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Abstract: In this article, we study the periodicity, the boundedness and the globdlltgtabthe positive solutions of the following
nonlinear difference equation

bXy
Xnr1 =A% +BX k+Cx% | +DXp—g + 57—,
" "0 Xk — %]
where the coefficientsA B,C,D,b,d,e € (0,o), while k| and o are positive integers. The initial conditions
X_gyeees X[, Xk, ---, X_1, X0 are arbitrary positive real numbers such that | < 0. Some numerical examples will be given
to illustrate our results.

Keywords: Difference equations, prime period two solution, boundedness dkgréacally asymptotically stable, global attractor,
global stability.

1 Introduction solution. For other closely related results, (see
[2]-[11],[28]-[31]) and the references cited therein. The

The topic of difference equations is interesting and §tud_y _Of _the_se equations Is challenging and_rewardlrjg and
is still in its infancy. We believe that the nonlinear ratbn

attractive to many mathematicians working in this field. > . . . .
The qualitative study of difference equations is a fertile difference equations are of paramount importance in their
wn right. Furthermore the results about such equations

research area and increasingly attracts man)Pﬁ for the devel f the basic th
mathematicians. This topic draws its importance from theClter prototypes for the development of the basic theory

fact that many real life phenomena are modeled usingOf the global behavior of nonlinear difference equations.

difference equations. Examples from economy, biology, Ihe_ objgctr:ve.of tkys hartlclel IS to m;/eingate isjome
etc. can be found inlR,17,18]. It is known that nonlinear g_ua tative behavior of the solutions of the nonlinear
. . : ifference equation
difference equations are capable of producing a
complicated behavior regardless its order. This can be x,, , = Axn+an_k+an_|+Dxn,0+L7
easily seen from the familyn,1 = gy (%), g > 0, n > 0. (A% — %1
This behavior is ranging according to the value gf, n=012... )
from the existence of a bounded number of periodic  where the coefficients, B,C,D,b,d,e € (0,), while
solutions to chaos. k,I and o are positive integers. The initial conditions
There has been a great interest in studying the globak_g,...,x_j,...,X_k,...,X_1,Xo are arbitrary positive real
attractivity, the boundedness character and the pertgdici numbers such thd < | < o. Note that the special cases
nature of nonlinear difference equations. For example, inof Eq.(1) have been studied id][whenB=C =D =0,
the articles [13-16, 19-26] closely related globalandk =0, =1 b is replaced by- b and in R7] when
convergence results were obtained which can be applie® = C =D = 0, andk = 0,b is replaced by- b and in
to nonlinear difference equations in proving that every[33] whenB=C =D =0, | =0 and in B2 when
solution of these equations converges to a period twAA=C =D =0, =0, bis replaced by- b.
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Our interest now is to study behavior of the solutions Definition 5.The linearized equation of Eq.(2) about the
of Eq.(1) in its general form. For the related work, (see equilibrium pointX is defined by the equation
[34]-39)). Let us now recall some well known results?]

which will be useful in the sequel. Zn1 = PoZn+ PrZn—k + P2Zn-| + P3Zn-o =0, ®3)
Definition 1.Consider a difference equation in the form ~ where
_ IF(XXX.X) _ IF(XX.X.X) _ IF(XXXX)
Xnt1 = F (Xnaxn—kaxn—l >ano), n= 0; 13 27 """ (2) Po = 0Xn » L= 0Xn—k 0 P2= OXn_|
where F is a continuous function, while k and | are p3 = w.
n—o

positive integers such that kK | < o . An equilibrium
point X of this equation is a point that satisfies the  The characteristic equation associated with Eq.(3) is
conditionX = F (X,X,X,X) . That is, the constant sequence
{%} with =X for all n>-k>-l>cgisa pA)=AT—pA?—p A% KA —p;=0. (4)
solution of that equation.

Theorem 1[12]. Assume that F is a & function and let
Definition 2.Let X € (0,»0) be an equilibrium point of X be an equilibrium point of Eq.(2). Then the following
Eq.(2). Then we have statements are true.

(i) An equilibrium pointx of Eq.(2) is called locally stable (i) If all roots of Eq.(4) lie in the open unit disi | < 1,

if for every € > 0 there existsd > 0 such that, if xg, then the equilibrium poinX is locally asymptotically

Xy Xk ey X1, Xo € (0,00) with [X_g —X| 4+ ...+  stable.

Xop =X 4 oo+ Xk =X+ .+ X1 =X+ [Xo—X] < 0,

then|x,—X| < eforall n> —k> —I. (i) If at least one root of Eq.(4) has absolute value
greater than one, then the equilibrium points unstable.

(i) An equilibrium pointX of Eq.(2) is called locally

asymptotically stable if it is locally stable and there ¢éxis (iii) If all roots of Eq.(4) have absolute value greater

y > 0such that, if Xg, ....x|, «..;X K, -y Xo1, X0 € (0,0) than one, then the equilibrium poiRtis a source.

with [X_g =X + ... + X0 =X + ... + X=X + ... +

IX_1 —X]+ %0 —X| <y, then Theorem 2[18]. Assume thapg, p1,p2 andps € R. Then
lim x =X, ol + |pa| +|p2| + P3| < 1, (5)
—> 00

_ e . is a sufficient condition for the asymptotic stability of
(iii) An equilibrium pointX of Eq.(2) is called a global Eq.(2).

attractor if for every X.g, ...,X_|, cc,XCk; «+ey X-1, X € (0, 00)

we have . Theorem 3[12]. Consider the difference equation (2).
Amoxn =X LetX € | be an equilibrium point of Eq.(2). Suppose also
that

(iv) An equilibrium pointX of Eq.(2) is called globally
asymptotically stable if it is locally stable and a global (i) F is a nondecreasing function in each of its
attractor. arguments.

(i) The function F satisfies the negative feedback
(v) An equilibrium poin of Eq.(2) is called unstable if it property
is not locally stable.

[F (X,%,%X) =X (x=X) <0 forall xel—{X},

Definition 3.A sequencex,},.__, is said to be periodic
with period r if %.r = x, for all n > —g. A sequence where | is an open interval of real numbers. Thens
{Xn}n-_ is said to be periodic with prime period r if ris global attractor for all solutions of Eq.(2).
the smallest positive integer having this property.

Definition 4.Eq.(2) is called permanent and bounded if 2 The |ocal stability of the solutions
there exists numbers m and M with< m < M < o such

that for any initial conditions Xg, ...X|, ... Xk, --» X1, The equilibrium poin of Eq.(1) is the positive solution
Xo € (0,0) there exists a positive integer N which ofine equation
depends on these initial conditions such that

bx

d—ex’ ©

m<x <M forall n>N. X=(A+B+C+D)X+
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whered # e. If [[A+B+C+D)—1](e — d) > 0, then  of prime period two of Eq.(1). Ik,| and o are both even
the only positive equilibrium point of Eq.(1) is given by  positive integers, ther, = Xp_k = Xn_| = Xn_g. It follows
from Eq.(1) that

b
X= : (7
[(A+B+C+D)-1](e - d) P=(A+B+C+D)Q ~ (& bd), (12)
e —
Let us now introduce a continuous function
F : (0,00)%* — (0,00) which is defined by and o
buy Q=(A+B+C+D)P — e—a (13)
F(Uo,ul, U2,U3) = Aw +Bu; +Cuwp + Dug + Ao —ew)’
(du — eui%) By subtracting (13) from (12), we get
provideddu; # ew. Consequently, we get (P-Q)[A+B+C+D +1]=0.
OFEXXN, — A= po, SinceA+B+C +D+1+0, thenP = Q. This is a
contradiction. Thus, the proof is now completéd.
OF(XXXX) _ g_ el(A+B+CiD) -1 _ o
ouy (e—d) b 9 Theorem 61f k,I and o are both odd positive integers
OFRRER) _ o ellA+BLCID) 1 _ (©) and A+ 1.;& B+C+D, then Eq.(1) has no prime period
o, et T e—a =P two solution.
IF(RXXX) _ P Proof Following the proof of Theorem 5, we deduce that
dus % if k,| and o are both odd positive integers, thepn 1 =

wheree # d. Thus, the linearized equation of Eq.(1) about X"~ = Xn-1 = Xn-0- It follows from Eq.(1) that

X takes the form b
Znt1— P0Zn — P1Znk — P2Zn-| — P3Zn-g =0, (10) (e —d)
wherepg, p1, P2 andps are given by (9). and b
Q=AP+(B+C+D)Q — (15)

(e —d)
By subtracting (15) from (14), we get

Theorem 4Assume thate d, A+B+C+D # 1and

|A(e — d)|+|B(e — d)—e [[A+B+C+D) —1]|+
(P—Q)[(A+1)— (B+C+D)]=0.

|C(e—d)+e[(A+B+C+D) —1]|+|D(e — d)| < |e — d|, Since(A+1)— (B+C+D) #0,thenP=0Q. Thisis a
(11)  contradiction. Thus, the proof is now completed.
then the equilibrium point (7) of Eq.(1) is locally
asymptotically stable. Theorem 71f k,| are even and is odd positive integers
and(A+B+C)+1+#D, then Eq.(1) has no prime period
ProofFrom (9) and (11) we deduce that two solution.

lpo| +|p1] + |p2| + |ps| < 1, and hence the proof follows .
with the aid of Theorem 2] ProofFollowing the proof of Theorem 5, we deduce that

if k,1 are even ana is odd positive integers, theg =
Xn_k = Xn_| @andXn+1 = Xn_g- It follows from Eq.(1) that

3 Periodic solutions

P=(A+B+C)Q+DP — e d (16)
In this section, we study the existence of periodic
solutions of Eq.(1). The following theorem states the gng
necessary and sufficient conditions that the equation has Q= (A+B+C)P+DQ — b . (17)

periodic solutions of prime period two. (e — d)

Theorem 51f k,l and o are both even positive integers, BY subtracting (17) from (16), we get
then Eq.(1) has no prime period two solution.
(P-Q)[(A+B+C+1)—-D]| =0,

Proof Assume that there exists distinct positive solutions o
Since(A+B+C+1)—-D #0, thenP =Q. This is a
Q,PQ,........ contradiction. Thus, the proof is now completad.
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Theorem 8If o is even and K are odd positive integers
and (A+D+1) # (B+C), then Eq.(1) has no prime
period two solution.

ProofFollowing the proof of Theorem 5, we deduce that if

oisevenand,| are odd positive integers, thep= Xn_¢
andxp+1 = Xn_k = Xn_ - It follows from Eq.(1) that

b

P=(A+D)Q+(B+OP — (=,

(18)

and

Q=(A+D)P+(B+C)Q — (19)

(e—d)

By subtracting (19) from (18), we get
(P-Q)[(A+D+1)—(B+C)] =0,

Since(A+D+1)— (B+C) #0, thenP = Q. This is a
contradiction. Thus, the proof is now completad.

Theorem 9If k is even and o are odd positive integers,
then Eq.(1) has prime period two solution if the condition

(1-(C+D))(3e—d) < (e+d)(A+B),

is valid, provided (C+D)
e(1-(C+D))—d (A+B)>0.

(20)

< 1 and

Prooflf kis even and, g are odd positive integers, then
Xn = Xn_k @andXn11 = X | = Xn—g- It follows from Eq.(1)
that

bQ

P=(A+B)Q+(C+D)P — 54

(21)

and

bP

Q=(A+B)P+(C+D)Q — "o

(22)

Consequently, we get

e P —dPQ=e (A+B)PQ—d (A+B)Q*+e(C+D)P?
—(C+D)dPQ-bQ, (23)

and

e @—dPQ=e (A+B)PQ—d (A+B)P>+e(C+D)Q?

—(C+D)dPQ-bP (24)
By subtracting (24) from (23), we get
b
P+Q= (25)

[e(1-(C+D))—d (A+B)]’

wheree (1—-(C+D))—d (A+B) > 0. By adding (23)
and (24), we obtain

el?(1-(C+D))
(e+d)[Ki+ (A+B)][e Ki—d (A+B)]*’

(26)

where K; = (1—-(C+D)), provided (C+D) < 1
Assume thaP andQ are two positive distinct real roots
of the quadratic equation

t?— (P+Q)t+PQ=0. (27)
Thus, we deduce that
(P+Q)% > 4PQ. (28)

Substituting (25) and (26) into (28), we get the condition
(20). Thus, the proof is now completéd.

Theorem 10If | is even and ko are odd positive integers,
then Eq.(1) has prime period two solution if the condition

(A+C)(3e—d) < (e+d)(1—-(B+D)),

is valid, provided (B+D)
d(1-(B+D))—e(A+C)>0.

(29)

< 1 and

Prooflf | is even ank, o are odd positive integers, then
Xn = Xn_| @andXn11 = Xn_k = Xn_g- It follows from Eq.(1)
that

P=(A+C)Q+(B+D)P — (eQb—PmD)’ (30)
and
bQ
Q=(A+C)P+(B+D)Q — eP— dQ’ (31)
Consequently, we get
Pre=14 (1—(B+Dk;)—e Ao 2
whered (1—-(B+D))—e (A+C) >0,
PO— e ? (A+C) @)
(e+d)[Ko+ (A+C)|[d Ko —e (A+C)]
where K; = (1—(B+D)), provided (B+D) < 1.

Substituting (32) and (33) into (28), we get the condition
(29). Thus, the proof is now completéed.

Theorem 11If |,0 are even and k is odd positive
integers, then Eq.(1) has prime period two solution if the
condition

(A+C+D)(3e—d) < (e+d)(1-B), (34)
is valid, provided B< 1and d (1-B)—e (A+C+D) >
0.

Prooflf |,0 are even andt is odd positive integers, then
Xn = Xn_| = Xn—g andXn+1 = Xn_k. It follows from Eq.(1)
that

bP

P=(A+C+D)Q+BP — "o’

(35)
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and
_ bQ
Q=(A+C+D)P+BQ — P —dQ)’ (36)
Consequently, we get
b
PHR=Ga-g_earcroy OV
whered (1-B)—e (A+C+D) >0,
PO el?(A+C+D) (39)

(e+d)[(1-B)+Ks[d (1-B)—e Kg*’

where Kz = (A+C+D), provided B < 1. Substituting
(37) and (38) into (28), we get the condition (34). Thus,
the proof is now completed.

Theorem 12If k, o are even and | is odd positive integers,
then Eq.(1) has prime period two solution if the condition

(3e—d) (1-C) < (e+d)(A+B+D), (39)
is valid, providedG< 1and e(1-C)—d (A+B+D) >
0.

Prooflf k, o are even andlis odd positive integers, then
Xn = Xn_k = Xn—o andXni1 = Xn_. It follows from Eq.(1)
that

_ bQ
P=(A+B+D)Q+CP — eP-dq) (40)
and
bP
Consequently, we get
b
PHo=ea—ci—aAasBrD) “?
wheree (1-C)—d (A+B+D) >0,
PO— el? (1-C) 43)

(e+d)[(1-C)+Ky][e (1-C) —d Kg?’
whereKs = (A+B+D), providedC < 1. Substituting

(42) and (43) into (28), we get the condition (39). Thus,
the proof is now completeld!

4 Boundedness of the solutions

Theorem 13Let {x} be a solution of Eq.(1). Then the
following statements are true:

() Suppose b < d
N > 0, the intial conditions

and for some

b
XN—l4+15 -+ XN—K+15 -+ XN-1, XN € aﬂl )
are valid, then for b# e and & # be we have the
inequality

b? b

g(A+B+C+D)+( <% < (A+B+C+D)+

d?-be) — (b—e)°

(44)

for all n > N.
(i) Suppose b > d and for some

N > 0, the intial conditions
b
XN—1415 s XN—K+15 -+ XN-1, XN € 17 a )

are valid, then for b# e and & # be we have the
inequality

(A+B+C+D)+ 525 <%

b b2
< i (A+ B+C+ D)+m,
(45)
foralln > N.

ProofFirst of all, if for someN > 0, g <xy<landb+#e,
we have

bxy
XN+1 = AXN +Bxy_k +Cxy_i +DxXn—g + ﬁ
< A4+B4+CHDf Dk (46)
dXn—k — XN

But, it is easy to see thaby_k —exy_| > b— e, then for
b= e we get

xN+1§A+B+C+D+re. (47)
Similarly, we can show that
b bXy—k
X >—-(A+B+C+D)+ —mm—. 48

But, one can see thdiy_k —exy_| < dz‘%be, then ford?
be we get

2

a2 _

= (49

b
XN+41 > a (A+ B+C+ D) +
From (47) and (49) we deduce for all> N that the
inequality (44) is valid. Hence, the proof of part (i) is
completed.
Similarly, if 1 <xy < 3, then we can prove part (ii)

In this section, we investigate the boundedness of thevhich is omitted here for convenience. Thus, the proof is

positive solutions of Eq.(1).

now completed.]
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5 Global stability PIOL O YRGB Y121 CY (-4 DY (1O (Y (-2 Y n-2)-e Y (-4)

14.0005 T

In this section we study the global asymptotic stability of
the positive solutions of E(L) .

Theorem 14If 0 < A+B+C+D < 1 and e# d, then
the equilibrium pointX given by (7) of Eq.(1) is global
attractor.

7.0003

solution of y(n+1)

Proof We consider the following function

by % % 100 120
= . < Pl 50 n-iteration
(dy—e2 0

where dy # ez provided that B(dy — e2?>bez and
C(dy— e2?+ bey>0. It is easy to verify the condition (i)
of Theorem 3. Let us now verify the condition (ii) of
Theorem 3 as follows:

F(x,y,z,w) = Ax+ By+Cz+Dw+

Example 2. Figure 2, shows that Eq.(1) has no prime
period two solutions ifk =1, | =3, 0 =5, x5 =

1, Xx4=2 Xx3=3 Xz2=4 x1=05 X =6,
A=75B=50,C=25D=20 b=5d=3 e=2.

[F(X,X,X,X) _X] (X_~> = {K5X— % —X}

« {X _ [Kl]b(ed) } e
s _
_ {x(e—d) [K5—1]—b}2
. e—d s
“Ke—1" GO 5
whereKs = (A+B+C+D). Since 0< Ks < 1 ande#d, ; of
then we deduce from (51) that ol
[F (X, %,X,X) — X] (x—X) < 0. (52)

i i i
0 50 100 150 200
n-iteration

According to Theorem 3X is global attractor. Thus, the
proof is now completed]

On combining the two Theorems 4 and 14, we have the .Example . Figure 3 shows that Eq.(1) has no prime
result. period two solutions ifk =2, | =4, 0 =5, x5 =

1, x4=2 x3=3, Xxz2=4 Xx1=05 X =6,

Theorem 15The equilibrium poink given by (7) of Eq.(1) A=10B=20,C=30 D=40 b=5d=3 e=2

is globally asymptotically stable.

plot %f YA E=(A*y(n)+B*y(n-2)+Cry(n-4)+D*y(n-5))+((b*y(n-2))/(d*y(n-2)-e*y(n-4)))
1 T T T

6 Numerical examples

101

In order to illustrate the results of the previous sectiod an
to support our theoretical discussions, we consider som
numerical examples in this section. These examples
represent different types of qualitative behavior of

solution of y(n+1)

solutions of Eq.(5). ol
Example 1. Figure 1, shows that Eq.(1) has no prime
period two solutions itk =2, | =4, 0 =6, X g 2f

1, X5=2,X4=3,X3=4X2=5X%X1=6,%X =7,
A =300 B=200 C=100 D=75 b=50 d= o 50 100 150 200
307 e= 20 n-iteration

© 2014 NSP
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Example 4.Figure 4, shows that Eq.(1) has no prime numerical examples by using the mathematical programs
period two solutions itk =1, | =3, 0 =4, X 4= Matlab and Mathematica to confirm the obtained results.
1, x3 =2 X2 =3 x1 =4 X =5 Note that example 1 verifies Theorem 5 which shows that
A=100,B=50,C=25 D=200 b=5,d=3, e=2 if k,I ando are all even positive integers, then Eq.(1) has

no prime period two solution and example 2 verifies

Theorem 6 which shows that K,| and o are all odd

positive integers, then Eq.(1) has no prime period two

plot of Y I=(AY)+Ery(n- 1)+ (-2 Dy (ery(n- DAY (=) ey (1-3)) solution and example 3 verifies Theorem 7 which shows

that if k,| are even andr is odd positive integers, then
Eq.(1) has no prime period two solution. But example 4
verifies Theorem 8 which shows thatdfis even and, |
are odd positive integers, then Eq.(1) has no prime period
two solution, while example 5 verifies Theorem 15 which
shows that Eq.(1) is globally asymptotically stable.

=
@

solution of y(n+1)
-
T
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