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Abstract: This paper deals with a simple mathematical model for the transmissiomilysaf a vector-borne disease that incorporates
both direct and indirect transmission. The model is analyzed usinggabsystems techniques and it reveals the backward bifurcation
to occur for some range of parameters. In such cases, the reimdaoumber does not describe the necessary elimination effort of
disease rather the effort is described by the value of the critical péeamaethe turning point. The model is extended to assess
the impact of some control measures, by re-formulating the model aptamal control problem with density-dependent demographic
parameters. The optimality system is derived and solved numerically ttigate that there are cost effective control efforts in reducing
the incidence of infectious hosts and vectors.

Keywords: Epidemic model, Backward bifurcation, Optimal control, Pontryagin'sxiaum Principle.

1. Introduction extensive. To date, many mathematical models of vector-
borne disease have been developed in the literature [6-8]

Vector-borne disease such as dengue fever, West Nile virus, Recently, the phenomenon of the backward bifurca-
viral encephalitis and malaria result from an infectiomta tions has arisen the interests in disease control (see [10,
mitted to humans and other animals by blood-feeding arthrbi]). In this case, the basic reproduction number cannot
pods. The arthropods (insects or arachnids) that most condescribe the necessary disease eradication effort any more
monly serve as vectors include blood sucking insects suclBackward bifurcation in models, reveals that it is not suf-
as, mosquitoes, ticks, lice, and biting flies [2]. The ma-ficient to consider the dynamics based only on the basic
jority of vector-borne diseases survive in nature by uti- reproduction number. Control measures for vector-borne
lizing animals as their vertebrate hosts, and are thereforéliseases are important because most are zoonoses that are
zoonoses. For a small number of zoonoses, such as malanmaaintained in nature in cycles involving wild animals and
and dengue, humans are the major host, with no signifiare not amenable to eradication. Therefore, control meth-
cant animal reservoirs. The vector receives the pathogends generally focus on targeting the arthropod vector. &hes
from an infected host and transmits it either to an inter-include undertaking personal protective measures by es-
mediary host or directly to the human host. Vector-bornetablishing physical barriers such as house screens and bed
diseases are prevalent in the tropics and subtropics and arets; wearing appropriate clothing (boots, apparel that-ov
relatively rare in temperate zones, although climate changlap the upper garments, head nets, etc.); and using insect
could create conditions suitable for outbreaks of diseasegepellents. A lot of effort on controlling the diseases with
such as lyme disease, malaria, dengue fever, and viral eradministration of antiviral treatment and vaccination has
cephalitis in temperate regions. The literature dealirthwi been taken up over the years. Mathematical models have
the mathematical theory on vector-borne diseases is quitbeen used to help understanding the dynamics of infec-
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tion and its control (see [3,12]). We obtain the backwardthe following nonlinear system of five ordinary differemtia
bifurcations results by an elementary approach and avoigquations:
the center manifold theorem. However, the center manifold

approach remains essential for more complicated models™h _ by — PrSuln _ B2Snly (4hSh,
because of the technical complications of an elementary dt Nn Nh
approach. dl Snl Sply
i =t = BlNh "t BQNh = Ydn = Ol — pndh,
In this paper, a basic model [1] is considered to in- IR " 4
corporate some important epidemiological features. Anal- 22" _ Ynln — pn R, (1)

ysis of the model reveals that the model exhibits the phe- d¢
nomenon of backward bifurcation with standard incidence. dS, - B35, 1,

Then the model is further extended taking into account gz b2 W oS,
the density-dependent demographic parameters and con-;; B85S, I
trol functions to asses the impact of some control measures— = 3ovTh Oy — pip Ly,

by using optimal control techniques. The model will then dt Ni
be used to determine cost-effective strategies for combatwith initial conditions

ting the spread of vector borne infection in a given commu-

nity. Finally, the optimality is taken to be to minimize the S1(0) = 0,1,(0) = 0, R (0) = 0,5,(0) = 0,1,(0) = 0.(2)
number of infected hosts and the total number of vectorsrhg hyman host population is recruited (assumed suscepti-
population. In order to do this, we first show the eX|stenceb|e) at a constant birth rate, 3, is the rate of direct trans-

of an optimal control for the optimal control problem and 1issjon of the diseasé; is the vector mediated transmis-
then we derive the optimality system. The optimality Sys-gjon rate, ), is the natural mortality rate of human. In-
tem is solved numerically by using an efficient numerical foctious humans recover at a rate and suffer disease-

method. induced death at a rat®,. It is assumed that recovered
individuals acquire lifelong immunity against re-infearii

Thet pafper "T (t).rgan;ztid as tfrc:llowi. Ir|1 Segtuljn_rﬁ, WeSimilarly bs is the constant recruitment rate of susceptible
present a formuiation ot tn€ mathematical modetl. 1Ne exy,q g population by birth and susceptible mosquitoes be-
istence of backward bifurcation is analyzed in Section 3.

. . come infected by biting infected humans at a rateu., is
In Sectlon_é}, the control p(oblem is formulated. The NECESHne natural mortality rate of vectors population. Infeaso
sary conditions for an optimal control and the correspond-

. . . - . -~ vectors die due to disease at a r&t43].
Ing states are derived using Pontryagin's Maxmum Prin- The model (1) extends the model studied in [1] by in-
ciple in Section 5. In Section 6, we solve the resulting op-

timality system numerically. Finally, the conclusions are cluding the disease-induced mortality in humans and vec-
y Systel . Y- Y, tors populations denoted by the parametgrandd, re-
summarized in Section 7.

spectively, and standard incidence rate represented in the
system (1).

As S;, + I, + R, = Nj, so for convenience in cal-
culations we consider the following system of differential
equation for further analysis:

dSp 1Sl B2Shly
— =b — - - HILSILy
2. Model frame work dt Nb Np
dly,  iSpln P25kl
— = — I — 6pdy — pnl
ar N, + N, Yhih hih = Khlh,
dN
Wh = by — pnNp — oI, )
. . . dsv BSSv]h
The total population sizes at timefor the humans hosts pral by — N, Mo S,

and mosquitoes vector are denoted®y(¢) and N, (¢),
respectively. The population of siz, (¢) is divided into dly _ BsSuln oo il

three distinct classes: the susceptible population of size dt N,

Sk(t), the infectious population of sizg,(¢) and the re- .

covered (or removed) population of si#g. ThusN, (t) = 32‘3 determining?, from Rj, = Nj, — Sy — I, or from
Sp(t) + In(t) + Ru(t). The mosquitoes vector popula- “dt _— %I_h — unRp.

tion N, (t) has the subclasses denotedyt), and [, (t) Thus, in our proposed model the host and vector pop-
for the susceptible and infected classes, respectivelys Th ulations satisfy the following linear equations

Ny(t) = S,(t) + I,(t). The compartmental determinis- ;n;,

tic mathematical model can be represented analytically bW = b1 — punNp — Onln, (4)
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an d sor Backward bifurcation
dN, X
* = by — ’UN’U - 6'0[1)- 5 =r
dt 2 — W )
It follows from (4) and (5) that
AN, dN,
—— < by — upNp, —— < by — puyN,. 6
a = 1 — HhiVh a = 2 — [ (6)
Then st \

. bl . b2 0.6 D‘ 0‘8 D‘Q ! ‘Z
lim SupN, < — and lim SupN, < —. @) ! o ! H !
t—o00 HUh t—o0 Mo
Thus the feasible region for the system (3) is

Figure 1 Bifurcation diagram of (1) showing a backward bi-
by N < bo furcation. We consideb; = 6, 31 = 0.01, 33 = 0.00072,
P E}' wn = 0.1, v, = 0.0004, 8, = 0.01, b2 = 50, y, = 0.02, and

. . . d» = 0.001 for numerical simulation.
Furthermore, the model (3) is well-posed epidemiolog-

ically and mathematically. Hence, it is sufficient to study
the dynamics of this basic model id. The disease-free
equilibrium for the system (3) iy = (;-,0, 2=, 72,0).  with
In epidemiological models, the bas.ic rep'roduction num-4 = K, K, (Mhﬁs(ﬂ1 — 1) + puOn(0n — 51))7
ber denoted by?, is a key concept and is defined as the av-
erage number of secondary infection arising from a singIeB = K1 Ka(pob1 1 — 2p10b16m + o1 B3)+
infected individual introduced into the susceptible class Kby B1 (1o — pinf33) + K1tnbaB2fs,
during its entire infectious period in a totally suscepibl )
population [9]. The dynamics of the model (3) is analyzed C = pobi K1 K5(1 — Ry).
by Ry given by We note that®' < 0if Ry > 1,C = 0if Ry = 1,
andC > 0if Ry < 1. If Ry = 1, thenC = 0 and there
= 0 +uhb)2(62ﬂi 5 ) n ?1 n .(8) is a unique nonzero solution of (9) = —B/A which is
HoD1{Ou T Ho)\Th T Ok 7T fh) - Tk 7T Ok 7T fh positive if and only ifA > 0 andB < 0 or A < 0 and
The threshold quantity?, is the basic reproduction num- B > 0. Now, depending upon the signs df B andC,
ber of the disease. It can be derived from the Jacobian mawe may have unique, two or no positive roots. Thus, the
trix of the system (3) at the disease-free equilibrip  following result is established.
together with the assumption of local asymptotical stabil-

= {(Sh,fh,Nh,Sv,Iy) S Rith <

(10)

Ry

Theorem 2.1 The system (3) has a backward bifurcation

ity of Ey. at Ry = lifand only if A > 0 andB < 0 provided
B? —4AC > 0.
_ o If C > 0 and eitherB > 0 or B? < 4AC, there are
3. The endemic equilibria and backward no positive solutions of (9) and thus there are no endemic
bifurcation equilibria. Equation (9) has two positive solutions, cerre

sponding to two endemic equilibria, if and onlydGf > 0,

In order to find positive solutions of the system (3), the Of Ro < 1,andB < 0, A > 0, B > 4AC.
following steps are taken. L&y = (S}, I}, N, S5, 1))

represents any arbitrary endemic equilibrium of the model _
(3). Solving the equations in (3) at steady state gives, 4. Optimal control of extended model

S = b1 — (yn + On + “h)lh’ N; = m7 In this section, we extend the model (1) by including density
Hh Hh dependent mortality rates in the vector and host popula-
o _ ba(br — Onl}) tions, defined by, = 11 + p2 N, arlldu_q, = u3 + palNy,
Y Bl + p(by — 0n1f)’ wherey; > 0 andps > 0 are density-independent death
byBal? rates in the host and the vector populations, respectively,
I = Hn2P3 h , and using mass action type incidence rate. Also> 0
(ko + 00) (unBs I + po (b1 — nT})) andp, > 0 are proportionality constants. These types of
whereK, = (v, + 6 + pn) andKs = (0 + 4,). per capita death rates are used in [5].

Similarly, the recruitment rate in each susceptible pop-
ulation is modified to include density effects. To do this,
we replace the previous recruitment ratesbpy— by +
g(Ip) = AI* + BI; + C =0, 9) ap Ny, andby — by N, whereqy, is the proportionality

SubstitutingS;;, N; and I} into the second equation
of the system (3) to give an equation of the form
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constant showing the impact of density on the recruitmentsubject to the state system given by (11). In the objective
rate. In general, the inclusion of density-dependent iecru functional A;, represents the weight constant of infected
ment and death rates in population models tend to resulhuman andA, represents the weight constant of the total
in different dynamical features. Average recruitment andvectors populationB;, B, and B3 are weight constants
death rates are considered in most cases to reduce compfor blood donor screening, personal protection (reduction
cations while analyzing the resulting models [15]. of vectors and human contacts) and vector control, respec-
In the human host population, the associated forcedively. The termsl /2 Byu?, 1/2 Bou3 and1/2 Bzu? de-
of infection are reduced by factors ¢1 — u;(t)) and  scribe the costs associated with the blood donor screen-
(1 — ua(t)), respectively, where; () measures a basic- ing, prevention of vector-host contacts and vector control
practice blood-donation procedure that disallows the dofespectively. The main objective in this optimal control
nations of infected donors and (¢) measures the level of Problem s to minimize the number of people who become
successful prevention efforts. The Conm(t) represents |nfect6d,_ the total number Of_ VeCtorS.and the cost of im-
the implementation of a basic-practice blood-donatior pro Plementing the control by using possible minimal control
cedure that disallows the donations of infected donors [4] Variablesu; for i = 1,2,3. The cost associated with the
The controlus(t) represents the use of alternative preven-first control could come from donor screening systems.
tive measures to minimize or eliminate mosquito-humansmﬂarly, the cost associated with second control could
contacts (such as the use of insect repellents or bed netsjome from costs of vaccination, mosquito repellents, and
In most cases, vectors, such as, mosquitoes use favorabf!Pply of basic needs. The cost associated with third con-
climatic conditions to flourish [13]. Combating efforts of trol could come from applying pesticides. We assume that
vector-borne diseases are more effective and economicdhe costs are proportional to the square of the correspond-
if they are in phase with climatic changes. Thus, a time-ing control function. Our aim is to find control functions
dependent mosquito control, preferably applied in seasonguch that
favorable for mosquito outbreak, is considered. The con-y(y*, v} u5) = min Jéul’ Uz, us3),
trol function us(¢) represents the level of larvacide and (u1,uz,u3)€
adulticide used for mosquito control administered at misqu  subject to the system (11), where the control set is de-
breeding sites to eliminate specific breeding areas. Confined as
sequently, the reproduction rate of the mosquito popula- .
tion is reduced by a factor aft — us(¢)) [14]. Also, itis U = (w1, uz,us)|ui(t) is Lebesgue measurable on
assumed that the mortality rate of vectors population in- [0,1], 0 <wy(t) < 1,4 =1,2,3}. (13)
creases at a rate proportionaldg(t), wherero > 0is a In order to find an optimal solution, first we should
rate constant. Taking into account the above assumptiongnq the Lagrangian and Hamiltonian for the optimal con-

and extensions, we formulate an optimal control model fory, problem(11) — (12). The Lagrangian of the optimal
a vector-borne disease in order to derive optimal Prevenproplem is given by

tion and treatment strategies with minimal implementation
cost. The dynamics of the system (1) are governed by the L = A1}, + AyN, + 1/2(Byu? + Byu3 + Bgu?,,).
following system of five equations:

We seek for the minimal value of the Lagrangian. To ac-

% = by + apNy — B1Spln(1 — uy) complish this, we define the Hamiltonighfor the control
BaSuL, (1 ) Ny)S problem as follows:
—p2ondy(l —u2) — (p1 4 p2Np ) Op,
ar 2o ? ' 2 HZL(I}L,Nu,ul,?@,u?,)+)\1%+/\2%
i = BiSnIn(1 —w1) + B2Sply(1 — uz) — ynlp (14)
dRy, ds, dI,
_5hIh — (/1,1 + ,LLQN}-L)I}-“ +/\3Tt} + /\4 dt + /\5 dt *

(11) We prove the existence of an optimal control for system
(11) and then derive the optimality system.

B — Iy, — (1 + paNy) R,

A% = baN, (1 — ug) — B3SuIn(1 — ua)
_(/1/3 + M4Nv)sv - rOUSS'ua
djtv = B3Svlh(1 - Ug) - 51)]1) - (M3 + ,U4NU)IU

—rouzly,

5. Existence of control problem

For the existence of our control problem we state and prove
the following theorem.

with initial conditions (2). Our objective functional foné ~ Theorem 5.1 There exists an optimal controt = (u}, u3, u3) €

above state system is given by U such that
T 1 J(ul,u3,u3) = min J(uy,ug,us),
J(U17U27U3) = / (AIIh + A9 N, + 7<Blu% + Bgu% (u1,uz,u3)€
0 2 subject to the control system (11) with the initial condi-
+Bsu3)) dt, (12)  tions (2).
(© 2013 NSP
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Proof. To prove the existence of an optimal control pair Furthermore, optimal controls;, u3, anduj are given as

we use the result in [16]. Note that the control and the statdollows:

variables are nonnegative values. In this minimizing prob- Mo — A1) S
. o : P . B1(A2 1) h

lem, the necessary convexity of the objective functional inu] = max{min{ 2]

u1, upy andus are satisfied. The set of all the control vari- ! . .

ables(uy, uz, us) € U is also convex and closed by defi- ,» _ 1y {min{ Ba(A2 — A)SHIT + B3(As — M) ST I

T 13,0, (18)

nition. The optimal system is bounded which determines By ’
the compactness needed for the existence of the optimal 1},0}, (29)
control. In addition, the integrand in the functional (12), boAa N + 10 (AsS2 + A5 IF)

All(t) + AQNU(t) + 1/2(31“% + BQ'U,% + Bgug) is con- u§ = max{min{ s 1}3 0}(20)

vex on the control sdt’. Also we can easily see that, there

eﬁ(iSt a constanp > 1 and positive numbers:, wz SUCh  pr oo Tq determine the adjoint equations and the transver-
that sality conditions we use the Hamiltonian (14). From set-
J(ur,uz,uz) > wi(Jur|? + |ug|® + |ug|?)?/? — wo, ting Sp(t) = Si(t), In(t) = I;i(t), Ru(t) = R;(1),

because, the state variables are bounded, which completé%(rgngnfgr(f)(’lz)n %ﬁgtr)e;péétgéjni d}f%f:r%ntlzzt:]ndg]the

the existence of an optimal control.
To find the optimal solution, we apply Pontryagin’s

B3

respectively, we obtain (16). By solving the equations

Maximum Principle [17] to the hamiltonian (14), suchthat 0 _ . 0H _  OH 21)
if (x,u) is an optimal solution of an optimal control prob- du, " Ouy Ous ’
lem, then there exists a non trivial vector functian=

on the interior of the control set and using the optimality

(A, Ay e , A ) Satisfying the following inequalities. conditions and the property of the control spateve can
do _ OH(t,w,u,\) derive (18)-(20).
di o Here we call formulas (18)-(20) far* = (uj, u}, u})
0= ? H(%%% N (15) the characterization of the optimal control. The optimal
w0 control and the state are found by solving the optimality
OH(to ) system, which consists of the state system (11), the ad-
N = -t joint system (16), boundary conditions (1) and (17), and

Now we apply the necessary conditions to the Hamiltonianthe characterization of the optimal control (18)-(20). To
pply y solve the optimality system we use the initial and transver-

Hin (14). sality conditions together with the characterization & th
Theorem 5.2 Let S}, I, Ry, S, andI; be optimal state  optimal control(uf, u3,u3) given by (18)-(20). In addi-
solutions with associated optimal control varialles, v5, v3) tion, the second derivative of the Lagrangian with respect
for the optimal control problem (11)-(12). Then there exist to u;, us andus, respectively, are positive, which shows
adjoint variables\;, for i=1, 2...5, satisfying that the optimal problem is minimum at contral$, u3

andus.
)\/1 = —apA + ()\1 — )\2)(51(1 — ul)Ih + ﬂg(l — ’LLQ)L,) U3

+(p1 + p2Np)A1L + pa 1Sk + pada Iy + Azpz R, _ _ _
Ny = —apAi — AL+ Bi(A — A2)(1 — u1)Sh + 2 A1 Sh 6. Numerical results and discussion

+(vn + 0n) A2 + (1 + p2Np) A2 + podaln — A3 In this section we use an iterative method to find the
TuaAa Ry & BaMa — As)(1 — u2) S, numerical solution of our control problem. The numeri-
HadaBi & By (M Y1~ u2)S, cal algorithm presented below is a semi-implicit finite dif-

Ay = —apAr + paA1Sh + padedn + (1 + p2Np)As ference method. We discretize the interyfl ¢;] at the

A\ pdpintst; = to+il (i = 0,1, ...,n), wherel is the time step
Fu2Aslin, ( uch thatt,, = t;. Next, we define the state and adjoint
N, = —Ag — bodg(1 —us) + Bs(Ag — As) (1 — ua) I, variablesS), (t), In(t), Run(t), Sy(t), I,(t), A1(t), A2(2),
As(t), A\a(t), A5(t) and the controls (t), ua(t), us(t) in
N, Y 3(L), Aalt), A5(t) and € controls (1), ua(i), us(t) I
s+ o)A+ padaS, terms of nodal points; , I}, R, S, 1L, i, X, X5, N, AL,

v

+Y0Aaus + paAsly, uf, ub andu}. Now a combination of forward and back-
A = — Ay + Ba(A1 — A2)(1 — u2)Sh — bada(l — uz) ward difference approximation is used as follows :

Fp1aAaSy + A5y + (3 + paNy)As + paAs 1, The method, developed by [18] and presented in [19-22],

Frodsis to adapt the numerical solution of our optimal control prob-

lem is given by:
with transversality conditions (or boundary conditions) i+l ;

N(T) =0, i=1,2,..5 @7 Tt = bt oS L+ Ry

© 2013 NSP
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~BiSiT (1 —ud) — BSitI I (1 —wh)  Algorithm

—[u + p2 (S + Iy + RIS, step 1:
it i o . L , Sn(0) = Sho, In(0) = Ino, Ri(0) = Rpuo, Su(0) =
S = BT (- w) + B8, L (1 - u) Su0, 10(0) = Tuo, Ailty) = 0 (=1, ..., 5),u(0) =
Y (e A (1 + M2(5i+1 u2(0) = u3(0) =
h h h
LI 4 R step 2;
I h‘ I, | | fori=1,...,n-1,do:
" ; b= — ( + pa(S5T + gitl _ T1- l=an + BT, (1 — uy)]
+R;‘L+1))R;L+1’ h _ 21;%2 _ _
gitl _ gi ‘ ) ) ) , ) 7Z[BQI:;(1 7U22) + +,LL2(I;+RZ)}
St = b(SET + I)(1 - wh) — B (L — ) 2
—(ps 4 pa (S TSI — rgub SEH er 1+1(—ap+ Bl (1 —ul)
Jitl i ) ) ) ) : ) ) ]
St = BSTT (U ug) - 6,1 +BaIy(1 — ) + pur + pa (I} + B}))P?
(3 + pa (ST 4 I L gl 1L FALpo[SE + by + Lo (I + Ri}2,
By using a similar technique, we approximate the time i1 L= 1AL = ul) 4+ yp + 6]
derivative of the adjoint variables by their first-order baard- Iy = 2o
difference and we use the appropriated scheme as follows i1 i
n—i n—i—1 o l[,ul + 2 (Sh + Rh)} 1 1
. 71A1i = —ap AP (T AT B 212 2l |
iy i\ (= BS; (1 — uf 6
(1 —u) T+ Bo(1 — ub) ] +( fil i (i 291) + o+ Ot
(i + e NFFYAD=I=1 o An—i—1git] +u2(S;TH 4+ Ry + dlpo I,
i+17i i3
Fpa NS T R AT R HB2SiT L (L~ u3)]} 2,
. . 41 i+1
AT )\nfzfl i i i+t1 -1 - l[,ul + [}JQ(SZ + Ih )]
S = T - A AT BT = T
n—i— i\ Qi n—i—1gi 1 ; ;
—A3 TN (A = ul) S A A TS —|—m [1+ Ly + Lo (ST + L2
2

+(vh + Or)AS T (i + pa N AT
Xy T L — AT 4 oAy T R
FBs (N = AT (L — ) Syt Syt =

+Alpo (R, + Iy I} 2,

—1 = U[=ba(1 — ud) + B3I} (1 — uh)
n—i n—i—1 2lu4

S Bk S —ap AT T A AT S Ups + paly + rous] 1

l - + i
—i—17i 1 Y 2[/1,4 21/,64
Fu2 Ay T A (o pa N AT - ' -
o H1( = bo(1 —ud) + B3 ITH1 — ) +
+/~L2)\§_1_1RZH’ ( 2( 3) 3tp ( 2) 3

gl + roul)? + Alpa[SE + Iho IE (1 — ul)]} 2,

n—ia n—i—1
>‘4 — )‘4

z = Ay — 02N TN —ug) + BN T Jit _ —L =100+ s+ paSE £ roud)
AT = ub) I (s N : 2liia
AT N TSI o AT g o {1+ (00 + pa + paSyH 4 rous))]?

2y

)\n—iIiJrl . . . ;
THads LT Al (I + 185 STH T (1 — ud))}3,

)\nfi o )\nfifl ) ) ) )
B Ay BT (1 - u)S)

l
n—i—1 3 n—i—1 gi+1 . . . . .
A ) e S T = T O - ) g
A ok (s pala” )X A1 — ) T
. +u.4.)\5 L+ r9A5 g IR RIFI AR
The algorithm describing the approximation method for L 118 (1 — oV +!
obtaining the optimal control is the following: AL+ [51( f“l) oo
+82(1 —ub) I + S +
(© 2013 NSP
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+ua N — ap]l,
AT = AT o AT+ Ay
—BALTT L = u) ST — SN
JL+ 1y + 6n 4 pa + N+ po I
—A1(1 —uy)S; ),
)\gﬂ‘q _ {/\gfi n l[ahwﬂ;l _ ’u/25;il+1)\;7,7i71
—u2 LTI+ U
Fua N 4 e R
AT = T 1A + B (1 — ub) AT
*M4Ii+1)\751_i}}/{1 +1[B3(1 — Uéﬂ;ﬁ“ + K3 Figure 2 Simulations of the control problem, illustrating the
+M4N5+1 + M4Sf;+1 + roué —by(1 — ug)]}, pqpulations of infected individual$;, with both controls and
)\g,i,l _ {Ag‘*” +1[As + bz)\ff*ifl(l _ ug) without controls.
—paXy T T 4 B (AT
=AFTTD A = ua) ST+ 1[0, + s ‘
ApaN  pa I+ rous]}, /
Rt — (A5 - A?_i_l)ﬁlsiiﬂfﬁl’
B
e O D Y/
ST = AT B ST Y B,
R = {boaAf T TINGT g (AT TS
AT}/ B, I I~
u = min(1, max(R{™,0)),
uy™ = min(1, max(Ry"", 0)), Figure3 Simulations of the control problem, illustrating the to-

ug“ = min(1, max(Ré“, 0)), tal vectors populationV, with both controls and without con-
trols.

1,0

N0

end for

step 3:
for i=1, ..., n-1, write Sj;(t;) = S, I;:(t;) = I},
R} (t;) = Ry, Si(t;) = S, I (t;) = I, ui(t;) =wy,  very small number of infected hosts. Thus, the number of
ul(t;) = ub, ui(t;) = ub. infected individuals after the control is smaller than thiat
end for infected individuals before the control. Fig.represents

To compare the disease progression before and after ththe total vector population in the two systems (1) with-

controls. we simulate the model usina the followind ba- Sut controls and (12) with controls. The total host popula-
' o 9 1 9 Pa ion with the controls is more sharply decreased than with-
rameters valuesh; = 2.5 x 107= day +, o = 0.03

day !, by = 04 day L, gy = 4 x 10-5 day", iy — out controls and becomes very small. The techniques in

2y 1 O 1 - ) 1 [23,24] can be used for solving a wide range of problems
(25>< 10 . (???)(lj—a),r/? g 0.150d&y—dé)/;41 —72'8X %)’07 f%:g whose mathematical models yield system of nonlinear dif-
h — M y Op = . 1 h — .

day!, B, = 0.0004, By — 0.0006, 85 = 0.009, ro — erential equations,
0.02.

The graphs from simulation, given below, help to com- .
pare the infected host population, the total vector popula-/- Conclusion
tion before and after the controls. When viewing the graphs,
remember that each of the individuals without control is  In the present manuscript, we extended the model pro-
marked by un-dashed lines. The control individuals areposed above by taking into account the density-dependent
marked by dash-dotted lines. As it is shown in Eigap-  demographic parameters and control functions to asses the
plication of control reduces the disease burden. The solidmpact of some control measures by using optimal control
line denotes that there are more infected individuals whertechniques which incorporate some important epidemio-
the control is not implemented for the infected individu- logical features. The disease propagates from the infected
als. The control vanishes in ddy0 and there remains a to the susceptible in two different ways, through horizbnta
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