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Abstract: We call a positive integen be a near 3perfect number ifo(n) = 3n+d, wherea(n) is the divisor function andl is a
proper divisor ofn. In this paper, we have derived all near@erfects of the form ‘2pt1p2, wherep; and p, are distinct odd primes
with p1 < pp anda > 1, 1<t < 2. There are only ten such numbers. Moreover, we have alsinelot some examples of even near
3—perfect numbers with four distinct prime factors.
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1 Introduction The abudancy indein) for any positive integers is
associated with the divisor functian(n) and is defined as
I(n)= %”) Sincek—perfect numbers are solutions of the

Well known divisor functioro(n) is the sum of all positive equationo(n) = kn, sol(n) = k. For abundant numbers,

divisors ofnincluding 1 anchitself. For any integek > 1, I(n) > 2 and for deficient numberk(n) < 2.

a pOSitive integen is called ak—perfect or multi perfect For any positive |ntegd{ > 1, we call a numben be

number B, 7], if o(n) =kn. Allknown k—perfectnumbers — a neark— perfect number ifo(n) = kn+d, whered is
are even. No od#é—perfect numbers have been found for g redundant divisor ofi. Near perfect numbers are near

k> 2. In recent years, some properties of ddeperfect  2_perfect. For any nedc—perfect numbers, we have the
numbers have been investigat&H[8]. following result.

In particular for'k = 2, 2—'perfect numbgrs are emma 1.1/f n = pclxlptzxz ..... e is a neark—perfect
solutions of the functional equatian(n) = 2n, which are  ,mper with redundant divisal, wherea; are positive
also known as perfect nugltiers. All known  perfect jntegers andy are distinct primes, then for= 1,2, ...,r,
numbers are of the form = 2°"*M,, where bothp and e havep|o(-- ), if pild or pi|o(-}) — d, if pr /d.

Mp = 2P — 1 are primes. The primes of the form m Pi i
Mp = 2P — 1 are called Mersenne primes. Hyperperfect In particular for an even ne&rperfect number, using
[1]’ near perfect Q] and near hyperperfecﬂl numbers this |emma, one can obtain the fOIlOWIng result.

are generalization of perfect numbers. Lemma 1.2Letr, a; are positive integers, and Igi be

A positive integern is said to be a near perfect distinct primes. Ifn = 2%pftp22.. .. @ is an even near
number with redundant divisad if and only if d is a  k—perfect number with redundant divisd then there
proper divisor (divisors excluding 1 amtitself) of nand  exists somé with 1 <i < r such thata; is odd if and
o(n) = 2n+d. For example, 12 is a near perfect number only if 2|d.
with redundant divisor 4. P. Pollack and V. Sheveléy [ Lemma 1.1 and lemma 1.2 were proved by Y. Li and
introduced the concept of near perfect numbers. TheyQ. Liao [5] in particular fork = 2.
derived all even near perfect numbers with exactly two  In this paper, we consider near3perfect numbers.
distinct prime factors and also obtained certain form of For anya > 1, we have derived all the near-3perfect
such numbers. Y. Li and Q. Liao5] derived some numbers of the form 2p; p; and Z pZp,, where bothp;
examples of even near perfect numbers with three distincand p, are odd primes wittp; < p2. We have proved that
prime factors of the form @} p,, wherep; < pp and 2435, 2.3.7, 2/.3.7 and 2.3.7 are the only near
a>1,1<t< 2. 3—perfect numbers of the form%;p, and Z.32.5,

* Corresponding author e-marhtbdas99@gmail.com

(@© 2017 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/sjm/040101

B. Das, H. K. Saikia: On near-3perfect numbers

23.32.5, £.32.7, 2.32.13, 2.32.13 and 2.32.23 are the
only near 3- perfect numbers of the form2p,. We
have also obtained some examples of even nepeBfect
numbers with four distinct prime factors.

2 Main Result

Near 3—perfect numbers of the formn = 2%p;p,

If nis a near 3-perfect number with redundant
divisor d, theno(n) = 3n+d and therefore abundancy

index!(n) = 2% — 34 9 Sinced is a proper divisor of
n, therefore 1< % < 1. If n=2%p1po, whereps < pp, is
a near 3-perfect with redundant divisat, then

o(n) =3n+d= (2" —1)(p1+1)(p2+1) =3.2%pyp2 +d

Therefore 3+ 4 = I(n) =
21+ 2)(1+3)

From the last inequality, we can getnf= 2%p;py,
wherep; < pg, is a near 3-perfect number, then the only

possibilities argp; = 3 andp, =5 or pp = 7. In fact we
have the following results.

-2+ 2a+d) <

From (1) and @), it follows that

2k—3 1
PL=2+-——" pp= R(B-Z"*lpl— 2P -1 (3)

20+1

If p1 =3, then from 8), we must haves=2 = 1, which
implies thatk = 20—1 4- 2 and therefore

_ goo-1_pB-1_o  8(20-241)-2F-2_9 2B-2,9g
p2 = 2017 = 20-211 =8- 20-241
(4)
Since p1 < p2 and p; = 3, therefore 4) also strictly
implies thatp, =5 orp, =7.
Case I: If p1 = 5, then from 4), we must have

gﬁiiﬁ = 3 and therefore22(3.2¢-F — 1) = 6. But this

equation has no solution for non-negative integerand

B

. Case II: If po = 7, then from #) we must have

gfj—:ziz—? = 1 and therefore 22(20-F — 1) = 8. This
equation has only solution for = 6 and3 = 5. Thus
n= 2537 is a near 3-perfect number with redundant
divisor 2 .

(b)If n=29p1py is a near 3-perfect number with

redundant divisod = 28 p;, wherea > 3, thenp, yd and

Proposition 2.1.Let o be a positive integer. Suppose that proceeding as the proposition 24d) one can obtain the

p1 andp, are odd primes withp; < pz, then

(a) The only near 3 perfect number of the form =
Zg p1p2 with redundant divisor 2, wherea > 8, isn =
2°.3.7.

(b) The only near 3- perfect numbers of the form=
2%p.p2 with redundant divisor 2p;, wherea > B3, are
n=2%35andn=2"37.

(c) The only near 3- perfect number of the form =
2;’ p1 p2 with redundant divisor 2p,, wherea > B, isn=
2°.3.7.

(d) There exists no near-Jerfect number of the form
n=29p; p2 with redundant divisor % p2,wherea > y >
1.

Proof.
If n=2%p;p, is a near 3-perfect number with
redundant divisod, then from the lemma 1.2, it follows

that all the redundant divisors are even and only possibléj2

values ofd are 2, 28p;, 2Pp, and 2pipy, where
a>B> 1landa >y>1.

(@)If n=2%p.p, is a near 3-perfect number with
redundant divisod = 2#, wherea > B, thenp, /d and
form the lemmal.l, we must have
P2|0(29py) —d = (291 — 1)(py + 1) — d. Therefore for
some positive integée, we can write

2kpp+d = (27" —1)(pr+ 1) 1)
Sincea(n) = 3n+d, it follows that
2k(p2+1)+ 28 =3.29p, 2)

following two equations, for some positive inteder

2kpy+2Ppr = (27" — 1) (p1+1) (5)
2k(p2+1)+2Ppy =3.29p; (6)
From 6) and @), it follows that
2k—3 1 1 1
91=2+20,—+1,92=E(3-2a p—22"tp—k) (7)

If p; = 3, then from {), we havek = 291+ 2 and
therefore

_820-1-32-1 5  8(207241)-3262 9 8 328249
20-1,2 20-211 20{—2_,,(_é)

Sincepy < p2 and p1 = 3, therefore §) also strictly
implies thatp, =5 orp, =7.
Case I: If p; = 5, then from 8), we must have

32‘2,5,71? = 3 and therefore 22(29-F — 1) = 2. This
equation has solution only for = 4 and3 = 3.Thus
n=2*35 is a near 3-perfect number with redundant
divisor 22.3.

Case II: If pp = 7, then from 8), we must have

g2 - i
8212 =1 and therefore 22(29°F — 3) — 8. This

equation has only solution fom = 7 and3 = 5. Thus
n= 2737 is a near 3-perfect number with redundant
divisor 2.3.
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(©)if n=2%p;p, is a near 3-perfect number with
redundant divisod = 28 p,, wherea > 3, thenp,|d and
from the lemmal.l, we must have
P2[0(2%p1) = (2°"1 — 1)(py + 1). Sinceps < pa, SO Pz
and p; + 1 are relatively prime and therefore we must
havep,|29+1 — 1. Therefore for some positive integer
we can write

kp2 — 20+l -1 (9)
Sinceo(n) = 3n—+d, it follows that
P27 +1)—k(p+1)=29"1-2P -1 (10)

If p1 = 3, then from 0), it follows thatk = 292 +
2B-2 1 1 and therefore

B 20+1__q B 2ﬁ+1_|_9
S 2024 9f-241 T 20-242B-241

Sincepy < p2 andp; = 3, therefore 11) also strictly
implies thatp, =5 orp, = 7.
Case I: If p1 = 5, then from (1) we must have

% = 3 and therefore22(3.2°F _5) = 6. But
this equation has no solution for non-negative integers
andp.

Case II: If pp = 7, then from (1) we must have

g1 ’ :
55527 = 1 and therefore/2 2(2°~F —7) = 8. This

equation has solution only fow = 8 andf8 = 5. Thus
n= 28.3.7 is a near 3-perfect number with redundant
divisor 2.7 .

(d)If n=2%p;p, is a near 3-perfect number with
redundant divisod = 2¥p1p,, wherea > y > 1, then
pz2|d and proceeding as the proposition @)lone can
obtain the following two equations, for some positive
integerk

P2 (11)

kp,=29+tt—1 (12)
pr(2%+2Y+1—k) =k+201 1 (13)

If p1 =3, then from 13), it follows thatk = 292+
3.2¥=2+ 1 and therefore

. 32149
202432241
Sincep; < p2 andp; = 3, therefore 14) also strictly

implies thatp, = 5 or p, = 7. But this equation has no
solution in terms ofx andy.

(14)

p2 =

Near 3—perfect numbers of the formn = 29 p2p,

If n=29 p%pz, where p; < p2 is a near 3-perfect
number  with redundant divisor d, then
o(n)=3n+d= (2"~ 1)(pf + p1+ 1)(p2+1) = 327 pfpp + d.

Therefore 3+ & = I(n) = (2— z)(1+ o + p%l)(1+

1 1 1 1
o) <2(1+5-+ p—%)(1+ %)

From the last inequality, we can getrif= 2% p%pz,
where p; < p2, is a near 3-perfect number, then only
possibilities argpy =3 andpy=50orpp=7o0orpy, =11
orp, =13 orp, =17 orpp, = 19 orp, = 23. In fact we
have the following results.

Proposition 2.2.Let a be a positive integer. Suppose that
p1 andp, are odd primes withp; < p2 , then

(a) The only near 3- perfect numbers of the form=
29 p2p, with redundant divisors®p!, wherea > B, 0 <
y<2,aren=22.325 andn = 27.32.23.

(b) The only near 3 perfect numbers of the form=
29 p?p, with redundant divisor 2p! p,, wherea > 3,0 <
y<2 aren=23325n=2°327,n=2*3213 andn=
25.32.13.

Proof. If n= 2% pfpz is a near 3-perfect number with
redundant divisod, then from the lemma 1.2, it follows
that all the redundant divisors are even and only possible
redundant divisors areé = 2P p} andd = 2P p!p,, where
a>p>10<y<2.

(@) If n=2%p2p, is a near 3-perfect number with
redundant divisod = 28p}, wherea > B, 0 < y < 2,
then p, /d and from the lemmal.l, we must have
plo(27p]) —d = (2°" — 1)(pf + p1 + 1) — d.
Thereforefor for some positive integierwe can write

kpp+d = (27"~ 1)(pi + p1+ 1) (15)
Sinceo(n) = 3n—+d, it follows that
2 —1)(p+1) +k=(27+1)pi  (16)

If p1 =3, then from {5) and (L6), it follows thatk =
29+ 13 and

13(20+1—1)—2P3r 351+ 2R3y
20413 - 29 +13

Sincep: < p2 andpy = 3, so (L7) also strictly implies
that the possible values pf arep, =5or 7 or 11 or 13 or
17 or 19 or 23. Among these seven valuepgfequation
(17) has solutions only fop, =5 andp, = 23.

If p, =5, then from {7) we must haveg%zfg’y =
21 and therefore 229 — 2P 3¥ = 78. This equation has
solution only fora =2, 8 =1 andy = 1. Thusn=22.325
is a near 3-perfect number with redundant divisoi32

If p, = 23, then from {7) we must hav%zf??y =3

and therefore 2% — 283Y = 312. This equation has only
solution fora = 7, 8 =3 andy = 2. Thusn=27.32.23is
a near 3-perfect number with redundant divisot.2?.

If y =0, then redundant divisor become:s- 2° and
from (17), it follows that

(17)

p2 =

3514 2P
20 +13

This equation has no solution for any non negative
integersa and 3. Therefore there does not exist any near

P2 = 26—
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3—perfect number of the forrm = 29 pfpz, where
p1 < P2, with redundant divisod = 28.

(b)If n= 27 pfpz is a near 3-perfect number with
redundant divisod = 28 p!'p,, wherea > 3, 0< y < 2,
then py|d and from the lemmal.l, it follows that
P2|0(29p?) = (2941 — 1)(p? + p1 + 1). Therefore for
some positive integeg, we can write

kpp= (27" = 1)(Pf+ p1+1) (18)
Sinceo(n) = 3n-+d, it follows that
(2" =1 (pr+1)+k—(27+1)p7=2Pp!  (19)

If p1 =3, then from L8) and (19, it follows thatk =
2P3r+29 +13and

~ 351+132F 13y

_13(20+i1)
2 23V 1+ 20 113

— == 20
2B3r 420413 (20)
Sincep; < pz and p; = 3 ,therefore 20) also strictly
implies that the possible values pf arep, =5or 7 or 11
or 13 or 17 or 19 or 23. Among these seven valuepof
the equationZ0) has solution only fop, =5 ,po = 7 and
p2 = 13.

_ 51+1328+13v
If p» =5, then from 20) we must have°’m =

21 and therefore 229 — 5.283Y = 78. This equation has
solution only fora = 3,8 =1 andy= 2. Thusn=23.32.5
is a near 3-perfect number with redundant divisoi32.5.

_ 51+1328+13v
If p, =7, then from 20) we must havém =

19 and therefore 199 — 7.2P3Y = 104. This equation has
only solution fora =5, 8 =3 andy= 2. Thusn=25.32.7
is a near 3-perfect number with redundant divisot.32.7

If p = 13, then from 20) we must have

3514132813y _ B3y — i
Farisiis — 13 and therefore 2— 2°3Y = 14. This

equation has only solutions far = 4,8 =1, y=0 and
a=5 B=1 y=2 Thusn=2*3%13 is a near
3—perfect number with redundant divisor.13 and
n= 253213 is a near 3 perfect number with redundant
divisor 232.13.

From the following two propositions, one can
determine some even nearBerfect numbers with four
distinct prime factors.

Proposition 2.3.1f nis a 2-hyperperfect number anl:~

6 is a perfect number such thaandJ are relatively prime,
thenx = nJ is a near 3-perfect number with redundant
divisorJ.

Proof. It must be noted that ih is a k—hyperperfect
numberf], then n is a solution of the equation
on = Yin+ X2 In particular for k = 2,

2—hyperperfect numbers are solutions of the equation

on=3n+1.

Sincen andJ are relatively prime, therefore

o(x)—3x=0(no(J)—3x= (gm— %)ZJ -3nJ=1J

ClearlyJ is a proper divisor ok.

Remark 2.1.2—hyperperfect numberd] are of the form
n=3“1(3-2), where & — 2 are primes and therefore

x = 3k-1(3k—2)J are near 3-perfect numbers, provided
andJ are relatively prime. Since any even perfect numbers
are of the formJ = 2P~1(2P — 1), where bothp and 2 —

1 are primes. therefone= 2P~13k-1(3% — 2)(2P — 1) are
near 3- perfect numbers.

Example 2.1.

—~x = 22.33.7.79 is a near 3perfect number with
redundant divisor27

X = 2%3.7.31 is a near 3perfect number with
redundant divisor 231

—x = 26.3.7.127 is a near 3perfect number with
redundant divisor2127 etc.

Proposition 2.4.1f x = 3“"1pJ, whereJ # 6 is a perfect
number, andp = 3“— 3" — 1 is a prime withr < k and

relatively prime toJ, thenx is a near 3-perfect number
with redundant divisor'3 .

Proof. Sincer < k, so 3Jis a proper divisor ok . We have

31

5 (p+1)2)— 3Fpa=31J

o(x) —3x

Note that proposition 2.3 is a particular case of the
proposition 2.4 corresponding to= 0, if 3K— 2 is a
prime.

Example 2.2.

—x = 22357 is a near 3perfect number with
redundant divisor23.7

—~x = 243531 is a near 3perfect number with
redundant divisor23.31

—x = 26.35.127 is a near 3perfect number with
redundant divisor23.127 etc.

Remark 2.2. Proposition 2.4 can be generalized for any
nearg— perfect number, whergis an odd prime. lhis a
nearq— perfect number with redundant divisdythen we
can writea(n) —gn=d. If Jis a(q— 1)— perfect number
andp=gf—q —1 (k> r) is an odd prime relatively prime
to g andJ, thenx = g 1pJ is a neam— perfect number
with redundant divisoq'J.

3 Conclusion

Foranya > 1, B > 1, if n= p?qf is a positive integer

with two distinct prime factorsp and g, then
I(n) = 20 < Tt :lfl_flfl_I Since p > 2 and

-1
p q
q > 3, thereforel (n) < 3. Thus there does not exist any
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near 3-perfect number with two distinct prime factors. In
generalization of near perfect numbers, we have
determined only a few numbers which satisfy the
equationo(n) = 3n+d, whered are proper divisors af.
Therefore, there is very good scope for searching othe
numbers for whicto (n) = kn+d, wherek > 2.
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