.1.[10] Let (X, R) be a poset. A set $A \subseteq X$ is said to be

1. Increasing if for every $a \in A$ and $x \in X$ such that aRx, then $x \in A$.
2. Decreasing if for every $a \in A$ and $x \in X$ such that xRa, then $x \in A$.

Definition 2.2. A mapping $f : (X, R) \rightarrow (Y, R')$ is called

1. Increasing (decreasing) if $\forall x_1, x_2 \in X$ such that $x_1Rx_2 \Rightarrow f(x_1)R'f(x_2)$ [10].
2. Order embedding if $\forall x_1, x_2 \in X, x_1Rx_2 \Leftrightarrow f(x_1)R'f(x_2)$ [13].
3. Order reverse embedding if $\forall x_1, x_2 \in X, x_1Rx_2 \Leftrightarrow f(x_2)R'f(x_1)$ [11].

Definition 2.3. [4] Let X be a non-empty set. A class τ of subsets of X is called a topology on X iff τ satisfies the following axioms.

1. $X, \emptyset \in \tau$.
2. An arbitrary union of the members of τ is in τ.
3. The intersection of any two sets in τ is in τ.

The members of τ are then called τ-open sets, or simply open sets. The pair (X, τ) is called a topological space. A subset A of a topological space (X, τ) is called a closed set if its complement A' is an open set.

Definition 2.4.[7] A bitopological space (bts, for short) is a triple (X, τ_1, τ_2), where τ_1 and τ_2 are arbitrary topologies for a set X.

Definition 2.5.[8, 11] A function $f : (X_1, \tau_1, \tau_2) \rightarrow (X_2, \eta_1, \eta_2)$ is called

1. p.continuous (respectively p.open, p.closed) if $f : (X_1, \tau_1) \rightarrow (X_2, \eta_1), i = 1, 2$ are continuous (respectively open, closed).
2. p.homeomorphism if $f : (X_1, \tau_1) \rightarrow (X_2, \eta_1), i = 1, 2$ are homeomorphisms.

Definition 2.6.[12] A bitopological ordered space (bto-space, for short) has the form (X, τ_1, τ_2, R), where (X, R) is a poset and (X, τ_1, τ_2) is a bts.

Definition 2.7.[12] A bto-space (X, τ_1, τ_2, R) is said to be

1. Lower pairwise $T_l(PT_1$, for short)-ordered space if for every $a, b \in X$ such that aRb, there exists an increasing τ_1-nbd U of a such that $b \not\in U, i = 1$ or 2.
2. Upper pairwise $T_l(UPPT_1$, for short)-ordered space if for every $a, b \in X$ such that aRb, there exists a decreasing τ_2-nbd V of b such that $a \not\in V, i = 1$ or 2.

Definition 2.8.[12] A bto-space (X, τ_1, τ_2, R) is said to be PT_1-ordered space if it is LPT_1 or $UPPT_1$ ordered space.

Definition 2.9.[12] A bto-space (X, τ_1, τ_2, R) is said to be pairwise $T_1(PT_1$, for short), if it is LPT_1 and $UPPT_1$-ordered space.

Definition 2.10.[12] A bto-space (X, τ_1, τ_2, R) is said to be pairwise $T_2(PT_2$, for short), if for every $a, b \in X$ such that aRb, there exist an increasing τ_1-nbd U of a and a decreasing τ_2-nbd V of b such that $U \cap V = \emptyset$.

Definition 2.11.[5] A non-empty collection \mathcal{I} of subsets of a set X is called an ideal on X, if it satisfies the following conditions

1. $\emptyset \in \mathcal{I}$ and $B \subseteq A \Rightarrow B \in \mathcal{I}$.
2. \mathcal{I} is an ideal on X.

Definition 2.12.[2] Let (X, R) be a poset and $\mathcal{I} \subseteq P(X)$ be an ideal on X. Then, a set $A \subseteq X$ is called:

1. \mathcal{I}-increasing set iff $aR \cap A' \in \mathcal{I} \forall a \in A$, where $aR = \{b : (a, b) \in R\}$.
2. \mathcal{I}-decreasing set iff $Ra \cap A' \in \mathcal{I} \forall a \in A$, where $Ra = \{b : (b, a) \in R\}$.

Theorem 2.1.[2] Let $f : (X, R, \mathcal{I}) \rightarrow (Y, R', f(\mathcal{I}))$ be a bijective function and order embedding. Then for every \mathcal{I}-increasing (decreasing) subset A of X, $f(A)$ is $f(\mathcal{I})$-increasing (decreasing) subset of Y.

Corollary 2.1.[2] Let $f : (X, R, \mathcal{I}) \rightarrow (Y, R', f(\mathcal{I}))$ be a bijective function and order embedding. If $B \subseteq Y$ is $f(\mathcal{I})$-increasing (decreasing), then $f^{-1}(B)$ is \mathcal{I}-increasing (decreasing) subset of X.

Theorem 2.2.[2] Let $f : (X, R, \mathcal{I}) \rightarrow (Y, R', f(\mathcal{I}))$ be a bijective function and order reverse embedding. Then for every \mathcal{I}-increasing (decreasing) subset A of X, $f(\mathcal{I})$ is $f^{-1}(\mathcal{I})$-decreasing (increasing) subset of Y.

Corollary 2.2.[2] Let $f : (X, R, \mathcal{I}) \rightarrow (Y, R', f(\mathcal{I}))$ be a bijective function and order reverse embedding. If $B \subseteq Y$ is $f(\mathcal{I})$-increasing (decreasing), then $f^{-1}(B)$ is \mathcal{I}-decreasing (increasing) subset of X.

3 \mathcal{I}-P-Separation axioms

The aim of this section is to introduce new separation axioms $\mathcal{I}PT_i$-ordered spaces, $i = 0, 1, 2$ on the space $(X, \tau_1, \tau_2, R, \mathcal{I})$ which based on the notion of \mathcal{I}-increasing (decreasing) sets [2]. In addition, the relationship between these axioms and the axioms in [12] are obtained. Moreover, it is proved that the property of being $\mathcal{I}PT_i$-ordered spaces, $i = 0, 1, 2$ is invariant under a bijective, P-open and order embedding mapping (order reverse embedding mapping). Furthermore, it is proved that the property of being $\mathcal{I}PT_i$-ordered spaces, $i = 0, 1, 2$ is hereditary property.

Definition 3.1. A space $(X, \tau_1, \tau_2, R, \mathcal{I})$ is called an ideal bitopological ordered space if (X, τ_1, τ_2, R) is a bitopological ordered space and $\mathcal{I} \subseteq P(X)$ is an ideal on X.

Remark 3.1. Every ideal bitopological ordered space
(X, τ₁, τ₂, R, ℱ) can be regarded as a bitopological ordered space (X, τ₁, τ₂, R) if ℱ = {φ} and can be regarded as bitopological space (X, τ₁, τ₂) if ℱ = {φ}, R is the equality relation “Δ”.

Definition 3.2. An ideal bitopological ordered space (X, τ₁, τ₂, R, ℱ) is said to be

1. ℱ lower PT₁(ℱPT₁), for short)-ordered space if for every a, b ∈ X such that aRb, there exists an ℱ-increasing τ₁-open set U such that a ∈ U and b ⊈ U, i = 1 or 2.

2. ℱ upper PT₁(ℱPT₁) for short)-ordered space if for every a, b ∈ X such that aRb, there exists an ℱ-decreasing τ₁-open set V such that b ∈ V and a ⊈ V, i = 1 or 2.

Definition 3.3. (X, τ₁, τ₂, R, ℱ) is said to be ℱPT₀-ordered space if it is ℱLPT₁ or ℱUPT₁ ordered space.

Example 3.1. Let X = {1, 2, 3, 4}, R = Δ ∪ {(1, 4), (1, 3), (2, 3), (3, 1)}, ℱ = {φ, {1}, {3}, {1, 3}}, τ₁ = {X, φ, {1}, {1, 2}, {1, 4}, {1, 2, 4}}, τ₂ = {X, φ, {2, 3}, {1, 2, 3}, {2, 3, 4}}, then, (X, τ₁, τ₂, R, ℱ) is ℱUPT₀-ordered space and consequently it is ℱPT₀-ordered space.

Example 3.2. In Example 3, let ℱ = {φ, {3}, {4}}, {3, 4}, τ₁ = {X, φ, {3}, {1, 2}, {1, 2, 3}, {1, 2, 4}}, τ₂ = {X, φ, {3, 4}, {1, 3, 4}, {2, 3, 4}}, then, (X, τ₁, τ₂, R, ℱ) is ℱLPT₀-ordered space and consequently it is ℱPT₀-ordered space.

The following proposition gives the relationship between Definition 3.3 and Definition 2.8 [12].

Proposition 3.1. Let (X, τ₁, τ₂, R, ℱ) be an ideal bitopological ordered space. Then, PT₀-ordered spaces ⇒ ℱPT₀-ordered spaces.

Proof. The proof follows directly from the definitions of PT₁-ordered spaces and ℱPT₁-ordered spaces.

Example 3.1 shows that (X, τ₁, τ₂, R, ℱ) is ℱPT₀-ordered space, but not PT₁-ordered space since, it is not UT₁-ordered space (as, 1R2, all decreasing τ₁-open sets which contain 2 also containing 1). Also, 3R2, all increasing τ₁-open sets which contain 3 also containing 2).

Definition 3.4. An ideal bitopological ordered space (X, τ₁, τ₂, R, ℱ) is said to be ℱPT₁-ordered space if it is ℱLPT₁ and ℱUPT₁-ordered space.

Example 3.3. Let τ₁ = {X, φ, {3}, {2, 3}, {3, 4}, {2, 3, 4}}, τ₂ = {X, φ, {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}} in Example 3.1. Then, (X, τ₁, τ₂, R, ℱ) is ℱPT₁-ordered space.

Let Y ⊆ X and R be a relation on X. Then, R_Y := R ∩ (Y × Y) is a relation on Y and is called the relation induced by R on Y. If a relation has any properties of reflexivity, transitivity, symmetry and anti-symmetry, then the properties are inherited by induced relations [9].

If (X, τ, ℱ) is an ideal topological space and A is a subset of X, then (A, τ_A, ℱ_A), where τ_A is the relative
topology on A and $\mathcal{J}_A = \{ A \cap J : J \in \mathcal{J} \}$, is an ideal topological subspace [3].

Theorem 3.3. Let (X, R, \mathcal{J}) be an ideal ordered space. If $A \subseteq X, (A, R_A, \mathcal{J}_A)$ is an ideal ordered subspace of (X, R, \mathcal{J}) and B is an \mathcal{I}-increasing (decreasing) set, then $B \cap A$ is an \mathcal{J}_A-increasing (decreasing) set.

Proof.
The proof for both parts are similar. So, we only present the proof for the part not in the parentheses. We want to prove $B \cap A$ is an \mathcal{J}_A-increasing set (i.e. if the complement of $B \cap A$ with respect to A is $A \setminus (B \cap A)$, then $xR_A \cap [A \setminus (B \cap A)] \in \mathcal{J}_A \forall x \in B \cap A$).

So,

$$
\begin{align*}
\text{xR}_A \cap [A \setminus (B \cap A)] &= xR_A \cap [(X \setminus B) \cap A] \\
&= (xR \cap A) \cap [B \cap A] \\
&= xR \cap B \cap A.
\end{align*}
$$

Since B is an \mathcal{J}-increasing set, so $xR \cap B \in \mathcal{J} \forall x \in B$. Consequently $xR \cap B \cap A \in \mathcal{J}_A \forall x \in B \cap A$, which follows that $B \cap A$ is an \mathcal{J}_A-increasing set.

The following theorem shows that the property of being \mathcal{J}_T_1-ordered space, $i = 0, 1$ is a hereditary property.

Theorem 3.4. Let $(X, \tau_1, \tau_2, R, \mathcal{J})$ be an \mathcal{J}_T_1-ordered space. Then every subspace of \mathcal{J}_T_1-ordered space is also \mathcal{J}_A and \mathcal{J}_T_1-ordered space. ($i = 1, 0$).

Proof.
We give a proof in case ($i = 0$ and the case $i = 1$ is similar). Let $(X, \tau_1, \tau_2, R, \mathcal{J})$ be an \mathcal{J}_T_1-ordered space, $(A, \tau_1A, \tau_2A, R_A, \mathcal{J}_A)$ be any subspace of $(X, \tau_1, \tau_2, R, \mathcal{J})$ and $a, b \in A$ such that aRb, it follows that $a \in \mathcal{J}$. Since $(X, \tau_1, \tau_2, R, \mathcal{J})$ is an \mathcal{J}_T_0-ordered space, there exists an \mathcal{J}-increasing τ_1-open set U such that $a \in U$ and $b \notin U$ or there exists an \mathcal{J}-decreasing τ_1-open set V such that $b \in V$ and $a \notin V$, $i = 1$ or 2. By Theorem 3.3 there exists (\mathcal{J}_A)-increasing τ_1-open set G such that $a = A \cap G$ and $a \not\in A \cap G$ or there exists (\mathcal{J}_A)-decreasing τ_1-open set H such that $b \in H = A \cap G$ and $a \notin H = A \cap G$). Hence, $(A, \tau_1A, \tau_2A, R_A, \mathcal{J}_A)$ is an \mathcal{J}_T_0-ordered space.

Definition 3.5. An ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{J})$ is said to be an \mathcal{J}_T_2-ordered space iff for all $a, b \in X$ such that aBb, there exists an \mathcal{J}-increasing τ_1-open set O_a and an \mathcal{J}-decreasing τ_2-open set O_b such that $O_a \cap O_b \subseteq \mathcal{J}$.

Example 3.4. In Example 3.1 take $\mathcal{J} = \{ \phi, \{1\}, \{2\}, \{4\}, \{1, 2\}, \{1, 4\}, \{2, 4\}, \{1, 2, 4\}\} \subseteq \mathcal{J} \subseteq \mathcal{P}(X)$, $\tau_1 = \{X, \phi, \{3\}, \{4\}, \{2, 4\}, \{3, 4\}, \{1, 3, 4\}, \{2, 3, 4\}\}$, $\tau_2 = \{X, \phi, \{1\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}\}$. It is clear that $(X, \tau_1, \tau_2, R, \mathcal{J})$ is an \mathcal{J}_T_2-ordered space.

The following theorem studies the relationship between Definitions 3.4, 3.5 and Definition 2.10 [12].

Theorem 3.5. Let $(X, \tau_1, \tau_2, R, \mathcal{J})$ be an ideal bitopological ordered space. Then, \mathcal{J}_T_2-ordered spaces $\Rightarrow \mathcal{J}_T_1$-ordered spaces $\Rightarrow \mathcal{J}_T_0$-ordered space.

Proof.
The proof follows directly from the definitions of \mathcal{J}_T_2-ordered spaces, \mathcal{J}_T_1-ordered space and \mathcal{J}_T_0-ordered spaces.

Example 3.4 shows that $(X, \tau_1, \tau_2, R, \mathcal{J})$ is an \mathcal{J}_T_1-ordered space, but not \mathcal{J}_T_2-ordered space as, \mathcal{J}_T_2 and all increasing τ_2-open sets which contain 1 are the sets $X, \{1, 2, 3, 4\}$, intersect the only decreasing τ_1-open set X which contains 2.

Example 3.3 shows that $(X, \tau_1, \tau_2, R, \mathcal{J})$ is an \mathcal{J}_T_1-ordered space, but not \mathcal{J}_T_2-ordered space as, \mathcal{J}_T_2 and all increasing τ_2-open sets which contains 1 and not contain 2 are the sets $\{1, 4\}, \{1, 3, 4\}$ and all \mathcal{J}-decreasing τ_1-open set which contains 2 are the sets $X, \{2, 3, 4\}$, while $\{1, 4\} \cap \{2, 3, 4\} = \emptyset \notin \mathcal{J}$. $\{1, 3, 4\} \cap \{2, 3, 4\} = \{3, 4\} \notin \mathcal{J}$, $\{1, 4\} \cap X = \{1, 4\} \notin \mathcal{J}$, then $\{1, 3, 4\} \cap X = \{1, 3, 4\} \notin \mathcal{J}$.

On account of Proposition 3.1, Theorems 3.1, 3.5 and [6,12], we have the following corollary.

Corollary 3.1. For an ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{J})$, we have the following implications:

- \mathcal{J}_T_2-ordered space $\Rightarrow \mathcal{J}_T_1$-ordered space $\Rightarrow \mathcal{J}_T_0$-ordered space
- \mathcal{J}_T_2-ordered space $\Rightarrow \mathcal{J}_T_1$-ordered space $\Rightarrow \mathcal{J}_T_0$-ordered space
- \mathcal{J}_T_2-ordered space $\Rightarrow \mathcal{J}_T_1$-ordered space $\Rightarrow \mathcal{J}_T_0$-ordered space

The following theorem shows that the property of being \mathcal{J}_T_2-ordered space is preserved by a bijective, P-open and order (reverse) embedding mapping.

Theorem 3.6. Let $(X, \tau, \tau^\prime, R, \mathcal{J})$ is a \mathcal{J}_T_2-ordered space, $f : (X, \tau_1, \tau_2, R, \mathcal{J}) \rightarrow (Y, \eta_1, \eta_2, R^\prime, f(\mathcal{J}))$ is a bijective, P-open and order (reverse) embedding mapping. Then, $(Y, \eta_1, \eta_2, R^\prime, f(\mathcal{J}))$ is $f(\mathcal{J})$-PT_2-ordered space.

Proof.
We give a proof in the case of order embedding mapping and the case of order reverse embedding mapping is similar.

Let $y_1, y_2 \in Y$ be such that $y_1 \leq y_2$. Then, there exist $x_1, x_2 \in X, f(x_1) = y_1, f(x_2) = y_2$ and $x_1 \leq x_2$. As $(X, \tau_1, \tau_2, R, \mathcal{J})$ is a \mathcal{J}_T_2-ordered space, then there exist an \mathcal{J}-increasing τ_1-open set U contains x_1 and an \mathcal{J}-decreasing τ_2-open set V contains x_2 such that $U \cap V \in \mathcal{J}$. Since f is P-open and by Theorem 2.1, $f(U)$ is an \mathcal{J}-increasing η_1-open set contains $y_1 = f(x_1)$ and $f(V)$ is an \mathcal{J}-decreasing η_2-open set contains $y_2 = f(x_2)$. So, $f(U) \cap f(V) = f(U \cap V) \in f(\mathcal{J})$. Hence, $(Y, \eta_1, \eta_2, R^\prime, f(\mathcal{J}))$ is $f(\mathcal{J})$-PT_2-ordered space.
The following theorem shows that the property of being $\mathcal{S}PT_2$-ordered space is a hereditary property.

Theorem 3.7. Let $(X, \tau_1, \tau_2, R, \mathcal{S})$ be $\mathcal{S}PT_2$-ordered space. Then, every subspace of $\mathcal{S}PT_2$-ordered space is also $\mathcal{S}PT_2$-ordered space.

Proof.
Let $(X, \tau_1, \tau_2, R, \mathcal{S})$ be a $\mathcal{S}PT_2$-ordered space, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathcal{S}_A)$ be any subspace of $(X, \tau_1, \tau_2, R, \mathcal{S})$ and $a, b \in A$ such that $a \neq b$. Since $(X, \tau_1, \tau_2, R, \mathcal{S})$ is $\mathcal{S}PT_2$-ordered, then there exists an \mathcal{S}-increasing τ_1-open set O_a and an \mathcal{S}-decreasing τ_2-open set O_b such that $O_a \cap O_b \in \mathcal{S}$. By Theorem 3.3 there exists an \mathcal{S}_A-increasing τ_{1A}-open set G such that $a \in G = A \cap O_a$ and an \mathcal{S}_A-decreasing τ_{2A}-open set H such that $b \in H = A \cap O_b$. Hence, $(A, \tau_{1A}, \tau_{2A}, R_A, \mathcal{S}_A)$ is $\mathcal{S}_A PT_2$-ordered.

4 Conclusion

In this paper, we use the notion of \mathcal{S}-increasing (decreasing) sets [2], which based on the notion of ideal \mathcal{S}, to generate new separation axioms $\mathcal{S}Pr_i, i = 0, 1, 2$, on ideal bitopological ordered space $(X, \tau_1, \tau_2, R, \mathcal{S})$. These types of separation axioms are a generalization of the previous one [6, 12]. Some properties of these separation have been obtained. In the future, we study the separation axioms $\mathcal{S}Pr_i, i = 3, 4, 5$ and $\mathcal{S}Pr_j$-ordered spaces, $j = 0, 1, 2, 3, 4$.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

References

