

## Journal of Statistics Applications & Probability Letters An International Journal

http://dx.doi.org/10.18576/jsapl/110303

# A Simulation Study on Some Confidence Intervals for Estimating the Population Mean Under Asymmetric and Symmetric Distribution Conditions

H M Nayem\* and B. M. Golam Kibria

Department of Mathematics and Statistics, Florida International University, Miami, FL 33199, USA

Received: 22 May 2024, Revised: 2 Jun. 2024, Accepted: 21 Jul. 2024

Published online: 1 Sep. 2024

Abstract: This study presents a comprehensive review and comparison of several methods for estimating the population mean using confidence intervals. The analysis considers both symmetric and asymmetric distributions while accounting for outliers. It evaluates 23 different estimators within classical and modified-t approaches by conducting a simulation study, covering symmetric and skewed distributions. The simulation results reveal that the proposed Q1-t, Q3-t, Q1Q3-t, Wizard-t, and Wizard-t from the median are particularly robust for moderate sample sizes and asymmetric populations. Conversely, Student-t emerges as the top performer for small sample sizes for symmetric distribution. Additionally, Chen-t, Median-t, T1, AADM-t, and Median-t estimators show promise for skewed distributions. Findings indicate that the ordinary t estimator performs optimally for symmetric distributions and small sample sizes, exhibiting a superior coverage rate and minimum width compared to other estimators. For skewed distributions, the Median-t, AADM-t, Median T1, Chen-t, and YY-t statistics are proposed as effective options for mean estimation. Notably, for moderate sample sizes (>50), the newly proposed Wizard-t and Wizard-t from median methods consistently demonstrate higher coverage rates and smaller confidence interval widths, surpassing other test statistics. Real-life data analysis further supports these findings. This study contributes valuable insights for practitioners by offering a comprehensive overview of available estimators for estimating the population mean across various distributional scenarios.

Keywords: Coverage probability, Simulation study, Skewed distributions, Symmetric distributions, Wizart-t

## 1 Introduction

The foundation of many sophisticated statistical theories is the normality assumption. Neyman's estimate theory for building the confidence interval (CI) is one of these theories [1]. But in reality, many data are skewed instead of being bell-shaped, meaning the distribution is not symmetrical about the mean. Positively skewed data, commonly observed across many fields such as psychology [2], health science [3–5], environmental science [6], and engineering, are prevalent. Real-life data often conform to right-skewed distributions, particularly noticeable when the sample size is small [7–9]. An example of a left-skewed distribution in real-life scenarios is the distribution of household income in many impoverished and developing countries. Other instances include student scores, where the majority score below average, waiting times at doctor's offices, characterized by mostly short waits but occasional long ones, commute times in congested cities, and the sizes of natural disasters. A CI functions as an interval estimator specifically created to encapsulate the true parameter value across multiple samples [10]. It provides a range of values to indicate the precision of parameter estimates. When constructing confidence intervals for the population mean  $(\mu)$ , normal theory is often relied upon in practice, but this approach becomes problematic when dealing with skewed or non-normal populations [8].

<sup>\*</sup> Corresponding author e-mail: hnaye001@fiu.edu



Consequently, there's a necessity to develop confidence intervals for a population mean  $(\mu)$  that aren't constrained by normality assumption. A study emphasized the need for robust estimators capable of handling deviations from normality, considering its common occurrence in applied research [11]. Recognizing the limitations, Johnson modified the student-t CI in 1978 for asymmetric populations [12], which has been further explored by multiple researchers [2,3,8,10,12–16]. In such instances, various methods like nonparametric, transformation-based, Bayesian, or bootstrap CIs can be employed.

In both left-skewed and right-skewed distributions, skewness can offer valuable insights into rare events, extreme behaviors, or measurement errors. However, it is crucial to identify and manage outliers appropriately during data analysis to prevent undue influence on statistical outcomes or conclusions. Additionally, CIs provide clinically relevant information beyond p-values and conventional significance testing. Therefore, in this study, 23 existing statistics for estimating population mean via CI methods are reviewed, and five alternative CIs are proposed for asymmetric populations with moderately large samples, building upon the entstudent-t. The Bootstrap method was excluded due to its inferior performance compared to transformed T's [18] and its complexity in execution. The evaluated CI methods include Student-t, Johnson-t, Median-t, Mad-t, AADM-t, and the proposed Wizard-t, Wizard-t from median, T1, T2, T3, Median T1, Median T2, Median T3, Mad T1, Mad T2, Mad T3, Chen-t, Yanagihara and Yuan-t, DMSD-t, and Downton-t. Evaluation criteria include coverage probability, which indicates the likelihood of encompassing the actual parameter, and CI width, where a smaller width signifies a better interval.

The paper is organized as follows: Section 2 contains the existing and proposed interval estimators, as well as the methodology of the simulation study. Section 3 discusses the results of the simulation study to compare the performance of the interval estimators and also includes two real-life examples. The acknowledgments can be found in section 4, with the references presented in section 5.

## 2 Methodology

Let us have independent and identically distributed (iid) random variables  $X_1, X_2, ... X_n$  come from a skewed and symmetric distribution with unknown mean  $\mu$  and standard deviation  $\sigma$ . Under the simulation study, we calculated  $100(1-\alpha)\%$  CI for estimating the mean  $\mu$ . We used the R programming language for the analysis. Some existing interval estimators will be reviewed in this section along with some proposed ones.

## 2.1. Classical parametric approach

2.1.1 Student-t: The student-t CI is used when sample sizes are below 30 and/or when the standard deviation is unknown [17]. The  $100(1-\alpha)\%$  CI for estimating the population mean,  $\mu$  is

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$$
,

where  $\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ , the sample mean, and  $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$ , the sample standard deviation . And,  $t_{\frac{\alpha}{2}, n-1}$  is the upper  $(\frac{\alpha}{2})$ th percentile of the student-t distribution with (n-1) degrees of freedom.

2.1.2 Johnson-t: Johnson (1978) gave the following  $100(1-\alpha)\%$  CI for estimating  $\mu$  [12]

$$\overline{x} + \left(\frac{\widehat{\mu}_3}{6s^2n}\right) \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}}$$

where  $\widehat{\mu}_3 = \frac{n\sum_{i=1}^n (x_i - \overline{x})^3}{(n-1)(n-2)}$  is the estimator of the third central moment.

2.1.3 Median-t: Median-t is based on the standard deviation calculated using the median instead of the mean [8]. The  $100(1-\alpha)\%$  CI for  $\mu$  is

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{\widetilde{s}}{\sqrt{n}}$$
,

where the sample standard deviation,  $\widetilde{s} = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \widetilde{x})^2}{n-1}}$  where  $\widetilde{x}$  is the sample median.



2.1.4 Mad-t: Mad-t proposed by Shi and Kibria in 2007 which is on the sample mean absolute deviation (MAD) [8]. The  $100(1-\alpha)\%$  CI for  $\mu$  is

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{\widehat{s}}{\sqrt{n}}$$

where the sample MAD,  $\hat{s} = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$ .

2.1.5 AADT-t: Abu-Shawiesh et al. modified the student-t for asymmetric distribution [15]. The  $100(1-\alpha)\%$  CI for  $\mu$  is

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{\text{AADM}}{\sqrt{n}}$$
,

where  $AADM = \frac{\sqrt{\pi/2}}{n} \sum_{i=1}^{n} |x_i - Median|$  is the average absolute deviation from the sample median [19].

2.1.6 Chen-t: Chen used the Edgeworth expansion to modify the central limit theory approach and proposed the following CI for the population mean  $(\mu)$  [2]

$$\overline{x} \pm \left[ t_{\frac{\alpha}{2},n-1} + \frac{\widehat{\gamma}\left(1 + 2t_{\frac{\alpha}{2},n-1}^2\right)}{6\sqrt{n}} + \frac{\widehat{\gamma}^2\left(t_{\frac{\alpha}{2},n-1} + 2t_{\frac{\alpha}{2},n-1}^2\right)}{9n} \right] \frac{s}{\sqrt{n}} ,$$

where  $\hat{\gamma} = \frac{\hat{\mu}_3}{S^3}$  is the estimate of the population coefficient of skewness.

2.1.7 Yanagihara and Yuan-t (YY-t): Yanagihara and Yuan proposed the following CI for the population mean to reduce the effects of mean bias and population skewness [20]

$$\overline{x} + \left(\frac{S \,\widehat{k}_3}{(4n)(2+\frac{15}{n})}\right) \pm t_{\frac{\alpha}{2}, n-1} \frac{s}{\sqrt{n}},$$

where

$$\widehat{k}_{3} = \frac{\sum_{i=1}^{n} \left( \frac{(x_{i} - \overline{x})^{3}}{n} \right)}{\left(\sum_{i=1}^{n} \left( \frac{(x_{i} - \overline{x})^{3}}{n} \right) \right)^{\frac{3}{2}}}$$

2.1.8 DMSD<sub>DM</sub> – t: It is the modification of Student-t based on Decile Mean (DM). The 100(1- $\alpha$ )% CI for the population mean  $\mu$  is

$$DM \,\pm\, \mathfrak{t}_{rac{lpha}{2},\ n-1} rac{\mathrm{SD}_{\mathrm{DM}}}{\sqrt{n}} \,,$$

Decile mean standard deviation,  $SD_{DM} = \sqrt{\frac{1}{8}} \sum_{i=1}^{9} (D_i - D_m)^2$  which is an alternative to the sample standard deviation (s) to measure of dispersion.

2.1.9 Downton-t: Downtown-t ( $\sigma^*$ ) based on the Gini's mean difference (G), as an estimator of standard deviation  $\sigma$ . Sample median, MD is an estimator of  $\mu$ . The 100(1- $\alpha$ )% CI for  $\mu$  is

$$MD \pm 1.253 t_{\frac{\alpha}{2}, n-1} \frac{\sigma^*}{\sqrt{n}}$$

where  $\sigma^* = \frac{1}{2}\sqrt{\pi}$  G and Gini Mean Difference,  $G = \frac{2}{n(n-1)}\sum_{k=1}^n\sum_{l=k+1}^n|X_k-X_l|$ .

# 2.2 Transformed Approach



2.2.1  $T_1$ &  $T_2$  Transformation: Hall introduced two transformations from Edgeworth expansion which corrects both bias and skewness [21]. By doing some implications, Zhou and Dinh modified these transformations by their inverses [9].

$$T_1^{-1}(t) = \left(\frac{3}{\widehat{\gamma}}\right) \left[1 + \widehat{\gamma} \left(t - (\widehat{\gamma}/6n)\right)(1/3)\right] - \left(\frac{3}{\widehat{\gamma}}\right)$$

$$T_2^{-1}(t) = \left(\frac{3\sqrt{n}}{2\widehat{\gamma}}\right)\log\left[\frac{2\widehat{\gamma}}{3\sqrt{n}}\left(t - \frac{\widehat{\gamma}}{6n}\right) + 1\right]$$

where  $\hat{\gamma}$ , the population skewness,  $\hat{\gamma} = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^3}{s^3}$ . The  $100(1 - \alpha)\%$  confidence interval (CI) for  $\mu$  is given by

Lower Limit = 
$$\overline{x} - T_i^{-1} \left( \frac{\varnothing \left( 1 - \frac{\alpha}{2} \right)}{\sqrt{n}} \right) s$$

Upper Limit = 
$$\overline{x} + T_i^{-1} \left( \frac{\varnothing \left( \frac{\varnothing}{2} \right)}{\sqrt{n}} \right) s$$

where  $\emptyset$  is the quantile of the standard normal.

2.2.2 T<sub>3</sub> and Modified T: Zhou and Dinh also proposed a new transformation, called the T<sub>3</sub> transformation [9].

$$T_3^{-1}(t) = \left[1 + 3\left(t - \frac{\hat{\gamma}}{6n}\right)\right]^{1/3} - 1$$

The  $100(1-\alpha)\%$  confidence interval (CI) for  $\mu$  is given by the following formulas

Lower Limit = 
$$\left(\overline{x} - T_i^{-1} \left(\frac{\varnothing \left(1 - \frac{\alpha}{2}\right)}{\sqrt{n}}\right)\right) s$$

Upper Limit = 
$$\left(\overline{x} + T_i^{-1} \left(\frac{\varnothing\left(\frac{\alpha}{2}\right)}{\sqrt{n}}\right)\right) s$$

where  $\emptyset$  is the quantile of the standard normal.

Almonte and Kibria modified the CI of  $T_1$ ,  $T_2$ , and  $T_3$  as Median  $T_i$  and Mad  $T_i$  (i=1,2,3) so that the sample standard deviation is calculated from the sample median instead of the mean as in the Median-t and the sample mean absolute deviation as in the Mad-t [18].

#### 2.3 Proposed Approach

2.3.1 Wizard-t: For asymmetric population, Wizard-t is the modification of student-t. The following is a  $100(1-\alpha)\%$  CI for estimating  $\mu$ 

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s^*}{\sqrt{n}}$$
,

where  $s^*$  is the sample standard deviation from the wizard mean,  $s^* = \sqrt{\frac{\sum_{i=1}^n (x_i - \widetilde{x})^2}{n-1}}$  where  $\widetilde{x}$  is the sample wizard mean. To calculate the wizard mean, 20% of observations are chopped. For a symmetric distribution, 10% from each tail. For asymmetric distribution, 20% from the right or left tail is based on the data structure.

2.3.2 Wizard-t from Median: For asymmetric population, Wizard-t from the median is also a modified version of student-t. The following is a  $100(1-\alpha)\%$  CI for estimating  $\mu$ 

$$\overline{x} \pm t \frac{\alpha}{2}, \ n-1 \frac{s^*}{\sqrt{n}}$$



where  $s^*$  is the sample standard deviation from the wizard median,  $s^* = \sqrt{\frac{\sum_{i=1}^n (x_i - \widetilde{x}^*)^2}{n-1}}$  and  $\widetilde{x}^*$  is the sample wizard median. To calculate the wizard median, 20% of the observations are removed based on the data structure.

2.3.3 1<sup>st</sup>-quartile t (Q1-t): The following is a 100(1- $\alpha$ )% CI for estimating  $\mu$ 

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s^*}{\sqrt{n}}$$
,

where  $s^* = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \widehat{x}^{**})^2}{n-1}}$  is the sample standard deviation from the first quartile (Q1 and  $\widehat{x}^{**}$  is the first quartile (Q1) from the sample.

2.3.4  $3^{rd}$  - quartile t(Q3-t): The following is a  $100(1-\alpha)\%$  CI for estimating  $\mu$ 

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s^*}{\sqrt{n}}$$
,

where  $s^* = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \widehat{x}^{***})^2}{n-1}}$  is the sample standard deviation from the third quartile (Q3) and  $\widehat{x}^{***}$  is the third quartile (Q3) from the sample.

2.3.5 Q1Q3-t: The following is a  $100(1-\alpha)\%$  CI for estimating  $\mu$ 

$$\overline{x} \pm t_{\frac{\alpha}{2}, n-1} \frac{s^*}{\sqrt{n}}$$
,

where  $s^* = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \widehat{x}^{****})^2}{n-1}}$  is the sample standard deviation from the average of the first and third quartile and  $\widehat{x}^{****}$  is the average of the first and third quartile from the sample.

## 2.4. Simulation Study

The paper aims to explore statistical methods for estimating the population mean using the CI for symmetric and asymmetric distributions with varying skewness. It also introduces five new estimators for asymmetric populations. As a theoretical comparison is challenging, a simulation study is conducted to compare the statistics based on sample sizes, coverage probability, and mean width of confidence intervals for estimating the mean.

## 2.4.1. Simulation Technique

For simulation purposes, we consider n = 10, 20, 30, 50, 70, and 100 random samples generated from the Normal, Beta, Gamma, and Log-normal distributions with various various parametric conditions (Table 2.1). The steps of the simulation study:

I. Selecting the sample size (n), the number of simulations, M = 2500, and the level of significance,  $\alpha = 0.05$ .

II.Generating random samples from the below-mentioned distributions (Table 2.1).

III.Constructing the CIs for all the estimators at  $100(1-\alpha)\%$  confidence level.

 $IV. if the \ CI \ includes \ the \ population \ mean \ \mu, then \ for \ those \ that \ contain \ the \ mean, \ record \ the \ width \ and \ simulated \ coverage \ probability.$ 

V.Repeat (I – IV) M times. Simulation results (based on different considered distributions) are presented in Tables 3.1 to 3.4 for selected n.

Table 2.1: Probability distributions, their parameters and skewness

| Distribution             | Parameter                   | Skewness |
|--------------------------|-----------------------------|----------|
| Normal $(\mu, \sigma^2)$ | $\mu = 10, \sigma^2 = 7$    | 0        |
|                          | $\alpha = 4, \ \beta = 1$   | 1        |
| Gamma $(\alpha, \beta)$  | $lpha=1,\ eta=1$            | 2        |
|                          | $\alpha = 0.5, \ \beta = 1$ | 4        |



|                             | $\alpha = 10, \ \beta = 0.3$ | -3  |
|-----------------------------|------------------------------|-----|
| Beta $(\alpha, \beta)$      | $\alpha = 6, \ \beta = 0.6$  | -2  |
| ( · · · /                   | $\alpha = 6, \ \beta = 0.1$  | -5  |
|                             | $\mu = 1, \sigma^2 = 0.8$    | 3.6 |
| Lognormal $(\mu, \sigma^2)$ | $\mu = 1, \sigma^2 = 0.6$    | 2.2 |
| ,                           | $\mu = 1, \sigma^2 = 1$      | 6   |

## 2.5. Probability Distributions for Simulation

To study the effect of skewness, we consider two cases for simulation observations: symmetric and asymmetric distributions.

2.5.1. Symmetric distribution: The probability density function (pdf) of a normal random variable X with a mean  $\mu$  and standard deviation  $\sigma$ ,  $N(\mu, \sigma^2)$ , is given as follows:

$$f(x; \mu, \sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}; -\infty < x < \infty, -\infty < \mu < \infty, \sigma > 0$$

- 2.5.2. Asymmetric distributions: The skewness of a probability distribution measures the degree to which the distribution deviates from being symmetrical. A distribution with a longer tail on the left side is considered negatively skewed, while one with a longer tail on the right side is positively skewed.
- 2.5.2.1. Gamma distribution: The gamma distribution, Gamma( $\alpha, \beta$ ), where shape parameter  $\alpha = k$  and an inverse scale parameter  $\beta = 1/\theta$ , called a rate parameter. The corresponding probability density function in the shape-rate parameterization is

$$f(x; \alpha, \beta) = \frac{x^{\alpha - 1} e^{-\beta x} \beta^{\alpha}}{\Gamma(\alpha)}$$
 for  $x > 0$  and  $\alpha, \beta > 0$ 

where  $\Gamma(\alpha)$  is the gamma function and for all positive integers,  $\Gamma(\alpha)=(\alpha-1)!$ , mean,  $\mu=\frac{\alpha}{\beta}$ , variance,  $\sigma^2=\frac{\alpha}{\beta^2}$ , and coefficient of skewness,  $\sqrt{2/\alpha}$ .

2.5.2.2. Log-normal distribution: Let the random varibale X follow the log-normal distribution with mean  $\mu$  and standard deviation  $\sigma$ , then the probability density function of X is defined as  $X \sim Lognormal(\mu, \sigma^2)$ . The corresponding probability density function is

$$f(x; \alpha, \beta) = \frac{1}{x\sigma\sqrt{2\pi}} \exp\left(-\frac{(\ln x - \mu)^2}{2\sigma^2}\right) \quad -\infty < x < \infty, \ -\infty < \mu < \infty, \ \sigma > 0$$

where mean,  $\mu = \exp\left(\mu + \frac{\sigma^2}{2}\right)$ , variance,  $\sigma^2 = \left[\exp\left(\sigma^2\right) - 1\right] \exp\left(2\mu + \sigma^2\right)$  and the coefficient of skewness,  $\left[\exp\left(\sigma^2\right) + 2\right] \sqrt{\exp\left(\sigma^2\right) - 1}$ .

2.5.2.3. Beta distribution: The beta distribution, Beta( $\alpha, \beta$ ). The corresponding probability density function in the shape parameterization is

$$f(x; \alpha, \beta) = \frac{x^{\alpha - 1} (1 - x)^{\beta - 1}}{B(\alpha, \beta)} \text{ for } x > 0 \ \alpha, \beta > 0$$

where  $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$  and  $\Gamma$  is the Gamma function. The mean,  $\mu = \frac{\alpha}{\alpha+\beta}$  and variance,  $\sigma^2 = \frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$ , coefficient of skewness,  $\frac{2(\beta-\alpha)\sqrt{\alpha+\beta+1}}{(\alpha+\beta+2)\sqrt{\alpha\beta}}$ .



## 3 Results and Discussion

We conducted comparisons of interval estimators under symmetric and asymmetric distributions by generating random samples from different distributions with varying skewness, as outlined in sections 3.3.1 to 3.3.4.

#### 3.1. Normal Distribution

The simulation results for 23 interval estimators from Normal distribution with mean=10 and variance=7 are given in Table 3.1. We can see from Table 3.1 that most approaches maintain a high coverage probability (>0.94) across different sample sizes. The mean width of CIs decreases as the sample size increases for all approaches, which is expected. Among the proposed approaches, Wizard-t and Wizard-t from median consistently offer slightly narrower intervals compared to traditional methods like Student-t and Johnson-t. Approaches like Mad-t, Median-t, and AADM-t show variations in coverage probability and mean width across sample sizes. Q1-t, Q3-t, and Q1Q3-t offer high coverage probability with higher mean with compared to all other methods.

Table 3.1: Coverage Probability and Mean width for different sample sizes from Normal (10,7)

| Statistics           | Measuring Criteria              |                |        | Sample | Size  |       |       |
|----------------------|---------------------------------|----------------|--------|--------|-------|-------|-------|
| Statistics           | Wedsuring Criteria              | 10             | 20     | 30     | 50    | 70    | 100   |
| Student t            | Coverage probability            | 0.950          | 0.950  | 0.946  | 0.943 | 0.947 | 0.952 |
| Student t            | Mean width                      | 9.740          | 6.477  | 5.172  | 3.954 | 3.317 | 2.768 |
| T-1 4                | Coverage probability            | 0.950          | 0.950  | 0.946  | 0.943 | 0.947 | 0.952 |
| Johnson t            | Mean width                      | 9.740          | 6.477  | 5.172  | 3.954 | 3.317 | 2.768 |
| M. P. A              | Coverage probability            | 0.953          | 0.952  | 0.948  | 0.944 | 0.948 | 0.953 |
| Median t             | Mean width                      | 9.937          | 6.556  | 5.215  | 3.975 | 3.329 | 2.776 |
| 26.1.                | Coverage probability            | 0.879          | 0.890  | 0.880  | 0.871 | 0.881 | 0.887 |
| Mad t                | Mean width                      | 7.573          | 5.107  | 4.089  | 3.138 | 2.635 | 2.203 |
|                      | Coverage probability            | 0.940          | 0.946  | 0.940  | 0.937 | 0.946 | 0.953 |
| AADM t               | Mean width                      | 9.265          | 6.317  | 5.079  | 3.911 | 3.289 | 2.753 |
|                      | Coverage probability            | 0.904          | 0.930  | 0.933  | 0.933 | 0.942 | 0.949 |
| Wizard t             | Mean width                      | 8.164          | 5.908  | 4.860  | 3.807 | 3.228 | 2.716 |
|                      | Coverage probability            | 0.910          | 0.933  | 0.936  | 0.934 | 0.942 | 0.949 |
| Wizard t from median | Mean width                      | 8.268          | 5.959  | 4.889  | 3.822 | 3.237 | 2.722 |
|                      | Coverage probability            | 0.914          | 0.938  | 0.938  | 0.936 | 0.944 | 0.950 |
| T1                   | Mean width                      | 8.441          | 6.065  | 4.956  | 3.856 | 3.259 | 2.735 |
|                      | Coverage probability            | 0.573          | 0.607  | 0.597  | 0.602 | 0.614 | 0.600 |
| T2                   | Mean width                      | 3.665          | 2.634  | 2.152  | 1.675 | 1.415 | 1.188 |
|                      | Coverage probability            | 0.777          | 0.845  | 0.856  | 0.870 | 0.890 | 0.908 |
| T3                   | Mean width                      | 5.710          | 4.468  | 3.811  | 3.110 | 2.701 | 2.325 |
|                      | Coverage probability            | 0.918          | 0.941  | 0.940  | 0.936 | 0.946 | 0.950 |
| Median T1            | Mean width                      | 8.611          | 6.140  | 4.997  | 3.876 | 3.271 | 2.742 |
|                      | Coverage probability            | 0.580          | 0.140  | 0.601  | 0.606 | 0.616 | 0.601 |
| Median T2            | Mean width                      | 3.739          | 2.666  | 2.170  | 1.684 | 1.421 | 1.191 |
|                      | Coverage probability            | 3.739<br>0.786 | 0.850  | 0.862  | 0.871 | 0.891 | 0.908 |
| Median T3            | Mean width                      | 5.825          | 4.522  | 3.843  | 3.126 | 2.711 | 2.332 |
|                      |                                 | 0.825          | 0.870  | 0.868  | 0.861 | 0.872 | 0.880 |
| Mad T1               | Coverage probability Mean width | 6.562          | 4.783  |        |       | 2.589 | 2.176 |
|                      |                                 |                |        | 3.918  | 3.060 |       |       |
| Mad T2               | Coverage probability            | 0.461          | 0.502  | 0.489  | 0.504 | 0.509 | 0.488 |
|                      | Mean width                      | 2.849          | 2.077  | 1.702  | 1.329 | 1.124 | 0.945 |
| Mad T3               | Coverage probability            | 0.658          | 0.749  | 0.751  | 0.776 | 0.809 | 0.810 |
|                      | Mean width                      | 4.439          | 3.523  | 3.013  | 2.468 | 2.145 | 1.851 |
| Chen t               | Coverage probability            | 0.950          | 0.950  | 0.946  | 0.943 | 0.947 | 0.952 |
|                      | Mean width                      | 9.740          | 6.477  | 5.172  | 3.954 | 3.317 | 2.768 |
| YY t                 | Coverage probability            | 0.949          | 0.950  | 0.946  | 0.943 | 0.947 | 0.952 |
|                      | Mean width                      | 9.740          | 6.477  | 5.172  | 3.954 | 3.317 | 2.768 |
|                      | Coverage probability            | 0.658          | 0.749  | 0.751  | 0.776 | 0.809 | 0.810 |
| DMSD t               | Mean width                      | 10.668         | 8.014  | 6.778  | 5.529 | 4.810 | 4.157 |
|                      | Mean width                      | 10.856         | 7.689  | 6.227  | 4.828 | 4.082 | 3.426 |
| Downton t            | Coverage probability            | 1.000          | 1.000  | 1.000  | 1.000 | 1.000 | 1.000 |
| DOWINGII t           | Mean width                      | 25.101         | 16.448 | 13.075 | 9.960 | 8.341 | 6.957 |



| Statistics | Measuring Criteria   | Sample Size |       |       |       |       |       |  |  |  |
|------------|----------------------|-------------|-------|-------|-------|-------|-------|--|--|--|
| Statistics | Wedsuring Criteria   | 10          | 20    | 30    | 50    | 70    | 100   |  |  |  |
| 01.4       | Coverage probability | 0.949       | 0.964 | 0.967 | 0.969 | 0.978 | 0.983 |  |  |  |
| Q1 t       | Mean width           | 9.698       | 7.080 | 5.842 | 4.581 | 3.882 | 3.272 |  |  |  |
| 01024      | Coverage probability | 0.948       | 0.966 | 0.965 | 0.969 | 0.978 | 0.980 |  |  |  |
| Q1Q3 t     | Mean width           | 9.695       | 7.085 | 5.823 | 4.571 | 3.888 | 3.270 |  |  |  |
| 024        | Coverage probability | 0.949       | 0.965 | 0.967 | 0.968 | 0.978 | 0.981 |  |  |  |
| Q3 t       | Mean width           | 9.696       | 7.083 | 5.833 | 4.576 | 3.885 | 3.271 |  |  |  |

# Normal (10,7) Skewness = 0

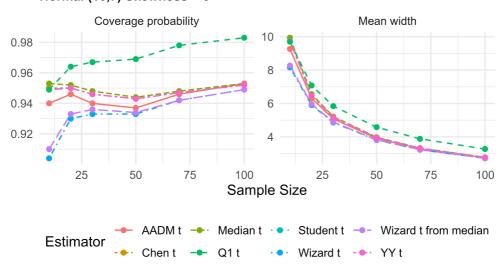



Fig. 1: Coverage probability and Mean width of Normal (10,7)

## 3.2. Beta Distribution

Table 3.2 demonstrates the coverage probability and mean width comparisons for different sample sizes for beta distribution with different skewness.

Table 3.2: Coverage Probability and Mean Width for different sample sizes from Beta Distribution with different skewness

| Distributions           | Approaches            | Measuring Criteria   | ·     |       | Sampl | e Size |       |       |
|-------------------------|-----------------------|----------------------|-------|-------|-------|--------|-------|-------|
|                         | ripprouches           | Wedsuring Criteria   | 10    | 20    | 30    | 50     | 70    | 100   |
|                         | Student t             | Coverage probability | 0.836 | 0.880 | 0.895 | 0.917  | 0.920 | 0.935 |
|                         | Student t             | Mean width           | 0.061 | 0.043 | 0.036 | 0.028  | 0.023 | 0.020 |
|                         | Inhana 4              | Coverage probability | 0.843 | 0.887 | 0.900 | 0.921  | 0.922 | 0.940 |
|                         | Johnson t             | Mean width           | 0.061 | 0.043 | 0.036 | 0.028  | 0.023 | 0.020 |
|                         | Madiana               | Coverage probability | 0.854 | 0.896 | 0.912 | 0.935  | 0.939 | 0.952 |
|                         | Median t              | Mean width           | 0.067 | 0.047 | 0.039 | 0.030  | 0.025 | 0.021 |
| D.4. (Cl                | M-14                  | Coverage probability | 0.764 | 0.795 | 0.793 | 0.805  | 0.795 | 0.804 |
| Beta (Skewness = $-3$ ) | Mad t                 | Mean width           | 0.044 | 0.030 | 0.024 | 0.018  | 0.016 | 0.013 |
|                         | AADM t                | Coverage probability | 0.781 | 0.814 | 0.810 | 0.818  | 0.818 | 0.822 |
|                         | AADM t                | Mean width           | 0.047 | 0.031 | 0.025 | 0.019  | 0.016 | 0.014 |
|                         | Wizard t              | Coverage probability | 0.812 | 0.873 | 0.898 | 0.924  | 0.930 | 0.947 |
|                         | wizaru t              | Mean width           | 0.056 | 0.042 | 0.036 | 0.029  | 0.024 | 0.021 |
|                         | Wizard t from median  | Coverage probability | 0.825 | 0.886 | 0.909 | 0.934  | 0.940 | 0.955 |
|                         | wizaru t iroin median | Mean width           | 0.059 | 0.044 | 0.038 | 0.030  | 0.026 | 0.022 |
|                         | T1                    | Coverage probability | 0.813 | 0.866 | 0.889 | 0.910  | 0.914 | 0.931 |
|                         | 11                    | Mean width           | 0.056 | 0.041 | 0.034 | 0.027  | 0.023 | 0.019 |
|                         | TO                    | Coverage probability | 0.534 | 0.577 | 0.575 | 0.581  | 0.589 | 0.585 |
|                         | T2                    | Mean width           | 0.024 | 0.017 | 0.015 | 0.012  | 0.010 | 0.008 |
|                         | Т3                    | Coverage probability | 0.699 | 0.774 | 0.811 | 0.854  | 0.869 | 0.878 |



| Distributions        | Approaches           | Measuring Criteria              |                |                | Sampl          | e Size         |                |       |
|----------------------|----------------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|-------|
| Distributions        | Approaches           | Wedsuring Criteria              | 10             | 20             | 30             | 50             | 70             | 100   |
|                      |                      | Mean width                      | 0.036          | 0.029          | 0.026          | 0.022          | 0.019          | 0.016 |
|                      | Median T1            | Coverage probability            | 0.831          | 0.886          | 0.907          | 0.930          | 0.938          | 0.950 |
|                      | Median 11            | Mean width                      | 0.061          | 0.045          | 0.038          | 0.029          | 0.025          | 0.02  |
|                      | Median T2            | Coverage probability            | 0.580          | 0.615          | 0.622          | 0.628          | 0.630          | 0.624 |
|                      | Medium 12            | Mean width                      | 0.026          | 0.019          | 0.016          | 0.013          | 0.011          | 0.009 |
|                      | Median T3            | Coverage probability            | 0.720          | 0.807          | 0.840          | 0.877          | 0.894          | 0.91  |
|                      |                      | Mean width                      | 0.040          | 0.032          | 0.029          | 0.024          | 0.021          | 0.013 |
|                      | Mad T1               | Coverage probability            | 0.736          | 0.777          | 0.781          | 0.798          | 0.788          | 0.79  |
|                      |                      | Mean width                      | 0.040          | 0.028          | 0.024          | 0.018          | 0.015          | 0.01  |
|                      | Mad T2               | Coverage probability            | 0.400          | 0.428          | 0.413          | 0.420          | 0.416          | 0.41  |
|                      |                      | Mean width                      | 0.017          | 0.012          | 0.010          | 0.008<br>0.700 | 0.007<br>0.706 | 0.00  |
|                      | Mad T3               | Coverage probability Mean width | 0.588<br>0.026 | 0.650<br>0.021 | 0.670<br>0.018 | 0.700          | 0.700          | 0.71  |
|                      |                      | Coverage probability            | 0.020          | 0.021          | 0.832          | 0.860          | 0.869          | 0.88  |
|                      | Chen t               | Mean width                      | 0.772          | 0.033          | 0.028          | 0.022          | 0.019          | 0.01  |
|                      |                      | Coverage probability            | 0.838          | 0.882          | 0.899          | 0.920          | 0.922          | 0.93  |
|                      | YY t                 | Mean width                      | 0.061          | 0.043          | 0.036          | 0.028          | 0.023          | 0.02  |
|                      |                      | Coverage probability            | 0.588          | 0.650          | 0.670          | 0.700          | 0.706          | 0.71  |
|                      | DMSD t               | Mean width                      | 0.067          | 0.055          | 0.070          | 0.044          | 0.040          | 0.03  |
|                      | ¥                    | Mean width                      | 0.045          | 0.030          | 0.024          | 0.018          | 0.015          | 0.01  |
|                      | <b>.</b>             | Coverage probability            | 0.913          | 0.901          | 0.861          | 0.731          | 0.531          | 0.28  |
|                      | Downton t            | Mean width                      | 0.133          | 0.086          | 0.070          | 0.053          | 0.044          | 0.03  |
|                      | 01.                  | Coverage probability            | 0.812          | 0.866          | 0.889          | 0.914          | 0.916          | 0.932 |
|                      | Q1 t                 | Mean width                      | 0.055          | 0.040          | 0.034          | 0.027          | 0.023          | 0.019 |
|                      | 01024                | Coverage probability            | 0.838          | 0.896          | 0.916          | 0.936          | 0.944          | 0.95  |
|                      | Q1Q3 t               | Mean width                      | 0.061          | 0.046          | 0.039          | 0.031          | 0.026          | 0.02  |
|                      | 02+                  | Coverage probability            | 0.825          | 0.880          | 0.904          | 0.929          | 0.935          | 0.94  |
|                      | Q3 t                 | Mean width                      | 0.058          | 0.043          | 0.037          | 0.029          | 0.025          | 0.02  |
|                      | Student t            | Coverage probability            | 0.896          | 0.922          | 0.929          | 0.941          | 0.934          | 0.942 |
|                      | Student              | Mean width                      | 0.137          | 0.095          | 0.076          | 0.058          | 0.049          | 0.04  |
|                      | Johnson t            | Coverage probability            | 0.901          | 0.924          | 0.930          | 0.944          | 0.936          | 0.944 |
|                      | Johnson t            | Mean width                      | 0.137          | 0.095          | 0.076          | 0.058          | 0.049          | 0.04  |
|                      | Median t             | Coverage probability            | 0.907          | 0.931          | 0.937          | 0.952          | 0.946          | 0.95' |
|                      | Wedian t             | Mean width                      | 0.146          | 0.101          | 0.081          | 0.062          | 0.052          | 0.044 |
|                      | Mad t                | Coverage probability            | 0.826          | 0.852          | 0.848          | 0.863          | 0.856          | 0.85  |
|                      | Triuce t             | Mean width                      | 0.104          | 0.071          | 0.057          | 0.044          | 0.037          | 0.03  |
|                      | AADM t               | Coverage probability            | 0.868          | 0.898          | 0.893          | 0.906          | 0.902          | 0.91  |
| Beta (Skewness = -2) |                      | Mean width                      | 0.120          | 0.082          | 0.065          | 0.051          | 0.042          | 0.03  |
| ,                    | Wizard t             | Coverage probability            | 0.874          | 0.919          | 0.930          | 0.947          | 0.944          | 0.95  |
|                      |                      | Mean width                      | 0.123          | 0.093          | 0.077          | 0.061          | 0.051          | 0.04  |
|                      | Wizard t from median | Coverage probability            | 0.884          | 0.927<br>0.098 | 0.938          | 0.957          | 0.956          | 0.96  |
|                      |                      | Mean width Coverage probability | 0.130<br>0.873 | 0.098          | 0.081<br>0.922 | 0.064<br>0.934 | 0.054 0.930    | 0.046 |
|                      | T1                   | Mean width                      | 0.873          | 0.912          | 0.922          | 0.954          | 0.930          | 0.93  |
|                      |                      | Coverage probability            | 0.123          | 0.587          | 0.586          | 0.604          | 0.608          | 0.60  |
|                      | T2                   | Mean width                      | 0.052          | 0.039          | 0.032          | 0.004          | 0.008          | 0.00  |
|                      |                      | Coverage probability            | 0.748          | 0.817          | 0.841          | 0.872          | 0.878          | 0.90  |
|                      | T3                   | Mean width                      | 0.081          | 0.065          | 0.056          | 0.046          | 0.040          | 0.03  |
|                      |                      | Coverage probability            | 0.884          | 0.922          | 0.932          | 0.948          | 0.943          | 0.95  |
|                      | Median T1            | Mean width                      | 0.131          | 0.096          | 0.078          | 0.061          | 0.051          | 0.04  |
|                      | 14 P 772             | Coverage probability            | 0.582          | 0.616          | 0.613          | 0.636          | 0.639          | 0.63  |
|                      | Median T2            | Mean width                      | 0.056          | 0.041          | 0.034          | 0.026          | 0.022          | 0.019 |
|                      | M. II. TO            | Coverage probability            | 0.763          | 0.837          | 0.861          | 0.890          | 0.896          | 0.920 |
|                      | Median T3            | Mean width                      | 0.086          | 0.070          | 0.059          | 0.049          | 0.042          | 0.03  |
|                      | M 1771               | Coverage probability            | 0.799          | 0.832          | 0.837          | 0.855          | 0.851          | 0.85  |
|                      | Mad T1               | Mean width                      | 0.093          | 0.068          | 0.055          | 0.043          | 0.036          | 0.03  |
|                      | M- 1 TO              | Coverage probability            | 0.446          | 0.460          | 0.471          | 0.484          | 0.476          | 0.480 |
|                      | Mad T2               | Mean width                      | 0.040          | 0.029          | 0.024          | 0.019          | 0.016          | 0.013 |



| Distributions        | Approaches           | Measuring Criteria              |                |                |                |                |                |           |  |
|----------------------|----------------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|-----------|--|
|                      | ripprouenes          | Wedsting Officia                | 10             | 20             | 30             | 50             | 70             | 100       |  |
|                      | Mad T3               | Coverage probability            | 0.635          | 0.702          | 0.721          | 0.773          | 0.772          | 0.77      |  |
|                      | 17144 13             | Mean width                      | 0.061          | 0.049          | 0.042          | 0.035          | 0.030          | 0.02      |  |
|                      | Chen t               | Coverage probability            | 0.844          | 0.879          | 0.885          | 0.898          | 0.901          | 0.91      |  |
|                      |                      | Mean width                      | 0.108          | 0.077          | 0.063          | 0.050          | 0.043          | 0.03      |  |
|                      | YY t                 | Coverage probability            | 0.896          | 0.923          | 0.929          | 0.943          | 0.934          | 0.94      |  |
|                      |                      | Mean width                      | 0.137          | 0.095          | 0.076          | 0.058          | 0.049          | 0.04      |  |
|                      | DMSD t               | Coverage probability Mean width | 0.635<br>0.150 | 0.702<br>0.119 | 0.721<br>0.102 | 0.773<br>0.085 | 0.772<br>0.075 | 0.7       |  |
|                      | DMSD t               | Mean width                      | 0.136          | 0.119          | 0.102          | 0.060          | 0.073          | 0.04      |  |
|                      |                      | Coverage probability            | 0.130          | 0.097          | 0.960          | 0.000          | 0.854          | 0.0       |  |
|                      | Downton t            | Mean width                      | 0.326          | 0.217          | 0.171          | 0.131          | 0.109          | 0.09      |  |
|                      | - 1                  | Coverage probability            | 0.882          | 0.922          | 0.930          | 0.951          | 0.946          | 0.9       |  |
|                      | Q1 t                 | Mean width                      | 0.127          | 0.094          | 0.077          | 0.061          | 0.051          | 0.04      |  |
|                      | 0.4.0.0              | Coverage probability            | 0.902          | 0.947          | 0.955          | 0.969          | 0.970          | 0.9       |  |
|                      | Q1Q3 t               | Mean width                      | 0.142          | 0.107          | 0.088          | 0.070          | 0.059          | 0.0       |  |
|                      | 02.4                 | Coverage probability            | 0.893          | 0.938          | 0.943          | 0.962          | 0.959          | 0.90      |  |
|                      | Q3 t                 | Mean width                      | 0.135          | 0.101          | 0.082          | 0.065          | 0.055          | $0.0^{4}$ |  |
|                      | Student t            | Coverage probability            | 0.704          | 0.790          | 0.818          | 0.854          | 0.880          | 0.9       |  |
|                      | Student t            | Mean width                      | 0.051          | 0.037          | 0.032          | 0.025          | 0.021          | 0.0       |  |
|                      | Johnson t            | Coverage probability            | 0.714          | 0.796          | 0.828          | 0.858          | 0.883          | 0.92      |  |
|                      | Johnson t            | Mean width                      | 0.051          | 0.037          | 0.032          | 0.025          | 0.021          | 0.0       |  |
|                      | Median t             | Coverage probability            | 0.723          | 0.802          | 0.834          | 0.864          | 0.889          | 0.92      |  |
|                      | Wedian t             | Mean width                      | 0.056          | 0.040          | 0.034          | 0.026          | 0.023          | 0.0       |  |
|                      | Mad t                | Coverage probability            | 0.637          | 0.686          | 0.678          | 0.682          | 0.687          | 0.6       |  |
|                      | 17146 (              | Mean width                      | 0.033          | 0.022          | 0.018          | 0.014          | 0.011          | 0.0       |  |
|                      | AADM t               | Coverage probability            | 0.620          | 0.635          | 0.612          | 0.608          | 0.613          | 0.6       |  |
|                      |                      | Mean width                      | 0.030          | 0.019          | 0.016          | 0.011          | 0.010          | 0.0       |  |
|                      | Wizard t             | Coverage probability            | 0.687          | 0.784          | 0.815          | 0.858          | 0.884          | 0.92      |  |
|                      |                      | Mean width                      | 0.046          | 0.036          | 0.032          | 0.025          | 0.022          | 0.0       |  |
|                      | Wizard t from median | Coverage probability            | 0.693          | 0.789          | 0.818          | 0.859          | 0.886          | 0.92      |  |
|                      |                      | Mean width                      | 0.047          | 0.037          | 0.032          | 0.025          | 0.022          | 0.0       |  |
|                      | T1                   | Coverage probability            | 0.691          | 0.783          | 0.810          | 0.852          | 0.877          | 0.9       |  |
|                      |                      | Mean width                      | 0.047          | 0.036          | 0.031          | 0.024          | 0.021          | 0.0       |  |
|                      | T2                   | Coverage probability            | 0.472          | 0.516<br>0.015 | 0.526          | 0.566          | 0.578          | 0.5       |  |
|                      |                      | Mean width                      | 0.019          |                | 0.013<br>0.753 | 0.010<br>0.805 | 0.009          | 0.00      |  |
|                      | T3                   | Coverage probability Mean width | 0.598<br>0.030 | 0.716<br>0.026 | 0.753          | 0.805          | 0.831<br>0.017 | 0.0       |  |
| Beta (Skewness = -5) |                      | Coverage probability            | 0.030          | 0.020          | 0.023          | 0.861          | 0.888          | 0.0       |  |
|                      | Median T1            | Mean width                      | 0.767          | 0.730          | 0.033          | 0.026          | 0.022          | 0.0       |  |
|                      |                      | Coverage probability            | 0.509          | 0.554          | 0.559          | 0.596          | 0.606          | 0.6       |  |
|                      | Median T2            | Mean width                      | 0.021          | 0.016          | 0.014          | 0.011          | 0.010          | 0.0       |  |
|                      |                      | Coverage probability            | 0.623          | 0.736          | 0.772          | 0.822          | 0.846          | 0.89      |  |
|                      | Median T3            | Mean width                      | 0.023          | 0.028          | 0.025          | 0.021          | 0.018          | 0.0       |  |
|                      |                      | Coverage probability            | 0.618          | 0.673          | 0.666          | 0.671          | 0.680          | 0.69      |  |
|                      | Mad T1               | Mean width                      | 0.010          | 0.073          | 0.018          | 0.013          | 0.011          | 0.0       |  |
|                      |                      | Coverage probability            | 0.327          | 0.342          | 0.312          | 0.333          | 0.342          | 0.35      |  |
|                      | Mad T2               | Mean width                      | 0.013          | 0.009          | 0.008          | 0.006          | 0.005          | 0.00      |  |
|                      |                      | Coverage probability            | 0.484          | 0.544          | 0.546          | 0.576          | 0.595          | 0.6       |  |
|                      | Mad T3               | Mean width                      | 0.020          | 0.015          | 0.013          | 0.011          | 0.009          | 0.0       |  |
|                      |                      | Coverage probability            | 0.653          | 0.736          | 0.760          | 0.801          | 0.816          | 0.83      |  |
|                      | Chen t               | Mean width                      | 0.038          | 0.028          | 0.024          | 0.019          | 0.016          | 0.0       |  |
|                      | X7X7 .               | Coverage probability            | 0.708          | 0.792          | 0.824          | 0.858          | 0.883          | 0.92      |  |
|                      | YY t                 | Mean width                      | 0.051          | 0.037          | 0.032          | 0.025          | 0.021          | 0.0       |  |
|                      |                      | Coverage probability            | 0.484          | 0.544          | 0.546          | 0.576          | 0.595          | 0.62      |  |
|                      | DMSD t               | Mean width                      | 0.055          | 0.050          | 0.049          | 0.045          | 0.042          | 0.0       |  |
|                      | <b>·</b>             | Mean width                      | 0.016          | 0.008          | 0.006          | 0.004          | 0.003          | 0.0       |  |
|                      | _                    | Coverage probability            | 0.738          | 0.742          | 0.693          | 0.540          | 0.375          | 0.1       |  |
|                      | Downton t            | Mean width                      | 0.093          | 0.059          | 0.048          | 0.036          | 0.030          | 0.02      |  |



| Distributions | Approaches | Measuring Criteria   |       | Sample Size |       |       |       |       |  |  |
|---------------|------------|----------------------|-------|-------------|-------|-------|-------|-------|--|--|
| Distributions | Approaches | Wedsuring Criteria   | 10    | 20          | 30    | 50    | 70    | 100   |  |  |
|               | 014        | Coverage probability | 0.682 | 0.777       | 0.809 | 0.852 | 0.879 | 0.916 |  |  |
|               | Q1 t       | Mean width           | 0.044 | 0.035       | 0.031 | 0.024 | 0.021 | 0.018 |  |  |
|               | 01024      | Coverage probability | 0.694 | 0.789       | 0.819 | 0.859 | 0.886 | 0.923 |  |  |
|               | Q1Q3 t     | Mean width           | 0.047 | 0.037       | 0.032 | 0.025 | 0.022 | 0.019 |  |  |
|               | 02.4       | Coverage probability | 0.689 | 0.785       | 0.814 | 0.856 | 0.882 | 0.920 |  |  |
|               | Q3 t       | Mean width           | 0.046 | 0.036       | 0.031 | 0.025 | 0.022 | 0.019 |  |  |

## Beta (1,0.6) Skewness = -5

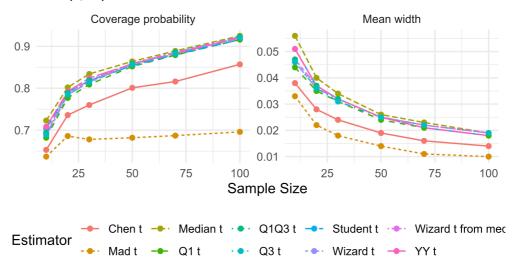



Fig. 2: Coverage probability and Mean width of Beta (1,0.6)

#### 3.2.1. Beta with Skewness = -2

Similar trends are observed compared to skewness = -3, with the proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approach continuing to outperform traditional methods. Median-t performs consistently better in terms of coverage probability but with a slightly wider width compared to the proposed Wizard-t approaches. The Mad-t still demonstrates relatively lower coverage probability, but narrower width compared to traditional methods.

## 3.2.2. Beta with Skewness = -3

The proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approach consistently outperform traditional methods like Student-t, Johnson-t, and AADM-t in terms of maintaining higher coverage probability and providing narrower width. Median-t offers higher coverage probability compared to other traditional methods but with slightly wider width. Mad-t demonstrates relatively lower coverage probability but provides narrower width. Other methods show varying degrees of performance, with coverage probability and mean width of CIs differing across methods and sample sizes.

### 3.2.3. Beta with Skewness = -5

Similar trends are observed compared to skewness = -3, with the proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approach continuing to outperform traditional methods. Median-t performs consistently well in terms of coverage probability but with slightly wider width compared to the proposed Wizard-t approaches. The Mad-t still demonstrates relatively lower Coverage probability, but narrower CIs compared to traditional methods.

All methods exhibit decreased performance compared to skewness = -3 and -2. Coverage probabilities are generally lower across all methods. The proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approach maintain relatively higher coverage probability and narrower widths compared to traditional methods, albeit with reduced effectiveness compared to skewness = -3 and -2. Median-t still offers higher coverage probability but with wider CIs compared to the proposed Wizard-t approach.



## 3.3. Gamma Distribution

Table 3.3 demonstrates the coverage probability and mean width comparisons for different sample sizes for the gamma distribution with different skewness.

Table 3.3: Coverage Probability and Mean Width for different sample sizes from Gamma Distribution with different skewness.

| Distributions       | Approaches           | Measuring Criteria   |       |       | Sample | Size  |       |       |
|---------------------|----------------------|----------------------|-------|-------|--------|-------|-------|-------|
| Distributions       | Approaches           | Wicasuring Criteria  | 10    | 20    | 30     | 50    | 70    | 100   |
|                     | Student t            | Coverage probability | 0.922 | 0.930 | 0.942  | 0.945 | 0.947 | 0.948 |
|                     | Student t            | Mean width           | 0.226 | 0.150 | 0.120  | 0.092 | 0.077 | 0.064 |
|                     | Johnson t            | Coverage probability | 0.925 | 0.930 | 0.944  | 0.946 | 0.948 | 0.949 |
|                     | Johnson t            | Mean width           | 0.226 | 0.150 | 0.120  | 0.092 | 0.077 | 0.064 |
|                     | Median t             | Coverage probability | 0.930 | 0.932 | 0.947  | 0.948 | 0.952 | 0.953 |
|                     | Median t             | Mean width           | 0.236 | 0.156 | 0.124  | 0.095 | 0.080 | 0.067 |
|                     | Mad t                | Coverage probability | 0.867 | 0.882 | 0.870  | 0.883 | 0.894 | 0.872 |
|                     | Mad t                | Mean width           | 0.177 | 0.119 | 0.095  | 0.073 | 0.062 | 0.052 |
|                     | AADM t               | Coverage probability | 0.904 | 0.924 | 0.934  | 0.939 | 0.941 | 0.938 |
|                     | AADM t               | Mean width           | 0.211 | 0.143 | 0.115  | 0.089 | 0.075 | 0.063 |
|                     | Wigand t             | Coverage probability | 0.898 | 0.924 | 0.943  | 0.950 | 0.958 | 0.96  |
|                     | Wizard t             | Mean width           | 0.202 | 0.147 | 0.121  | 0.095 | 0.081 | 0.068 |
| Gamma (Skewness =1) | W:1                  | Coverage probability | 0.903 | 0.929 | 0.950  | 0.954 | 0.962 | 0.966 |
|                     | Wizard t from median | Mean width           | 0.210 | 0.152 | 0.125  | 0.098 | 0.083 | 0.071 |
|                     | T.1                  | Coverage probability | 0.894 | 0.920 | 0.932  | 0.942 | 0.945 | 0.944 |
|                     | T1                   | Mean width           | 0.200 | 0.142 | 0.115  | 0.090 | 0.076 | 0.064 |
|                     | -                    | Coverage probability | 0.582 | 0.616 | 0.585  | 0.609 | 0.599 | 0.601 |
|                     | T2                   | Mean width           | 0.086 |       | 0.050  | 0.039 | 0.033 | 0.028 |
|                     |                      | Coverage probability |       | 0.838 | 0.849  | 0.876 | 0.899 |       |
|                     | T3                   | Mean width           | 0.133 | 0.104 | 0.088  | 0.072 | 0.063 | 0.054 |
|                     |                      | Coverage probability | 0.903 |       | 0.939  | 0.946 | 0.950 |       |
|                     | Median T1            | Mean width           | 0.209 |       |        | 0.093 | 0.078 | 0.066 |
|                     |                      | Coverage probability |       | 0.628 |        | 0.623 | 0.618 | 0.616 |
|                     | Median T2            | Mean width           | 0.004 |       | 0.004  | 0.023 | 0.018 |       |
|                     |                      |                      |       |       |        |       |       |       |
|                     | Median T3            | Coverage probability | 0.786 |       | 0.859  | 0.889 | 0.908 |       |
|                     |                      | Mean width           | 0.138 |       | 0.092  | 0.075 | 0.065 | 0.056 |
|                     | Mad T1               | Coverage probability | 0.831 | 0.866 | 0.858  | 0.876 | 0.889 | 0.870 |
|                     |                      | Mean width           |       | 0.112 |        | 0.072 |       |       |
|                     | Mad T2               | Coverage probability | 0.472 |       | 0.480  | 0.498 | 0.501 | 0.506 |
|                     | 11444 12             | Mean width           | 0.067 |       | 0.040  |       |       |       |
|                     | Mad T3               | Coverage probability | 0.670 |       | 0.743  | 0.789 | 0.812 |       |
|                     | Widd 15              | Mean width           |       | 0.082 |        | 0.058 | 0.050 |       |
|                     | Chen t               | Coverage probability | 0.889 | 0.904 | 0.907  | 0.927 | 0.930 | 0.926 |
|                     | Chen t               | Mean width           | 0.190 | 0.130 | 0.106  | 0.083 | 0.071 | 0.060 |
|                     | YY t                 | Coverage probability | 0.923 | 0.929 | 0.944  | 0.946 | 0.948 | 0.949 |
|                     | 11 t                 | Mean width           | 0.226 | 0.150 | 0.120  | 0.092 | 0.077 | 0.064 |
|                     |                      | Coverage probability | 0.670 | 0.743 | 0.743  | 0.789 | 0.812 | 0.800 |
|                     | DMSD t               | Mean width           | 0.247 | 0.184 | 0.155  | 0.125 | 0.109 | 0.094 |
|                     |                      | Mean width           | 0.254 | 0.180 | 0.146  | 0.115 | 0.096 | 0.081 |
|                     | D                    | Coverage probability |       |       |        |       | 0.980 |       |
|                     | Downton t            | Mean width           |       | 0.370 |        |       | 0.187 |       |
|                     | 01.                  | Coverage probability |       | 0.938 |        | 0.958 | 0.969 | 0.972 |
|                     | Q1 t                 | Mean width           |       | 0.158 |        |       | 0.086 |       |
|                     | 0.1.0.0              | Coverage probability |       | 0.952 | 0.968  |       | 0.978 |       |
|                     | Q1Q3 t               | Mean width           |       | 0.173 |        |       | 0.096 |       |
|                     |                      | Coverage probability |       | 0.946 | 0.964  |       | 0.974 |       |
|                     | Q3 t                 | Mean width           | 0.227 |       |        |       | 0.091 |       |
|                     |                      | Coverage probability | 0.886 |       | 0.130  | 0.107 | 0.934 |       |
|                     | Student t            | Mean width           | 0.889 |       | 0.918  |       | 0.934 |       |
| Commo (Slacero 2)   |                      |                      |       |       |        |       |       |       |
| Gamma (Skewness =2) | Johnson t            | Coverage probability | 0.890 |       | 0.922  |       | 0.938 |       |
|                     |                      | Mean width           | 0.089 |       | 0.049  |       | 0.032 |       |
|                     | Median t             | Coverage probability | 0.893 | 0.928 | 0.931  | 0.946 | 0.948 | 0.954 |



| Distributions      | Approaches           | Measuring Criteria              |                |                | Sample Size    |                |                |                |
|--------------------|----------------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
| 2 ISH INGUIN       | причисть             | Treasuring Criteria             | 10             | 20             | 30             | 50             | 70             | 100            |
|                    |                      | Mean width                      | 0.095          | 0.065          | 0.052          | 0.040          | 0.034          | 0.02           |
|                    | Mad t                | Coverage probability            | 0.819          | 0.846          | 0.840          | 0.844          | 0.833          | 0.85           |
|                    | wide t               | Mean width                      | 0.067          | 0.045          | 0.036          | 0.028          | 0.023          | 0.02           |
|                    | AADM t               | Coverage probability            | 0.859          | 0.887          | 0.881          | 0.897          | 0.889          | 0.90           |
|                    |                      | Mean width                      | 0.076          |                | 0.041          | 0.032          | 0.027          | 0.02           |
|                    | Wizard t             | Coverage probability Mean width | 0.862<br>0.080 |                | 0.922<br>0.049 | 0.944 0.039    | 0.945          | 0.95           |
|                    |                      | Coverage probability            | 0.080          | 0.000          | 0.049          |                |                | 0.02           |
|                    | Wizard t from median | Mean width                      | 0.873          | 0.923          | 0.932          |                | 0.934          | 0.03           |
|                    |                      | Coverage probability            | 0.861          | 0.908          |                | 0.930          |                | 0.03           |
|                    | T1                   | Mean width                      | 0.080          | 0.058          | 0.047          | 0.037          | 0.031          | 0.02           |
|                    | TTO                  | Coverage probability            | 0.552          |                | 0.586          |                | 0.596          | 0.60           |
|                    | T2                   | Mean width                      | 0.034          | 0.025          | 0.020          | 0.016          | 0.014          | 0.01           |
|                    | Т3                   | Coverage probability            | 0.736          | 0.815          | 0.833          | 0.863          | 0.871          | 0.89           |
|                    | 13                   | Mean width                      | 0.052          | 0.042          | 0.036          | 0.030          | 0.026          | 0.022          |
|                    | Median T1            | Coverage probability            | 0.874          | 0.917          | 0.922          | 0.942          | 0.944          | $0.95^{\circ}$ |
|                    | Wicdian 11           | Mean width                      | 0.085          |                |                | 0.039          |                | 0.023          |
|                    | Median T2            | Coverage probability            | 0.580          |                | 0.613          | 0.627          | 0.618          | 0.639          |
|                    | 1,1001uii 1 <i>2</i> | Mean width                      | 0.036          | 0.027          | 0.022          | 0.017          | 0.014          | 0.012          |
|                    | Median T3            | Coverage probability            | 0.752          | 0.830          | 0.850          | 0.884          | 0.895          | 0.91           |
|                    |                      | Mean width                      | 0.056          | 0.045          | 0.038          | 0.032          |                | 0.024          |
|                    | Mad T1               | Coverage probability            | 0.788          | 0.828          | 0.830          |                | 0.828          | 0.84           |
|                    |                      | Mean width                      | 0.060<br>0.444 | 0.043<br>0.463 | 0.035<br>0.462 | 0.027<br>0.451 | 0.023<br>0.462 | 0.019          |
|                    | Mad T2               | Coverage probability Mean width | 0.444          |                | 0.462          | 0.431          |                | 0.47           |
|                    |                      | Coverage probability            | 0.620          |                |                | 0.012          |                | 0.77           |
|                    | Mad T3               | Mean width                      | 0.020          | 0.700          | 0.027          |                | 0.019          | 0.01           |
|                    |                      | Coverage probability            | 0.837          | 0.867          | 0.866          | 0.890          | 0.895          | 0.91           |
|                    | Chen t               | Mean width                      | 0.069          | 0.049          | 0.040          | 0.032          | 0.027          | 0.023          |
|                    |                      | Coverage probability            | 0.888          | 0.918          | 0.921          |                | 0.935          | 0.94           |
|                    | YY t                 | Mean width                      | 0.089          | 0.061          | 0.049          | 0.038          | 0.032          | 0.02           |
|                    |                      | Coverage probability            | 0.620          |                | 0.714          |                | 0.749          | 0.77           |
|                    | DMSD t               | Mean width                      | 0.097          | 0.077          | 0.067          | 0.057          | 0.050          | 0.04           |
|                    |                      | Mean width                      | 0.083          | 0.059          | 0.047          | 0.037          | 0.031          | 0.02           |
|                    | Downton t            | Coverage probability            | 0.969          | 0.971          | 0.958          | 0.918          | 0.832          | 0.702          |
|                    | Downton t            | Mean width                      | 0.208          | 0.138          | 0.109          | 0.083          | 0.070          | 0.05           |
|                    | Q1 t                 | Coverage probability            | 0.866          | 0.917          | 0.921          | 0.944          | 0.942          | 0.95           |
|                    | QTt                  | Mean width                      | 0.081          | 0.060          | 0.049          |                | 0.033          | 0.023          |
|                    | Q1Q3 t               | Coverage probability            |                | 0.939          |                |                | 0.964          |                |
|                    |                      | Mean width                      | 0.091          | 0.068          | 0.056          |                | 0.038          | 0.032          |
|                    | Q3 t                 | Coverage probability            |                | 0.930          |                | 0.955          |                |                |
|                    |                      | Mean width                      |                | 0.064          |                | 0.042          |                |                |
|                    | Student t            | Coverage probability Mean width | 0.836<br>0.061 | 0.880<br>0.043 | 0.895          | 0.917<br>0.028 | 0.920          | 0.933          |
|                    |                      | Coverage probability            | 0.843          |                |                | 0.028          | 0.023          |                |
|                    | Johnson t            | Mean width                      | 0.061          |                |                | 0.921          |                |                |
|                    |                      | Coverage probability            |                | 0.896          |                | 0.028          |                |                |
| Gamma (Skewness 4) | Median t             | Mean width                      | 0.067          |                |                | 0.030          |                |                |
|                    |                      | Coverage probability            |                | 0.795          |                | 0.805          |                |                |
|                    | Mad t                | Mean width                      |                | 0.030          | 0.024          |                | 0.016          |                |
|                    | A A DM 4             | Coverage probability            |                | 0.814          |                | 0.818          |                |                |
|                    | AADM t               | Mean width                      | 0.047          |                | 0.025          |                | 0.016          |                |
|                    | Wigard t             | Coverage probability            | 0.812          | 0.873          |                | 0.924          |                |                |
|                    | Wizard t             | Mean width                      |                | 0.042          |                | 0.029          |                |                |
|                    | Wizard t from median | Coverage probability            |                | 0.886          |                | 0.934          |                |                |
|                    | wizaiu i mom median  | Mean width                      | 0.059          |                |                | 0.030          |                |                |
|                    | T1                   | Coverage probability            | 0.813          |                |                | 0.910          |                |                |
|                    | • •                  | Mean width                      | 0.056          | 0.041          | 0.034          | 0.027          | 0.023          | 0.019          |



| Distributions | Approaches | Measuring Criteria   |       |       | Sample | Size  |       |       |
|---------------|------------|----------------------|-------|-------|--------|-------|-------|-------|
| Distributions | Approaches | wicasuring Criteria  | 10    | 20    | 30     | 50    | 70    | 100   |
|               | T2         | Coverage probability | 0.534 | 0.577 | 0.575  | 0.581 | 0.589 | 0.585 |
|               | 12         | Mean width           | 0.024 | 0.017 | 0.015  | 0.012 | 0.010 | 0.008 |
|               | Т3         | Coverage probability | 0.699 | 0.774 | 0.811  | 0.854 | 0.869 | 0.878 |
|               | 13         | Mean width           | 0.036 | 0.029 | 0.026  | 0.022 | 0.019 | 0.016 |
|               | Median T1  | Coverage probability | 0.831 | 0.886 | 0.907  | 0.930 | 0.938 | 0.950 |
|               | Median 11  | Mean width           | 0.061 | 0.045 | 0.038  | 0.029 | 0.025 | 0.021 |
|               | M-4: T2    | Coverage probability | 0.580 | 0.615 | 0.622  | 0.628 | 0.630 | 0.624 |
|               | Median T2  | Mean width           | 0.026 | 0.019 | 0.016  | 0.013 | 0.011 | 0.009 |
|               | M-4: T2    | Coverage probability | 0.720 | 0.807 | 0.840  | 0.877 | 0.894 | 0.910 |
|               | Median T3  | Mean width           | 0.040 | 0.032 | 0.029  | 0.024 | 0.021 | 0.018 |
|               | M- J T1    | Coverage probability | 0.736 | 0.777 | 0.781  | 0.798 | 0.788 | 0.798 |
|               | Mad T1     | Mean width           | 0.040 | 0.028 | 0.024  | 0.018 | 0.015 | 0.013 |
|               | M 172      | Coverage probability | 0.400 | 0.428 | 0.413  | 0.420 | 0.416 | 0.419 |
|               | Mad T2     | Mean width           | 0.017 | 0.012 | 0.010  | 0.008 | 0.007 | 0.006 |
|               | M- 1 T2    | Coverage probability | 0.588 | 0.650 | 0.670  | 0.700 | 0.706 | 0.718 |
|               | Mad T3     | Mean width           | 0.026 | 0.021 | 0.018  | 0.015 | 0.013 | 0.011 |
|               | Clara A    | Coverage probability | 0.772 | 0.818 | 0.832  | 0.860 | 0.869 | 0.880 |
|               | Chen t     | Mean width           | 0.046 | 0.033 | 0.028  | 0.022 | 0.019 | 0.016 |
|               | YY t       | Coverage probability | 0.838 | 0.882 | 0.899  | 0.920 | 0.922 | 0.938 |
|               | 111        | Mean width           | 0.061 | 0.043 | 0.036  | 0.028 | 0.023 | 0.020 |
|               |            | Coverage probability | 0.588 | 0.650 | 0.670  | 0.700 | 0.706 | 0.718 |
|               | DMSD t     | Mean width           | 0.067 | 0.055 | 0.051  | 0.044 | 0.040 | 0.036 |
|               |            | Mean width           | 0.045 | 0.030 | 0.024  | 0.018 | 0.015 | 0.013 |
|               | D          | Coverage probability | 0.913 | 0.901 | 0.861  | 0.731 | 0.531 | 0.280 |
|               | Downton t  | Mean width           | 0.133 | 0.086 | 0.070  | 0.053 | 0.044 | 0.037 |
|               | 01.4       | Coverage probability | 0.812 | 0.866 | 0.889  | 0.914 | 0.916 | 0.932 |
|               | Q1 t       | Mean width           | 0.055 | 0.040 | 0.034  | 0.027 | 0.023 | 0.019 |
|               | 0102+      | Coverage probability | 0.838 | 0.896 | 0.916  | 0.936 | 0.944 | 0.959 |
|               | Q1Q3 t     | Mean width           | 0.061 | 0.046 | 0.039  | 0.031 | 0.026 | 0.022 |
|               | 02.4       | Coverage probability | 0.825 | 0.880 | 0.904  | 0.929 | 0.935 | 0.948 |
|               | Q3 t       | Mean width           | 0.058 | 0.043 | 0.037  | 0.029 | 0.025 | 0.021 |

# Gamma (0.5,1) Skewness = +4

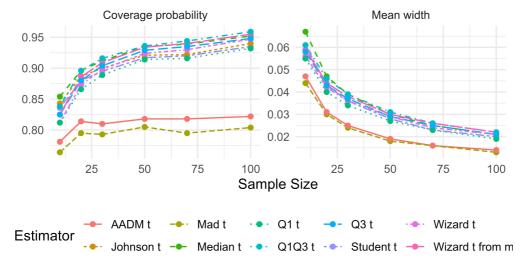



Fig. 3: Coverage probability and Mean width of Gamma (0.5,1)

## 3.3.1. Gamma with Skewness = 1

This distribution exhibits positive skewness, and coverage probability varies across approaches and sample sizes. The proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approaches generally maintain higher coverage probability compared to traditional methods, especially



as the sample size increases. As expected, the mean width of intervals decreases with increasing sample size for most approaches. Median-t and Johnson-t also show competitive performance in terms of coverage probability and mean widths.

#### 3.3.2. Gamma with Skewness = 2

With higher skewness compared to the previous gamma distribution, coverage probability tends to decrease for all approaches. The proposed Q1-t, Q3-t, Q1Q3-t, and Wizard-t approaches consistently exhibit higher coverage probability compared to other methods across different sample sizes. Median t and Johnson-t also maintain relatively high coverage probability, especially at larger sample sizes. As the sample size increases, the mean width of intervals decreases for most approaches, but the difference in mean widths among different methods remains consistent.

#### 3.3.3. Gamma with Skewness = 4

This distribution represents significant positive skewness, leading to lower coverage probability for most approaches. Despite the challenging skewness, the proposed "Wizard-t" approaches generally maintain relatively higher coverage probability compared to traditional methods. As the sample size increases, the coverage probability improves slightly for some approaches, but the difference in performance between methods persists. Median-t and Johnson-t also show reasonable performance but with slightly lower coverage probability compared to the "Wizard-t" approaches. Also, proposed Q1-t, Q3-t, and Q1Q3-t consistently maintain relatively higher coverage probability and lower mean width compared to traditional methods.

#### 3.4. Log-normal Distribution

Table 3.4 demonstrates the coverage probability and mean width for different sample sizes for the log-normal distribution with different skewness.

#### 3.4.1. Log-normal with Skewness 2.2

Overall, the interval estimators tend to perform relatively well at this skewness level. Most methods achieve high coverage probabilities, indicating that their CIs capture the true parameter value with high probability. As the sample size increases, the mean width of the CIs generally decreases, indicating increased precision. Proposed Q1-t, Q3-t, Q1Q3-t, Wizard-t, and Wizard-t from median consistently demonstrate good performance across different sample sizes, with high coverage probability and relatively narrow mean width.

## 3.4.2. Log-normal with Skewness 3.6

At higher skewness levels, the performance of statistical methods becomes more variable. While some methods still maintain high coverage probability, others experience a slight decrease, especially at smaller sample sizes. The mean width of CIs tends to increase compared to skewness 2.2, indicating decreased precision in estimation. Proposed Q1-t, Q3-t, Q1Q3-t, Median-t, and Wizard-t from median remain performers, but their performance may degrade slightly compared to skewness 2.2.

Table 3.4: Coverage Probability and Mean Width for different sample sizes from Lognormal Distribution with different skewness.

| Distributions            | Approaches           | Measuring Criteria   |       |       | Sample | Size  |       |       |
|--------------------------|----------------------|----------------------|-------|-------|--------|-------|-------|-------|
| Distributions            | ripprodenes          | Wedsuring Criteria   | 10    | 20    | 30     | 50    | 70    | 100   |
|                          | Student t            | Coverage probability | 0.906 | 0.921 | 0.927  | 0.936 | 0.942 | 0.94  |
|                          | Student t            | Mean width           | 2.801 | 1.902 | 1.543  | 1.191 | 0.999 | 0.839 |
|                          | Johnson t            | Coverage probability | 0.910 | 0.926 | 0.930  | 0.938 | 0.943 | 0.943 |
|                          | JOHNSON t            | Mean width           | 2.801 | 1.902 | 1.543  | 1.191 | 0.999 | 0.839 |
| Lognormal (Skewness 2.2) | Median t             | Coverage probability | 0.911 | 0.929 | 0.934  | 0.942 | 0.948 | 0.950 |
| Lognorman (Skewness 2,2) |                      | Mean width           | 2.923 | 1.977 | 1.599  | 1.231 | 1.032 | 0.866 |
|                          | Mad t                | Coverage probability | 0.834 | 0.848 | 0.835  | 0.828 | 0.852 | 0.841 |
|                          |                      | Mean width           | 2.087 | 1.407 | 1.129  | 0.865 | 0.726 | 0.606 |
|                          | AADM t               | Coverage probability | 0.889 | 0.898 | 0.899  | 0.900 | 0.917 | 0.908 |
|                          |                      | Mean width           | 2.448 | 1.665 | 1.342  | 1.032 | 0.868 | 0.726 |
|                          | Wizard t             | Coverage probability | 0.881 | 0.916 | 0.928  | 0.943 | 0.951 | 0.954 |
|                          | wizaid t             | Mean width           | 2.512 | 1.860 | 1.556  | 1.231 | 1.044 | 0.884 |
|                          | Wizard t from median | Coverage probability | 0.887 | 0.920 | 0.928  | 0.947 | 0.954 | 0.956 |
|                          | wizard t from median | Mean width           | 2.572 | 1.900 | 1.584  | 1.251 | 1.061 | 0.897 |
|                          | T1                   | Coverage probability | 0.866 | 0.904 | 0.918  | 0.928 | 0.938 | 0.938 |
|                          | 11                   | Mean width           | 2.362 | 1.760 | 1.468  | 1.157 | 0.979 | 0.828 |
|                          | T2                   | Coverage probability | 0.550 | 0.575 | 0.569  | 0.592 | 0.597 | 0.594 |
|                          | 1 2                  | Mean width           | 1.042 | 0.770 | 0.641  | 0.504 | 0.426 | 0.360 |
|                          | Т3                   | Coverage probability | 0.737 | 0.819 | 0.833  | 0.856 | 0.895 | 0.896 |
|                          | 13                   | Mean width           | 1.638 | 1.310 | 1.136  | 0.936 | 0.813 | 0.705 |
|                          | Median T1            | Coverage probability | 0.878 | 0.911 | 0.924  | 0.934 | 0.944 | 0.947 |



| Distributions            | Approaches           | Measuring Criteria              | Sample Size    |                |                |                |                |      |
|--------------------------|----------------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|------|
| Distributions            | Approaches           | Wicasuring Criteria             | 10             | 20             | 30             | 50             | 70             | 100  |
|                          |                      | Mean width                      | 2.464          | 1.829          | 1.521          | 1.196          | 1.012          | 0.85 |
|                          | Median T2            | Coverage probability            | 0.568          | 0.593          | 0.591          | 0.605          | 0.612          | 0.60 |
|                          | Median 12            | Mean width                      | 1.088          | 0.801          | 0.664          | 0.521          | 0.440          | 0.37 |
|                          | Median T3            | Coverage probability            | 0.751          | 0.830          | 0.844          | 0.866          | 0.903          | 0.90 |
|                          | Wicdian 15           | Mean width                      | 1.709          | 1.362          | 1.178          | 0.968          | 0.840          | 0.72 |
|                          | Mad T1               | Coverage probability            | 0.777          | 0.825          | 0.815          |                | 0.844          | 0.83 |
|                          |                      | Mean width                      | 1.762          | 1.303          | 1.075          | 0.840          | 0.712          |      |
|                          | Mad T2               | Coverage probability            |                | 0.452          | 0.438          |                | 0.451          | 0.4  |
|                          |                      | Mean width                      | 0.777<br>0.626 | 0.570<br>0.692 | 0.469          | 0.366<br>0.740 | 0.310          | 0.2  |
|                          | Mad T3               | Coverage probability Mean width | 1.221          | 0.092          | 0.705<br>0.832 | 0.740          | 0.763          | 0.7  |
|                          |                      | Coverage probability            | 0.932          |                | 0.832          | 0.080          | 0.966          | 0.9  |
|                          | Chen t               | Mean width                      | 4.071          | 2.540          | 1.986          | 1.470          | 1.195          | 0.9  |
|                          |                      | Coverage probability            | 0.907          |                | 0.928          | 0.938          | 0.943          | 0.9  |
|                          | YY t                 | Mean width                      | 2.801          |                | 1.543          | 1.191          | 0.999          | 0.8  |
|                          |                      | Coverage probability            | 0.626          | 0.692          |                | 0.740          | 0.765          | 0.70 |
|                          | DMSD t               | Mean width                      | 3.058          | 2.424          | 2.143          | 1.847          | 1.646          | 1.4  |
|                          |                      | Mean width                      | 2.652          | 1.861          | 1.501          | 1.160          | 0.985          | 0.8  |
|                          | D                    | Coverage probability            | 0.993          | 0.992          | 0.992          | 0.986          | 0.976          | 0.9  |
|                          | Downton t            | Mean width                      | 6.777          | 4.444          | 3.549          | 2.702          | 2.261          | 1.8  |
|                          | 01+                  | Coverage probability            | 0.911          | 0.945          | 0.956          | 0.962          | 0.972          | 0.9  |
|                          | Q1 t                 | Mean width                      | 2.836          | 2.103          | 1.756          | 1.387          | 1.176          | 0.9  |
|                          | Q1Q3 t               | Coverage probability            | 0.896          | 0.927          | 0.936          | 0.950          | 0.954          | 0.9  |
|                          | QiQst                | Mean width                      | 2.593          | 1.898          | 1.572          | 1.238          | 1.050          | 0.8  |
|                          | Q3 t                 | Coverage probability            | 0.903          | 0.939          | 0.948          | 0.957          | 0.963          | 0.9  |
|                          | Q3 t                 | Mean width                      | 2.715          | 2.000          | 1.664          | 1.312          | 1.113          | 0.9  |
|                          | Student t            | Coverage probability            | 0.870          | 0.898          | 0.907          | 0.915          | 0.934          | 0.9  |
|                          | Stadent t            | Mean width                      | 4.388          | 3.020          | 2.473          | 1.929          | 1.619          | 1.3  |
|                          | Johnson t            | Coverage probability            | 0.875          | 0.899          | 0.912          | 0.918          | 0.937          | 0.9  |
|                          |                      | Mean width                      | 4.388          | 3.020          | 2.473          | 1.929          | 1.619          | 1.3  |
|                          | Median t             | Coverage probability            | 0.880          | 0.904          |                | 0.926          | 0.942          | 0.9  |
|                          |                      | Mean width                      | 4.631          | 3.175          | 2.592          |                | 1.691          | 1.4  |
|                          | Mad t                | Coverage probability            | 0.801          | 0.821          | 0.803          | 0.799<br>1.313 | 0.820<br>1.102 | 0.7  |
| ognormal (Skowness 3.6)  |                      | Mean width                      | 3.182<br>0.847 | 2.138<br>0.866 | 1.717<br>0.862 | 0.857          | 0.881          | 0.9  |
| Lognormal (Skewness 3.6) | AADM t               | Coverage probability Mean width | 3.616          | 2.451          | 1.976          | 1.518          | 1.275          | 1.0  |
|                          |                      | Coverage probability            | 0.846          |                | 0.910          | 0.926          |                | 0.9  |
|                          | Wizard t             | Mean width                      |                | 2.955          |                |                | 1.688          | 1.4  |
|                          |                      | Coverage probability            |                |                | 0.915          |                |                |      |
|                          | Wizard t from median | Mean width                      | 4.063          | 3.037          | 2.552          |                |                | 1.4  |
|                          | m.,                  | Coverage probability            | 0.834          |                | 0.894          |                |                |      |
|                          | T1                   | Mean width                      |                |                | 2.348          |                |                |      |
|                          | TTO                  | Coverage probability            |                |                | 0.562          |                |                |      |
|                          | T2                   | Mean width                      | 1.628          | 1.222          | 1.027          | 0.816          | 0.690          | 0.5  |
|                          | Т3                   | Coverage probability            | 0.718          | 0.795          | 0.818          | 0.850          | 0.884          | 0.8  |
|                          | 13                   | Mean width                      | 2.564          | 2.080          | 1.821          |                | 1.318          |      |
|                          | Median T1            | Coverage probability            | 0.842          | 0.889          | 0.903          | 0.919          | 0.938          | 0.9  |
|                          | Median 11            | Mean width                      |                | 2.927          |                | 1.956          |                |      |
|                          | Median T2            | Coverage probability            |                | 0.579          |                | 0.599          |                |      |
|                          | Wicdian 12           | Mean width                      |                |                | 1.076          |                |                |      |
|                          | Median T3            | Coverage probability            |                |                | 0.832          |                |                |      |
|                          |                      | Mean width                      |                | 2.187          | 1.908          | 1.584          |                | 1.2  |
|                          | Mad T1               | Coverage probability            | 0.743          |                | 0.785          |                | 0.814          |      |
|                          | <del>-</del>         | Mean width                      | 2.669          | 1.973          | 1.630          |                | 1.079          |      |
|                          | Mad T2               | Coverage probability            | 0.412          |                |                |                | 0.418          |      |
|                          | <del></del>          | Mean width                      | 1.182          |                | 0.713          |                | 0.470          |      |
|                          | Mad T3               | Coverage probability            | 0.597          |                | 0.668          |                | 0.728          |      |
|                          |                      | Mean width                      | 1.860          | 1.473          | 1.264          | 1.032          | 0.897          | 0.7  |



| Distributions          | Approaches           | Measuring Criteria              | Sample Size    |                |                |                |                |                |
|------------------------|----------------------|---------------------------------|----------------|----------------|----------------|----------------|----------------|----------------|
|                        | Approaches           | Wedsuring Criteria              | 10             | 20             | 30             | 50             | 70             | 100            |
|                        | Chen t               | Coverage probability            | 0.921          | 0.931          | 0.951          | 0.953          | 0.963          | 0.961          |
|                        | Chen t               | Mean width                      | 7.027          | 4.416          | 3.468          | 2.584          |                | 1.723          |
|                        | YY t                 | Coverage probability            | 0.870          | 0.899          |                |                |                |                |
|                        |                      | Mean width Coverage probability | 4.388<br>0.597 | 3.020<br>0.646 | 2.473<br>0.668 | 1.929<br>0.704 | 1.619<br>0.728 | 1.370<br>0.722 |
|                        | DMSD t               | Mean width                      | 4.779          | 3.920          |                | 3.170          |                |                |
|                        | DIVISE t             | Mean width                      | 3.681          | 2.559          |                |                | 1.347          | 1.123          |
|                        | D                    | Coverage probability            |                |                | 0.975          |                | 0.929          |                |
|                        | Downton t            | Mean width                      | 10.167         | 6.658          | 5.325          | 4.054          | 3.388          | 2.828          |
|                        | Q1 t                 | Coverage probability            | 0.877          |                |                | 0.952          |                |                |
|                        | Q1 t                 | Mean width                      | 4.400          | 3.289          |                |                | 1.864          | 1.586          |
|                        | Q1Q3 t               | Coverage probability            | 0.858          | 0.900          |                | 0.925          | 0.940          |                |
|                        |                      | Mean width Coverage probability | 3.974<br>0.868 | 2.930<br>0.911 | 2.445<br>0.922 | 1.942<br>0.943 | 1.647<br>0.954 | 1.400<br>0.954 |
|                        | Q3 t                 | Mean width                      | 4.187          | 3.109          | 2.604          |                | 1.755          | 1.493          |
|                        |                      | Coverage probability            | 0.833          | 0.872          | 0.879          | 0.897          | 0.920          | 0.911          |
|                        | Student t            | Mean width                      | 6.721          | 4.697          | 3.888          | 3.076          | 2.585          | 2.214          |
|                        | T-1 4                | Coverage probability            | 0.838          | 0.876          | 0.885          | 0.902          | 0.925          | 0.915          |
|                        | Johnson t            | Mean width                      | 6.721          | 4.697          | 3.888          | 3.076          | 2.585          | 2.214          |
|                        | Median t             | Coverage probability            | 0.842          | 0.881          | 0.893          |                | 0.933          |                |
|                        | Wicdian t            | Mean width                      | 7.161          | 4.978          | 4.105          |                | 2.718          |                |
|                        | Mad t                | Coverage probability            | 0.763          | 0.775          | 0.764          |                | 0.775          | 0.751          |
|                        |                      | Mean width                      | 4.735<br>0.800 | 3.161          | 2.539          | 1.943          | 1.625          | 1.360<br>0.797 |
|                        | AADM t               | Coverage probability Mean width | 5.172          | 3.485          | 0.809<br>2.809 |                | 0.828<br>1.809 |                |
|                        |                      | Coverage probability            | 0.807          | 0.867          |                | 0.906          |                |                |
|                        | Wizard t             | Mean width                      | 6.048          | 4.589          | 3.907          | 3.159          |                |                |
|                        | W:1:                 | Coverage probability            | 0.815          | 0.874          |                |                |                |                |
|                        | Wizard t from median | Mean width                      | 6.243          | 4.724          | 4.007          | 3.234          | 2.744          | 2.362          |
| Lognormal (Skewness 6) | T1                   | Coverage probability            | 0.791          | 0.855          | 0.864          |                |                | 0.908          |
| Lognormai (Skewiess v) | 11                   | Mean width                      | 5.589          | 4.316          | 3.682          |                | 2.529          | 2.182          |
|                        | T2                   | Coverage probability            | 0.513          |                | 0.544          |                | 0.572          | 0.575          |
|                        |                      | Mean width                      | 2.487          |                | 1.613<br>0.793 | 1.301          | 1.102          | 0.949          |
|                        | T3                   | Coverage probability Mean width | 0.688<br>3.926 | 3.234          |                | 0.842<br>2.418 | 2.104          | 1.860          |
|                        |                      | Coverage probability            | 0.805          |                |                | 0.902          |                |                |
|                        | Median T1            | Mean width                      | 5.955          | 4.576          | 3.888          | 3.136          | 2.659          | 2.288          |
|                        | M 11 TO              | Coverage probability            |                | 0.561          |                | 0.590          |                |                |
|                        | Median T2            | Mean width                      | 2.649          | 2.013          | 1.703          |                | 1.159          |                |
|                        | Median T3            | Coverage probability            | 0.708          | 0.781          | 0.807          | 0.856          | 0.888          | 0.882          |
|                        | Wicdian 13           | Mean width                      | 4.182          | 3.428          | 3.022          |                | 2.212          |                |
|                        | Mad T1               | Coverage probability            | 0.710          |                |                | 0.755          |                |                |
|                        |                      | Mean width                      | 3.947          |                |                | 1.883          |                |                |
|                        | Mad T2               | Coverage probability Mean width | 0.377<br>1.754 | 1.278          | 0.388<br>1.053 |                | 0.383<br>0.693 |                |
|                        |                      | Coverage probability            | 0.561          | 0.598          | 0.621          |                | 0.676          |                |
|                        | Mad T3               | Mean width                      |                |                |                | 1.527          |                |                |
|                        | CI.                  | Coverage probability            |                |                | 0.934          |                | 0.954          |                |
|                        | Chen t               | Mean width                      |                |                | 5.905          |                |                | 3.009          |
|                        | YY t                 | Coverage probability            | 0.835          |                | 0.882          |                | 0.923          |                |
|                        | 111                  | Mean width                      | 6.721          | 4.697          | 3.888          | 3.076          |                |                |
|                        | D) ((D)              | Coverage probability            | 0.561          |                |                |                | 0.676          |                |
|                        | DMSD t               | Mean width                      | 7.301          | 6.213          |                | 5.353          |                |                |
|                        |                      | Mean width                      |                | 3.328          | 2.661          |                | 1.737          |                |
|                        | Downton t            | Coverage probability Mean width |                |                |                | 0.902<br>5.901 |                |                |
|                        |                      | Coverage probability            |                |                |                | 0.924          |                |                |
|                        | Q1 t                 | Mean width                      |                |                |                | 3.416          |                |                |
|                        |                      |                                 | 5.5 10         | 2.013          | 1 6            | 210            | ,              |                |



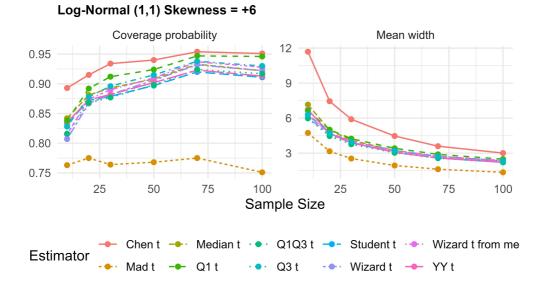



Fig. 4: Coverage probability and Mean width of Lognormal (1,1)

| Distributions | Approaches  | Measuring Criteria   | Sample Size |       |       |       |       |       |
|---------------|-------------|----------------------|-------------|-------|-------|-------|-------|-------|
| Distributions | ripprouenes | Wedstring Criteria   | 10          | 20    | 30    | 50    | 70    | 100   |
|               | 01024       | Coverage probability | 0.816       | 0.868 | 0.877 | 0.898 | 0.924 | 0.917 |
|               | Q1Q3 t      | Mean width           | 5.983       | 4.463 | 3.764 | 3.032 | 2.571 | 2.212 |
|               | 02.4        | Coverage probability | 0.828       | 0.878 | 0.896 | 0.915 | 0.938 | 0.930 |
|               | Q3 t        | Mean width           | 6.315       | 4.738 | 4.004 | 3.224 | 2.734 | 2.351 |

## 3.4.3. Log-normal with Skewness 6

This skewness level represents a more extreme distribution where the performance of statistical methods is challenged. Coverage probability tends to decrease across most methods and sample sizes, indicating a higher probability of CIs failing to capture the true parameter. The mean width of CIs increases significantly, suggesting a trade-off between precision and accuracy. Despite these challenges, Median-t and Wizard-t from median provide relatively good performance compared to other methods, but with reduced coverage probability and wider width compared to lower skewness levels. Also, proposed Q1-t, Q3-t, and Q1Q3-t provide high coverage probability with lower mean width compared to the existing methods.

## 3.5. Application

To illustrate the simulation results, we considered two real-life examples, one for right-skewed and another one for left-skewed data.

## 3.5.1. Psychotropic drug exposure data

To analyze the average usage of psychotropic drugs among non-antipsychotic drug users, the number of psychotropic drug users was reported for a random sample of n = 20 from various drug categories. The data below shows the number of users. [17]: 43.4, 24, 1.8, 0, 0.1, 170.1, 0.4, 150, 31.5, 5.2, 35.7, 27.3,5, 64.3, 70, 94, 61.9, 9.1, 38.8, and 14.8.

The data were found to be positively skewed (Fig. 5) with skewness = 1.57, kurtosis = 2.06, population mean = 42.37, and population standard deviation = 48.43 [17].

Table 3.5: 95% CIs and widths for psychotropic drug exposure data

| Statistics | 95%         | CI Width    |         |
|------------|-------------|-------------|---------|
|            | Lower Limit | Upper Limit | CI With |
| Student_t  | 19.70       | 65.04       | 45.33   |
| Johnson_t  | 20.34       | 65.67       | 45.33   |
| Median_t   | 18.86       | 65.88       | 47.01   |
| Mad_t      | 25.66       | 69.08       | 43.43   |



| Statistics           | 95%         | CI Width    |         |
|----------------------|-------------|-------------|---------|
| Statistics           | Lower Limit | Upper Limit | CI With |
| AADM_t               | 22.66       | 62.08       | 44.42   |
| Wizard_t             | 20.05       | 64.69       | 44.63   |
| Wizard_from_Median_t | 19.46       | 65.28       | 45.12   |
| T1                   | 21.41       | 63.33       | 44.91   |
| T2                   | 23.19       | 61.55       | 44.36   |
| T3                   | 26.75       | 57.99       | 41.23   |
| Median_T1            | 20.64       | 64.10       | 43.47   |
| Median_T2            | 22.85       | 61.89       | 45.04   |
| Median_T3            | 26.17       | 68.57       | 42.39   |
| MAD_T1               | 26.92       | 67.82       | 40.90   |
| MAD_T2               | 25.60       | 69.14       | 43.54   |
| MAD_T3               | 20.85       | 63.89       | 45.03   |
| Chen_t               | 11.93       | 72.81       | 60.88   |
| YY_t                 | 20.02       | 65.35       | 45.33   |
| DMSD_t               | 15.17       | 69.57       | 54.39   |
| Downton_t            | -23.30      | 82.10       | 105.39  |
| Q1_t                 | 16.13       | 68.61       | 42.47   |
| Q3_t                 | 19.97       | 64.77       | 44.79   |
| Q1Q3_t               | 18.05       | 66.69       | 44.63   |

The confidence intervals and their respective confidence widths can be found in Table 3.5. From Table 3.5, all the proposed CIs cover the hypothesized true population mean of 42.37. However, Mad-T1 provided the shortest width followed by T2, and Downton-t produced the highest width.

# 3.5.2. Long jump distance data

The following data represent the results of the final point scores reported for 40 players in the long jump distance, measured in meters [17]: 8.11, 8.11, 8.09, 8.08, 8.06, 8.03, 8.02, 7.99, 7.99, 7.97, 7.95, 7.92, 7.92, 7.92, 7.89, 7.87, 7.84, 7.79, 7.77, 7.76, 7.72, 7.71, 7.66, 7.62, 7.61, 7.59, 7.55, 7.53, 7.5, 7.42, 7.38, 7.38, 7.26, 7.25, 7.08, 6.96, 6.84, 6.55.

According to a study, the data is negatively skewed (Fig. 6) with skewness = -1.16, kurtosis = 1.20, population mean = 7.6745, and population standard deviation = 0.37 [17].

Table 3.6: 95% CIs and widths of the final scores for long jump distance data

| Statistics           | 95%         | CI Width           |         |
|----------------------|-------------|--------------------|---------|
| Suitsties            | Lower Limit | <b>Upper Limit</b> | CI With |
| Student_t            | 7.556       | 7.793              | 0.237   |
| Johnson_t            | 7.554       | 7.791              | 0.237   |
| Median_t             | 7.553       | 7.796              | 0.244   |
| Mad_t                | 7.582       | 7.767              | 0.185   |
| AADM_t               | 7.562       | 7.787              | 0.225   |
| Wizard_t             | 7.557       | 7.792              | 0.235   |
| Wizard_from_Median_t | 7.561       | 7.788              | 0.228   |
| T1                   | 7.559       | 7.790              | 0.230   |
| T2                   | 7.625       | 7.724              | 0.100   |
| T3                   | 7.584       | 7.765              | 0.181   |
| Median_T1            | 7.556       | 7.793              | 0.237   |
| Median_T2            | 7.623       | 7.726              | 0.103   |
| Median_T3            | 7.581       | 7.768              | 0.187   |
| MAD_T1               | 7.585       | 7.764              | 0.180   |
| MAD_T2               | 7.636       | 7.713              | 0.078   |
| MAD_T3               | 7.604       | 7.745              | 0.142   |
| Chen_t               | 7.570       | 7.779              | 0.208   |
| YY_t                 | 7.555       | 7.792              | 0.237   |
| DMSD_t               | 7.512       | 7.837              | 0.326   |
| Downton_t            | 7.478       | 8.052              | 0.575   |
| Q1_t                 | 7.550       | 7.799              | 0.250   |
| Q3_t                 | 7.532       | 7.817              | 0.284   |
| Q1Q3_t               | 7.541       | 7.808              | 0.267   |

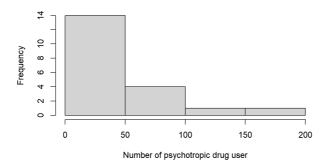



Fig. 5: Histogram of Psychotropic drug exposure data

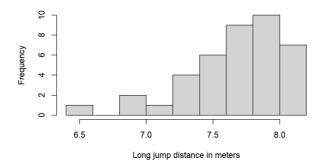



Fig. 6: Histogram of Long jump distance data

The table in 3.6 provides the confidence intervals (CIs) and their respective widths. As this data set is negatively skewed, we determine that the findings in Table 3.6 corroborate the simulation results for the negatively skewed distribution examined in this study. Table 3.6 reveals that all the suggested confidence intervals (CIs) encompass the hypothesized true population mean of 7.6745.

#### 4 Some Conclusion Remarks

This paper considers 23 different interval estimators for estimating the population mean of symmetric and asymmetric distributions within classical and modified-t approaches. As a direct theoretical comparison is unfeasible, a simulation study was conducted to assess the performance of the estimators based on the CI method. The main merit of this paper is to review the existing estimators proposed by several researchers several times under different simulation conditions. Random samples are generated from various left-skewed, right-skewed, and symmetric distributions. Our simulation results indicate that among 23 estimators, for a moderate sample (>50), our proposed Q1-t, Q3-t, Q1Q3-t, Wizard-t, and Wizard-t from median have consistently better coverage probability and average width than the other test statistics, especially for the asymmetric population. We also observed that Student-t performed the best for small sample sizes for symmetric distribution. Overall, our analysis suggests that the Chen-t, Median-t, T1, AADM-t, and Median-t estimators are promising and can also be chosen for estimating the mean for skewed distributions. Two real-life data are analyzed to illustrate the findings of the paper. It is important to consider the trade-offs between precision and accuracy when selecting the best method for a particular application. We are confident that this paper will provide the practitioners with an expanded array of interval estimators, enabling them to make optimal selections from a multitude of options utilized by various researchers across different contexts and timeframes.



# Acknowledgement

The authors are thankful to the anonymous referee for meticulously reviewing and providing valuable comments that enhanced this paper.

## References

- [1] Neyman J. Outline of a Theory of Statistical Estimation Based on the Classical Theory of Probability. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 236, 333–380 (1937).
- [2] Chen, L. Testing the Mean of Skewed Distributions. J Am Stat Assoc 90, 767 (1995).
- [3] Baklizi, A. & Kibria, B. M. G. One and two sample confidence intervals for estimating the mean of skewed populations: an empirical comparative study. J Appl Stat 36, 601-609 (2009).
- [4] Banik, S. & Kibria, B. M. G. Comparison of Some Parametric and Nonparametric Type One Sample Confidence Intervals for Estimating the Mean of a Positively Skewed Distribution. Commun Stat Simul Comput 39, 361–389 (2010).
- [5] Ghosh, S. & Polansky, A. M. New bootstrap confidence intervals for means of positively skewed distributions. Commun Stat Theory Methods 45, 6915-6927 (2016).
- [6] MUDELSEE, M. & ALKIO, M. Quantifying effects in two-sample environmental experiments using bootstrap confidence intervals. Environmental Modelling & Software 22, 84-96 (2007).
- [7] Andersson, P. G. ALTERNATIVE CONFIDENCE INTERVALS FOR THE TOTAL OF A SKEWED BIOLOGICAL POPULATION. Ecology 85, 3166-3171 (2004).
- [8] Shi, W. & Kibria, B. M. G. On some confidence intervals for estimating the mean of a skewed population. Int J Math Educ Sci Technol 38, 412-421 (2007).
- [9] Zhou, X. H. Nonparametric confidence intervals for the one- and two-sample problems. Biostatistics 6, 187–200 (2005).
- [10] Abu-Shawiesh, M. O. A. & Saghir, A. Robust Confidence Intervals for the Population Mean Alternatives to the Student-t Confidence Interval. Journal of Modern Applied Statistical Methods 18, 2–20 (2020).
- [11] Luh, W. & Guo, J. Transformation works for non-normality? On one-sample transformation trimmed t methods. British Journal of Mathematical and Statistical Psychology 54, 227–236 (2001).
- [12] Baklizi, A. Inference about the mean of a skewed population: a comparative study. J Stat Comput Simul 78, 421–435 (2008).
- [13] Abu-Shawiesh, M. O. A., Banik, S., Kibria, B. M. G. & Akyüz, H. E. A comparison of some modified confidence intervals based on robust scale estimators for process capability index. Production Engineering 14, 217–229 (2020).
- [14] Abu-Shawiesh et. al., M. O. A. Confidence Intervals based on Absolute Deviation for Population Mean of a Positively Skewed Distribution. International Journal of Computational and Theoretical Statistics 5, 1-13 (2018).
- [15] Sinsomboonthong, J., Abu-Shawiesh, M. O. A. & Kibria, B. M. G. Performance of Robust Confidence Intervals for Estimating Population Mean Under Both Non-Normality and in Presence of Outliers. Advances in Science, Technology and Engineering Systems Journal 5, 442–449 (2020).
- [16] Abu-Shawiesh, M. O. A., Sinsomboonthong, J. & Kibria, B. M. G. A modified robust confidence interval for the population mean of distribution based on deciles. Statistics in Transition New Series 23, 109-128 (2022).
- [17] Almonte, C. & Kibria, B. M. G. On some classical, bootstrap and transformation confidence intervals for estimating the mean of an asymmetrical population. Model Assisted Statistics and Applications 4, 91–104 (2009).
- [18] Johnson, N. J. Modified t Tests and Confidence Intervals for Asymmetrical Populations. J Am Stat Assoc 73, 536-544 (1978).
- [19] Gastwirth, J. L. Statistical properties of a measure of tax assessment uniformity. J Stat Plan Inference 6, 1-12 (1982).
- [20] Yanagihara, H. & Yuan, K. Four improved statistics for contrasting means by correcting skewness and kurtosis. British Journal of Mathematical and Statistical Psychology 58, 209-237 (2005).
- [21] Hall, P. On the Removal of Skewness by Transformation. J R Stat Soc Series B Stat Methodol 54, 221–228 (1992).



B. M. Golam Kibria is a Professor and Graduate Director (Statistics Division) in the Department of Mathematics and Statistics at Florida International Since 1993, he has published about 275 full research articles in various internationally renowned statistical journals, 22 conference proceedings, and co-authored books. Dr. Kibria has supervised, as professor, two two a major (or co-major) Ph.D. and 24 master's students, as well as 28 undergraduate students at FIU. Dr. Kibria is an elected Fellow of the Royal Statistical Society and holds an Honorary Doctorate from Jönköping University, Sweden. Dr. Kibria has been listed four times in a row (2020, 2021, 2022, and 2023) as among the Top 2 percent of scientists in all disciplines for single-year impact.





H. M. Nayem is a PhD student in the Department of Mathematics and Statistics at Florida International University (FIU). He also works as a graduate research assistant at the Department of Civil and Environmental Engineering at FIU, contributes to projects that involve statistical modeling in transportation engineering. He received his bachelor's and master's degrees in Statistics from Jahangirnagar University in Dhaka, Bangladesh. His primary research interests are in the field of Data Science, where he explores various statistical methods and their applications in real-world scenarios. Additionally, his research interests are statistical inference, Bayesian statistics, time analysis, learning.