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Abstract: We call a positive integern be a near 3−perfect number ifσ(n) = 3n+d, whereσ(n) is the divisor function andd is a
proper divisor ofn. In this paper, we have derived all near 3−perfects of the form 2α pt

1p2, wherep1 and p2 are distinct odd primes
with p1 < p2 andα ≥ 1, 1≤ t ≤ 2. There are only ten such numbers. Moreover, we have also obtained some examples of even near
3−perfect numbers with four distinct prime factors.
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1 Introduction

Well known divisor functionσ(n) is the sum of all positive
divisors ofn including 1 andn itself. For any integerk> 1,
a positive integern is called ak−perfect or multi perfect
number [3,7], if σ(n) = kn. All known k−perfect numbers
are even. No oddk−perfect numbers have been found for
k ≥ 2. In recent years, some properties of oddk−perfect
numbers have been investigated [3],[8].

In particular for k = 2, 2−perfect numbers are
solutions of the functional equationσ(n) = 2n, which are
also known as perfect numbers. All known perfect
numbers are of the formn = 2p−1Mp, where bothp and
Mp = 2p − 1 are primes. The primes of the form
Mp = 2p − 1 are called Mersenne primes. Hyperperfect
[1], near perfect [6] and near hyperperfect [4] numbers
are generalization of perfect numbers.

A positive integern is said to be a near perfect
number with redundant divisord if and only if d is a
proper divisor (divisors excluding 1 andn itself) of n and
σ(n) = 2n+d. For example, 12 is a near perfect number
with redundant divisor 4. P. Pollack and V. Shevelev [6]
introduced the concept of near perfect numbers. They
derived all even near perfect numbers with exactly two
distinct prime factors and also obtained certain form of
such numbers. Y. Li and Q. Liao [5] derived some
examples of even near perfect numbers with three distinct
prime factors of the form 2α pt

1p2, where p1 < p2 and
α ≥ 1, 1≤ t ≤ 2.

The abudancy indexI(n) for any positive integersn is
associated with the divisor functionσ(n) and is defined as

I(n) = σ(n)
n . Sincek−perfect numbers are solutions of the

equationσ(n) = kn, so I(n) = k. For abundant numbers,
I(n)> 2 and for deficient numbers,I(n)< 2.

For any positive integerk > 1, we call a numbern be
a neark− perfect number ifσ(n) = kn+ d, whered is
a redundant divisor ofn. Near perfect numbers are near
2−perfect. For any neark−perfect numbers, we have the
following result.

Lemma 1.1.If n = pα1
1 pα2

2 .....pαr
r is a neark−perfect

number with redundant divisord, whereαi are positive
integers andpi are distinct primes, then fori = 1,2, ...., r,
we havepi |σ( n

p
αi
i
), if pi |d or pi |σ( n

p
αi
i
)−d, if pi 6 |d.

In particular for an even neark−perfect number, using
this lemma, one can obtain the following result.

Lemma 1.2.Let r, αi are positive integers, and letpi be
distinct primes. Ifn = 2α0 pα1

1 pα2
2 .....pαr

r is an even near
k−perfect number with redundant divisord, then there
exists somei with 1 ≤ i ≤ r such thatαi is odd if and
only if 2|d.

Lemma 1.1 and lemma 1.2 were proved by Y. Li and
Q. Liao [5] in particular fork= 2.

In this paper, we consider near 3− perfect numbers.
For anyα ≥ 1, we have derived all the near 3− perfect
numbers of the form 2α p1p2 and 2α p2

1p2, where bothp1
andp2 are odd primes withp1 < p2. We have proved that
24.3.5, 26.3.7, 27.3.7 and 28.3.7 are the only near
3−perfect numbers of the form 2α p1p2 and 22.32.5,
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23.32.5, 25.32.7, 24.32.13, 25.32.13 and 27.32.23 are the
only near 3− perfect numbers of the form 2α p2

1p2. We
have also obtained some examples of even near 3−perfect
numbers with four distinct prime factors.

2 Main Result

Near 3−perfect numbers of the formn= 2α p1p2

If n is a near 3−perfect number with redundant
divisor d, then σ(n) = 3n+ d and therefore abundancy

index I(n) = σ(n)
n = 3+ d

n. Sinced is a proper divisor of
n, therefore 1< d

n < 1. If n= 2α p1p2, wherep1 < p2, is
a near 3−perfect with redundant divisord, then

σ(n) = 3n+d = (2α+1−1)(p1+1)(p2+1) = 3.2α p1p2+d

Therefore 3+ d
n = I(n) = (2− 1

2α )(1+ 1
p1
)(1+ 1

p2
) <

2(1+ 1
p1
)(1+ 1

p2
)

From the last inequality, we can get ifn = 2α p1p2,
wherep1 < p2, is a near 3−perfect number, then the only
possibilities arep1 = 3 andp2 = 5 or p2 = 7. In fact we
have the following results.

Proposition 2.1.Let α be a positive integer. Suppose that
p1 andp2 are odd primes withp1 < p2, then

(a) The only near 3− perfect number of the formn=
2α p1p2 with redundant divisor 2β , whereα ≥ β , is n =
26.3.7.

(b) The only near 3− perfect numbers of the formn=
2α p1p2 with redundant divisor 2β p1, whereα ≥ β , are
n= 24.3.5 andn= 27.3.7.

(c) The only near 3− perfect number of the formn=
2α p1p2 with redundant divisor 2β p2, whereα ≥ β , is n=
28.3.7.

(d) There exists no near 3−perfect number of the form
n= 2α p1p2 with redundant divisor 2γ p1p2,whereα > γ ≥
1.

Proof.
If n = 2α p1p2 is a near 3−perfect number with

redundant divisord, then from the lemma 1.2, it follows
that all the redundant divisors are even and only possible
values of d are 2β , 2β p1, 2β p2 and 2γ p1p2, where
α ≥ β ≥ 1 andα > γ ≥ 1.

(a)If n = 2α p1p2 is a near 3−perfect number with
redundant divisord = 2β , whereα ≥ β , then p2 6 |d and
form the lemma1.1, we must have
p2|σ(2α p1)− d = (2α+1− 1)(p1+ 1)− d. Therefore for
some positive integerk , we can write

2kp2+d = (2α+1−1)(p1+1) (1)

Sinceσ(n) = 3n+d, it follows that

2k(p2+1)+2β = 3.2α p1 (2)

From (1) and (2), it follows that

p1 = 2+
2k−3
2α +1

, p2 =
1
k
(3.2α−1p1−2β−1)−1 (3)

If p1 = 3, then from (3), we must have2k−3
2α+1 = 1, which

implies thatk= 2α−1+2 and therefore

p2 =
8.2α−1−2β−1−2

2α−1+2
= 8.(2α−2+1)−2β−2−9

2α−2+1
= 8− 2β−2+9

2α−2+1
(4)

Since p1 < p2 and p1 = 3, therefore (4) also strictly
implies thatp2 = 5 or p2 = 7.

Case I: If p1 = 5, then from (4), we must have
2β−2+9
2α−2+1

= 3 and therefore 2β−2(3.2α−β −1) = 6. But this
equation has no solution for non-negative integersα and
β .

Case II: If p2 = 7, then from (4) we must have
2β−2+9
2α−2+1

= 1 and therefore 2β−2(2α−β − 1) = 8. This
equation has only solution forα = 6 and β = 5. Thus
n = 26.3.7 is a near 3−perfect number with redundant
divisor 25 .

(b)If n = 2α p1p2 is a near 3−perfect number with
redundant divisord = 2β p1, whereα ≥ β , thenp2 6 |d and
proceeding as the proposition 2.1(a) one can obtain the
following two equations, for some positive integerk

2kp2+2β p1 = (2α+1−1)(p1+1) (5)

2k(p2+1)+2β p1 = 3.2α p1 (6)

From (5) and (6), it follows that

p1 = 2+
2k−3
2α +1

, p2 =
1
k
(3.2α−1p1−2β−1p1− k) (7)

If p1 = 3, then from (7), we havek = 2α−1 + 2 and
therefore

p2 =
8.2α−1−3.2β−1−2

2α−1+2
= 8.(2α−2+1)−3.2β−2−9

2α−2+1
= 8− 3.2β−2+9

2α−2+1
(8)

Since p1 < p2 and p1 = 3, therefore (8) also strictly
implies thatp2 = 5 or p2 = 7.

Case I: If p1 = 5, then from (8), we must have
3.2β−2+9
2α−2+1

= 3 and therefore 2β−2(2α−β − 1) = 2. This
equation has solution only forα = 4 and β = 3.Thus
n = 24.3.5 is a near 3−perfect number with redundant
divisor 23.3.

Case II: If p2 = 7, then from (8), we must have
3.2β−2+9
2α−2+1

= 1 and therefore 2β−2(2α−β − 3) = 8. This
equation has only solution forα = 7 and β = 5. Thus
n = 27.3.7 is a near 3−perfect number with redundant
divisor 25.3.
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(c)If n = 2α p1p2 is a near 3−perfect number with
redundant divisord = 2β p2, whereα ≥ β , thenp2|d and
from the lemma1.1, we must have
p2|σ(2α p1) = (2α+1− 1)(p1+ 1). Sincep1 < p2, so p2
and p1 + 1 are relatively prime and therefore we must
havep2|2α+1−1. Therefore for some positive integerk ,
we can write

kp2 = 2α+1−1 (9)

Sinceσ(n) = 3n+d, it follows that

p1(2
α +1)− k(p1+1) = 2α+1−2β −1 (10)

If p1 = 3, then from (10), it follows thatk = 2α−2+
2β−2+1 and therefore

p2 =
2α+1−1

2α−2+2β−2+1
= 8−

2β+1+9

2α−2+2β−2+1
(11)

Sincep1 < p2 andp1 = 3 , therefore (11) also strictly
implies thatp2 = 5 or p2 = 7.

Case I: If p1 = 5, then from (11) we must have
2β+1+9

2β−2+2α−2+1 = 3 and therefore 2β−2(3.2α−β −5) = 6. But
this equation has no solution for non-negative integersα
andβ .

Case II: If p2 = 7, then from (11) we must have
2β+1+9

2α−2+2β−2+1
= 1 and therefore 2β−2(2α−β −7) = 8. This

equation has solution only forα = 8 and β = 5. Thus
n = 28.3.7 is a near 3−perfect number with redundant
divisor 25.7 .

(d)If n = 2α p1p2 is a near 3−perfect number with
redundant divisord = 2γ p1p2, whereα > γ ≥ 1, then
p2|d and proceeding as the proposition 2.1(c) one can
obtain the following two equations, for some positive
integerk

kp2 = 2α+1−1 (12)

p1(2
α +2γ +1− k) = k+2α+1−1 (13)

If p1 = 3, then from (13), it follows thatk = 2α−2+
3.2γ−2+1 and therefore

p2 = 8−
3.2γ+1+9

2α−2+3.2γ−2+1
(14)

Sincep1 < p2 andp1 = 3 , therefore (14) also strictly
implies thatp2 = 5 or p2 = 7. But this equation has no
solution in terms ofα andγ.

Near 3−perfect numbers of the formn= 2α p2
1p2

If n = 2α p2
1p2, where p1 < p2 is a near 3−perfect

number with redundant divisor d, then
σ(n) = 3n+d= (2α+1−1)(p2

1+ p1+1)(p2+1) = 3.2α p2
1p2+d.

Therefore 3+ d
n = I(n) = (2− 1

2α )(1+ 1
p1

+ 1
p2

1
)(1+

1
p2
)< 2(1+ 1

p1
+ 1

p2
1
)(1+ 1

p2
)

From the last inequality, we can get ifn = 2α p2
1p2,

where p1 < p2, is a near 3−perfect number, then only
possibilities arep1 = 3 andp2 = 5 or p2 = 7 or p2 = 11
or p2 = 13 or p2 = 17 or p2 = 19 or p2 = 23. In fact we
have the following results.
Proposition 2.2.Let α be a positive integer. Suppose that
p1 andp2 are odd primes withp1 < p2 , then

(a) The only near 3− perfect numbers of the formn=
2α p2

1p2 with redundant divisors 2β pγ
1, whereα ≥ β , 0<

γ ≤ 2, aren= 22.32.5 andn= 27.32.23.
(b) The only near 3− perfect numbers of the formn=

2α p2
1p2 with redundant divisor 2β pγ

1p2, whereα ≥ β , 0≤
γ ≤ 2, aren= 23

.32
.5, n= 25

.32
.7, n= 24

.32
.13 andn=

25.32.13.
Proof. If n = 2α p2

1p2 is a near 3−perfect number with
redundant divisord, then from the lemma 1.2, it follows
that all the redundant divisors are even and only possible
redundant divisors ared = 2β pγ

1 andd = 2β pγ
1p2, where

α ≥ β ≥ 1, 0≤ γ ≤ 2.
(a) If n = 2α p2

1p2 is a near 3−perfect number with
redundant divisord = 2β pγ

1, whereα ≥ β , 0 ≤ γ ≤ 2,
then p2 6 |d and from the lemma1.1, we must have
p2|σ(2α p2

1) − d = (2α+1 − 1)(p2
1 + p1 + 1) − d.

Thereforefor for some positive integerk, we can write

kp2+d = (2α+1−1)(p2
1+ p1+1) (15)

Sinceσ(n) = 3n+d, it follows that

(2α+1−1)(p1+1)+ k= (2α +1)p2
1 (16)

If p1 = 3, then from (15) and (16), it follows thatk =
2α +13 and

p2 =
13(2α+1−1)−2β3γ

2α +13
= 26−

351+2β3γ

2α +13
(17)

Sincep1 < p2 andp1 = 3 , so (17) also strictly implies
that the possible values ofp2 arep2 = 5 or 7 or 11 or 13 or
17 or 19 or 23. Among these seven values ofp2, equation
(17) has solutions only forp2 = 5 andp2 = 23.

If p2 = 5, then from (17) we must have351+2β 3γ

2α+13 =

21 and therefore 21.2α − 2β
.3γ = 78. This equation has

solution only forα = 2,β = 1 andγ = 1. Thusn= 22.32.5
is a near 3−perfect number with redundant divisor 2.3.

If p2 = 23, then from (17) we must have351+2β 3γ

2α+13 = 3

and therefore 3.2α −2β 3γ = 312. This equation has only
solution forα = 7, β = 3 andγ = 2. Thusn= 27

.32
.23 is

a near 3−perfect number with redundant divisor 23.32.
If γ = 0, then redundant divisor becomesd = 2β and

from (17), it follows that

p2 = 26−
351+2β

2α +13

This equation has no solution for any non negative
integersα andβ . Therefore there does not exist any near
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3−perfect number of the formn = 2α p2
1p2, where

p1 < p2, with redundant divisord = 2β .
(b)If n = 2α p2

1p2 is a near 3−perfect number with
redundant divisord = 2β pγ

1p2, whereα ≥ β , 0≤ γ ≤ 2,
then p2|d and from the lemma1.1, it follows that
p2|σ(2α p2

1) = (2α+1 − 1)(p2
1 + p1 + 1). Therefore for

some positive integerk, we can write

kp2 = (2α+1−1)(p2
1+ p1+1) (18)

Sinceσ(n) = 3n+d, it follows that

(2α+1−1)(p1+1)+ k− (2α +1)p2
1 = 2β pγ

1 (19)

If p1 = 3, then from (18) and (19), it follows thatk =
2β 3γ +2α +13 and

p2 =
13(2α+1−1)

2β 3γ +2α +13
= 26−

351+13.2β+13γ

2β 3γ +2α +13
(20)

Sincep1 < p2 and p1 = 3 ,therefore (20) also strictly
implies that the possible values ofp2 arep2 = 5 or 7 or 11
or 13 or 17 or 19 or 23. Among these seven values ofp2,
the equation (20) has solution only forp2 = 5 ,p2 = 7 and
p2 = 13.

If p2 = 5, then from (20) we must have351+13.2β+13γ

2β 3γ+2α+13
=

21 and therefore 21.2α −5.2β 3γ = 78. This equation has
solution only forα = 3,β = 1 andγ = 2. Thusn= 23.32.5
is a near 3−perfect number with redundant divisor 2.32.5.

If p2 = 7, then from (20) we must have351+13.2β+13γ

2β 3γ+2α+13
=

19 and therefore 19.2α −7.2β 3γ = 104. This equation has
only solution forα = 5,β = 3 andγ = 2. Thusn= 25.32.7
is a near 3−perfect number with redundant divisor 23.32.7
.

If p2 = 13, then from (20) we must have
351+13.2β+13γ

2β 3γ+2α+13
= 13 and therefore 2α − 2β 3γ = 14. This

equation has only solutions forα = 4, β = 1, γ = 0 and
α = 5, β = 1, γ = 2. Thus n = 24.32.13 is a near
3−perfect number with redundant divisor 2.13 and
n = 25.32.13 is a near 3−perfect number with redundant
divisor 2.32.13.

From the following two propositions, one can
determine some even near 3−perfect numbers with four
distinct prime factors.

Proposition 2.3.If n is a 2−hyperperfect number andJ 6=
6 is a perfect number such thatn andJ are relatively prime,
then x = nJ is a near 3−perfect number with redundant
divisorJ.

Proof. It must be noted that ifn is a k−hyperperfect
number[1], then n is a solution of the equation
σ(n) = k+1

k n + k−1
k . In particular for k = 2,

2−hyperperfect numbers are solutions of the equation
σ(n) = 3

2n+ 1
2.

Sincen andJ are relatively prime, therefore

σ(x)−3x= σ(n)σ(J)−3x= (
3
2

n+
1
2
)2J−3nJ= J

ClearlyJ is a proper divisor ofx.

Remark 2.1.2−hyperperfect numbers [1] are of the form
n = 3k−1(3k − 2), where 3k − 2 are primes and therefore
x= 3k−1(3k−2)J are near 3−perfect numbers, providedn
andJ are relatively prime. Since any even perfect numbers
are of the formJ = 2p−1(2p−1), where bothp and 2p−
1 are primes. thereforex = 2p−13k−1(3k − 2)(2p− 1) are
near 3− perfect numbers.

Example 2.1.

–x = 22
.33

.7.79 is a near 3−perfect number with
redundant divisor 22.7

–x = 24.3.7.31 is a near 3−perfect number with
redundant divisor 24.31

–x = 26.3.7.127 is a near 3−perfect number with
redundant divisor 26.127 etc.

Proposition 2.4.If x = 3k−1pJ, whereJ 6= 6 is a perfect
number, andp = 3k − 3r − 1 is a prime withr < k and
relatively prime toJ, thenx is a near 3−perfect number
with redundant divisor 3rJ .

Proof. Sincer < k, so 3rJ is a proper divisor ofx . We have

σ(x)−3x=
3k−1

2
(p+1)2J−3kpJ= 3rJ

Note that proposition 2.3 is a particular case of the
proposition 2.4 corresponding tor = 0, if 3k − 2 is a
prime.

Example 2.2.

–x = 22.3.5.7 is a near 3−perfect number with
redundant divisor 22.3.7

–x = 24.3.5.31 is a near 3−perfect number with
redundant divisor 24.3.31

–x = 26.3.5.127 is a near 3−perfect number with
redundant divisor 26.3.127 etc.

Remark 2.2. Proposition 2.4 can be generalized for any
nearq− perfect number, whereq is an odd prime. Ifn is a
nearq− perfect number with redundant divisord, then we
can writeσ(n)−qn= d. If J is a(q−1)− perfect number
andp= qk−qr −1 (k> r) is an odd prime relatively prime
to q andJ, thenx = qk−1pJ is a nearq− perfect number
with redundant divisorqrJ.

3 Conclusion

For anyα ≥ 1, β ≥ 1, if n = pαqβ is a positive integer
with two distinct prime factors p and q, then
I(n) = σ(n)

n <
p

p−1
q

q−1 = 1
1− 1

p

1
1− 1

q
. Since p ≥ 2 and

q ≥ 3, thereforeI(n) < 3. Thus there does not exist any
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near 3−perfect number with two distinct prime factors. In
generalization of near perfect numbers, we have
determined only a few numbers which satisfy the
equationσ(n) = 3n+d, whered are proper divisors ofn.
Therefore, there is very good scope for searching other
numbers for whichσ(n) = kn+d, wherek> 2.
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