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Abstract: In this paper, we consider a multiobjective mathematicagjpgmming problem with equilibrium constraints. We defime t
generalized Guignard constraint qualification for a mbjgctive mathematical programming problem with equililbni constraints.
We derive the Karush-Kuhn-Tucker type necessary optignetinditions for multiobjective mathematical programmprgblem with
equilibrium constraints and also derive sufficient optitgatonditions for multiobjective mathematical progranmgiproblem with
equilibrium constraints under assumptions of pseudocatyvand quasiconvexity. Further, we formulate Wolfe typeabtas well as
Mond-Weir type dual models and establish weak and stronfitgtiaeorems under pseudoconvexity and quasiconvexgym@gtions.
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1 Introduction optimality conditions for a class of MPEC, provided the
_ S . ~ complementarity problem is strongly regular at the
Consider a multiobjective mathematical programmingsolution. Scheel and Scholte41] studied MPEC and

problem with equilibrium constraints as follows: introduced several stationary point concepts. Y& [
(MMPEC) min (f1(2),..., fi(2) established necessary and sufficient optimality condition
subiect to (2)<0, h(z) =0 for MPEC and obtained new constraint qualifications for
J 9(z) =%, - MPEC. It is easy to see that the standard
G(z) 20, H(z) 20, Mangasarian-Formovitz  constraint qualification s

G(2)"H(2) =0, violated at every feasible point of a MPEQJ. Flegel

and Kanzow 14] introduced Abadie-type and Slater-type
constraint qualifications for MPEC. Flegel and Kanzow
[15] proved that first order optimality conditions for
MPEC may be obtained under assumption of Guignard
constraint qualification.

wheref :R" >R, g:R"—>RP, h:R" - RI, G:R" » R™
andH : R" — R™are continuously differentiable d&' and
G(2)" indicates the transpose of tz).

The concept of mathematical programming problems
with equilibrium constraints (MPEC) has been coined by
Harker and Pangl] in 1988. MPEC form a relatively To the best of our knowledge, there are only a few
new and interesting subclass of nonlinear programmingapers on the (MMPEC). Baoet al. [16 and
problems. MPEC arises frequently in various real world Mordukhovich [L7] studied multiobjective optimization
problems e.g., in chemical process engineeri@ly [ problems with equilibrium constraints described by
hydroeconomic river basin model 3]] capacity parametric generalized equations. Recently, Pandey and
enhancement in traffic, dynamic pricing in Mishra [18 studied a multiobjective semi-infinite

telecommunication networks4], multilevel games %], mathematical programming problems with equilibrium
chemical equilibria, environmental economics problemsconstraints and defined the concept of Mourdukhovich
[6] and several other problems, B]. stationary point for the nonsmooth multiobjective

Luo et al. [7] presented a comprehensive study of semi-infinite mathematical programming problems with
MPEC. Fukushima and Pang][studied some feasibility ~equilibrium  constraints in terms of Clarke
conditions in MPEC. Outratal[] established necessary subdifferentials. Zhanget al. [19] defined constraint
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qualifications  for multiobjective  problems with Definition 5. A vector Z € P is said to be an efficient
equilibrium constraints and established relationshipssolution to the (MMPEC), if there is nozP, such that
among them, also gave various stationarity conditions in
the proper Pareto sense of multiobjective problem with f(z2 < 1(Z).
equilibrium constraints.
The outline of this paper is as follows: in Sect. 2, we  Given a feasible pointz* € P, we consider the
give some basic definitions. In Sect. 3, we derivefollowing index sets:
Karush-Kuhn-Tucker type conditions for the (MMPEC)
using generalized Guignard constraint qualification. Inlg := {i: gi(Z") = 0},
Sect. 4, we derive sufficient optimality conditions for the o :— a(z)={i:Gi(z)=0, Hi(z) >0},
(MMPEC). In Sect. 5, we formulate Wolfe type dual and B:=p(Z)={i:G(z)=0, H(z') =0}
Mond-Weir type dual and establish duality results for the ™ o P ’
(MMPEC). In Sect. 6, we give an application of the Y:=¥(Z)={i:Gi(Z)>0, Hi(z)=0}.

(MMPEC). The setf is known as the degenerate setlfis empty,

then the vectorz® is said to satisfy the strict
o complementarity condition. Also, consider the following
2 Preliminaries function
. _ N 0(2):=G(2"H(2) (1)
In this section, we give some basic definitions and results,
which will be used in the sequel. For any two vectoesid  and the gradient is given by
yin R", we shall use the following conventions: m

X<y < x<y,Vi=1,..n, 06(2) := Z[Hi(Z)DGi(Z)+Gi(Z)DHi(Z)]- (2)
X<y <= x=Zy and Xx#Y, -
X<y <= X<y, Vi=1,..n

The following definitions are taken from Cambini and 3 Necessary Optimality conditions for
Martein [20]. MMPEC

Definition 1. A differentiable function f defined on an ' '
open convex set S R" is said to be pseudoconvex &t z In 1994, Maeda 71] derived some relations among

over S, iff following implication holds: various constraint qualifications for multiobjective
nonlinear programming problems and Mistatal. [22]
z,Z7eS (O0f(Z),z—Z)>0= f(2) > f(Z). extended the concept of Maedal] for multiobjective

optimization problems with vanishing constraints. In this
Definition 2. A differentiable function f defined on an section, we discuss the generalized Guignard constraint
open convex set S R is said to be strictly pseudoconvex qualification for the (MMPEC) under which the
at z* over S, iff following implication holds: Karush-Kuhn-Tucker  type necessary  optimality

conditions for a feasible solution to be an efficient
z,Z eSand z 7, (O0f(Z),z—Z) > 0= f(2) > f(Z). solution will be given.

Let Q be a non-empty subset &'. The tangent cone

Definition 3. A differentiable function f defined on an to Qatz € clQis the sefl (Q; z*) defined by,
open convex set S R" is said to be quasiconvex at z

over S, iff following implication holds: T(Q,Z):={deR"|H} CQ,{th} \0: "=
-7
27 ¢cS f(z<f(z)=(0f(z),z-7)<0. and - —d},
The set whereclQ denotes the closure 6J.

The following sets ofQ¥ andQ for k= 1,...,1 will be

— n < =
P:={zeR'[9(2) =0, () =0, used in the sequel.

G220, H(2) 20, G2 H(®) — 0}

K._ n| £ < ) i :

is the set of feasible solutions of the (MMPEC). Q= {zeR|i(2) z f'(z*)f Vi=1..landizk,
The following definitions are taken from Maedzd]. G2 = 0 Vi=1..p,
Definition 4. A vector z & P is said to b k efficient i =0, vi=1..4

efinition 4. A vector Z € P is said to be a weak efficien _ > o

solution to the (MMPEC)), if there is nozP, such that G =0 V_' =L..m (3)

Hi(z = 0, Vi=1,..m,
f(z) < f(z), G(2)" H(z) =0},
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Q:={zeR"|fi(zg £ fi(z),Vi=1,.,1,
g(z £ 0, Vi=1,.,p,
hi(z = 0OVi=1,..,q,
Gi(z =z OVvi=1..m 4)
Hi(z =2 0Vi=1,..m,
G(2)" H(z) =0}.

For scalar objective programming probler@é,= P.
We now extend the Definition 3.1 of Maedal] for
the (MMPEC).

THNQ,Z)={de R |Ofi(z)d <0 Vi=1,..l,
Ogi(z)'d <0, Viclg,
Ohi(z)'d =0, Yi=1,...,q,
0Gi(z)'d=0, Viea, (5)
OHi(z)'d =0, Viey,
0Gi(z)'d >0, Viep,
OHi(z')"d >0, Vie B}

It is known that the inclusion
T(QZ)CT"(Q,7)

holds and the standard Abadie constraint qualification
(ACQ) for a general nonlinear programming problems is

given by _
T(Q,Z)=T"H"(Q,7).

The above condition is likely to satisfied by the standard
nonlinear programming problems but it is not appropriate

for the (MMPEC). Since, in general tangent can@, z*)
is not convex, bufl L'”(Q, ) is polyhedral, so convex.
Therefore, we modify above definition as follows:

We define constraint qualifications which are sufficient
condition for the GGCQ.

Definition 7. Let Z € P be a feasible solution of the
(MMPEC). The Abadie constraint qualification holds at
z", iff _

Tunpec(Q.2) CT(Q.Z),
and the generalized Abadie constraints qualification
(GACQ) holds at?% iff

Tuimpec(Q.2°) C

The following result gives the KKT type necessary
optimality conditions for efficiency, when the GGCQ
holds at an efficient solution of the (MMPEC).

Theorem 1. Let Z € P be an efficient solution of the
(MMPEC). If the GGCQ holds at*z then there exist
Lagrange multipliers 7 (i = 1,...,1), A? (i=1,....p),
A (i=1,...,9), A% (i=1,..m) and A" (i =1,....m),
suchthatri >0, Vi=1,...,1,

_Izir.mf +zi)\ng. +ZA Ohi(Zf

—_;{AiGDGi (Z)+AOHi(Z)] =0, (7)
=
g(z)<0,A220, Agi(z)=0, Vi=1,.,p,
h(Z) =0, Vi=1,..0q, ®)
ACfreeica, A®>0,ieB, A°=0,icy,
Mfreeicy, A" >0/iep, A"=0ica.

Tunpec(Q Z) ={deR"|Ofi(z)Td 0, Vi=1,.1,
T < ; Proof. Suppose that* € P is an efficient solution of the
H (Z*)Td =0, vf €lg, (MMPEC) such that GGCQ holds zt. Then, by Theorem
Ohi(z')'d =0, Yi=1,...,0, 3.2 0of [21], there exist Lagrange multipliers
0Gi(z)'d=0, Viea, ;\i(' =Rl,(;--,l)1, A )= 1,---,5).(4)#,!1)( € R) %= é,-.-,q).h
T . i€eR (i=1,...m), yieR (i=1,...m),d €R, suc
OHi(z')'d =0, Vicy, (6)  ihatthe following conditions hold:
0Gi(z)'d >0, Viep, . .
OHi(z)'d >0, Viep, Zl T Ofi(Z) + Z)\ Ogi( )+_Zpi+Dhi(f)—_lei’Dh.(z*)
(D(Gi(z)"d).O(H (2)Td) = 0, Vi€ ). !
Clearly T ea(Q,2) C THY(Q,ZY). —_Z)\iDGi () - _ZHiDHi( +606(z') =0,
1= 1=
Definition 6. Let z € P be a feasible solution of the . .
(MMPEC). Then, the generalized Guignard constraint and 1>0, vVi=1.l
gualification (GGCQ) holds atziff g(z) <0, A?20, A%i(Z)=0, Vi s P,
| hI(Z*)goa pi+§oa pi+h( ) V I_l an
Tinpec(Q.2) € () ¢l coT(Q¥,2), ~hi(z) <0, pr 20, p(h(Z)) = o, Vi=1,. ,q,
k=1 —G|(Z*)§O, )\izoa )\I( I(Z*)) Oa v I_l
where cl coTQ¥, z*) denotes the closure of the convex hull —Hi(Z) =0, 1 20, pi(-Hi(z'))=0, v i=1..m,
of T(QX,z). 6(Z)<0, 6>0 66(Z)=0,
(© 2019 NSP
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Theorem 2.Let Z € P be afeasible point of the (MMPEC)
wheref denotes the function defined i) ( Now using the  and M-stationary condition holds at zSuppose that each
gradient of composite function and setting fi (i=1,...,1)is pseudoconvexatz; (i € Ig), h (i€ J*),
—hi (i€J7),G (iea UBy), —-Gi(ieatuBjup™),

+ -7:/\-h i=1,...
Pt =P i, Vi=1..q Hi (iey UBg), —Hi (i e y" UBS UB™) are quasiconvex

. : _ G i —
Ai—0Hi(Z') = A7, Vi=1..m, atz. Ifa” Uy UBg UBL = @, then Z is a weak efficient
Ui —30Gi(Z) =A", Vi=1,..m solution for the (MMPEC).
we get the required KKT type necessary optimality Proof. Suppose to the contrary thzt c P is not a weak
conditions {) and @). efficient solution for the (MMPEC). Then there exists a

feasible pointz € P such that
- . . - fi fi(Z"), Vi=1,...1.
4 Sufficient Optimality Conditions for (@ <f(@), vi=1,..,
MMPEC Since,fj is pseudoconvex,i =1,...,1, it follows that

(O0fi(Z),z—7") <0, V zeP.
In a standard nonlinear programming problem there is

only one stationary condition, that is, KKT condition, but Sincer; >0,V i=1,....|, we have
in MPEC there are several stationary point conditions / |
given in literature, such as We-stationary point, < 6 0f; (f)az—f> <0. (10)

A-stationary point, C-stationary point, M-stationary

point, S-stationary pointlj?]. S-stationary point is the Since,z" is M-stationary point, then fron®j and (L0), we

strongest condition among them and M-stationary pointget

condition is the second strongest stationary condition for

MPEC [12,14,15]. < A%0gi(z) + Zf Ohi(z Z[/\GDG i(Z) (1)
The following definition of M-stationary point for the icTg

(MMPEC) is an extension of Yelp).

Definition 8.(M-stationary point) A feasible point 2of
the (MMPEC) is called Mordukhovich stationary point, if Since, for each < | o(Z), 6i(z") £0=gi(z"). Hence, by
there existr; > 0 (l =1,. ) andA = (/\g /\h AC /\H) quas|convex|ty ogh we get

RPa+2M gych that the followmg conditions hold:

+AHOH; (z*)],z—z*> >0.  (12)

| (0gi(z),z—Z") £0, VzeP, Vielg (13)
q . . _

2 000E) + 5 Ae(@)+ 5 AON(Z) " (2) 2 02 (2. Honce, by definion of quasiconvexty

m of hj, we get

_iZ[AiGDGi (Z)+AMOHi(Z)] =0, (9) (Oh(Z),z—Z) <0, VzeP, Vied~.  (14)
Similarly, we have

Ag 20, Ay =0, A5 =0, (Oh(Z),z—7) 20, VzeP, Vied. (15)
Vi € B, eitherA® >0, A" > 0or ACAM =0. Since, ~Gi(z)£0=-Gi(z"), YieatUB],
Before going to next result, we define some index sets a¥/€ get
follow: (0Gi(Z'),z—7') 20, VzeP, VicatUBL. (16)

BT :={ieB:A°>0A" >0}, Similarly

B ={ieB:A°=0A" >0},

(OHi(z),z—Z) 20, VzeP, Viey UBs:. (17)
Bs ={ieB:A°=0,A" <0},

Sincea~ Uy UBg UB, = @, then from equationsl@)

By ={ieB:A"=02°>0}, to (17), we get
By:={ieB:A'=0°<0}, <ZAi9Dgi<f>,z—f> =0,
at :={ica:Af >0}, c
. q
a- ={ica:A®<0}, <zl)\ihDhi(z*),z—z*>§0,
i=

yt ={iey: A" >0},

y- ={iey: A" <0}, < ZBAiGDGi(f),Z—f>20,
Jto={i:A">0}, J:={i:A"<o. (s A OH(Z),2-2) 20
ieBuy
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Therefore, from above equations, we get We consider the following Wolfe type dual of the
(MMPEC):
A80gi(z APOhi(z ACOGI(z) g
<i€Zg oo Z\ Z\ (WDMMPEQ max f(u)+{ )\iggi(u)+zi)\ihhi(u)
icly i=

+AROH (), z—z*><0, VzeP, m
= 3 A6+ AT e

this implies that
wheree=(1,1,....1) e R,

A006i(Z)+ S AMOhi(Z (ACOGI(Z)
'EZ ! Z* Z subject to I T, Ofi(u Z)\gljgl ZAhDh
ie

+)\i DHI(Z*)] g 07 i=

which contradicts 11). Therefore,z* is a weak efficient _ Gre HAp. _
solution for the (MMPEC). O Zi[)\l 0Gi (u) + A" OHi(u)] =0,

The following example illustrates the above result.

A z0, Ay =0, Af =0,
Example 1Consider the following MMPEC iiiR?

Vi € B, eitherA® >0, A" > 00rAPAH =0,

min f(z1,2) = (Z+2, ), where A = (A9,A" AC AH) ¢ RPFO+2M
|

subjecttoG(z1,2):=2 =20, H(z,):=2 =0, 120,i=12..1 and ;T‘ L

T o
G21,22) H(21,%2) =212 =0, ¥, €R Remark.The Wolfe type dual model (WDMPEC) given

Let f1(z1,22) = Z+2z andfy(z,2) = 2. The feasible by Pandey and Mishra2B], is a special case of the
region of MMPEC isP, = {(z,2) € R?, such that either (WDMMPEC).

=0andz =0 =0 andz = 0}. If we tak int . :
(;{’ZE) a:n(é,zojin ?erazéible raerg];ioza,_the}n in\évgx 2;5{8%? Theorem 4. (Weak Duality) Let z be a feasible for the

and y(0,0) are empty, butB(0,0) = {1}. Also (MMPEC) and( uhr (2 b}::* fea&blejgnr] the (WPMMPEC)
0,001(0,0) + 1,012(0,0) — uOG(0,0) — vOH(0,0)=0  WhereA = (A%, AT A%, A7) € R, T R fi (i =
and eitheryv — 0  or g >0 and v >0, then L) g|(|el)h.(|eJ) —hi (ieJ”), Gi(iea"U
1—u=0 Th—v=0 Ifwetake; =1, I, =1 , then Bﬁ), ~Gi(ieatUBTUBT), Hi(iey UBg), —Hilie
p=1and v =1, such that MMPEC M-stationary Y~ UpB&UB™) are convex functions. i~ Uy~ U Sg U
conditions hold. Therefore, by Theorem?2, By =¢andt >0,vVi=1,..,1, then

(7,2) = (0,0) is a weak efficient solution of MMPEC.

h
Theorem2 can be obtained under slightly weaker f(2 % f(u) + { Agi(u) +Zf hi (u
assumption on the objective function and the proof will I€Tg

follow on the lines of the proof of Theorebkh
P - zi[)\iGGi(u) +AH )] e (18)
i=

Theorem 3. Let Z € P be a feasible point of the

(MMPEC) and M-stationary condition holds at*.z

Suppose that each fi = 1,...,1) is strictly pseudoconvex

at z, g (ielg), h (iedt), —h (ied), G (i€ q

a" UBy), —Gi (iea”uUByup’), H (i€ 9y hpy

ruﬁg?, —Hi (i e y*UBgUBJF)};re quasiconvex at‘z 2) £ f(u+ LE A g'(u)+i;)\i hi(u)

If a~ Uy UBg UBy = @, then Z is an efficient solution m ’

for the (MMPEC). - Z[AiGGi(u) +AiHHi(u)]] e (19)
=

Proof. Suppose to the contrary that equati@g)(hold that

) The above equation can be expressed as
5 Duality a P

h
In this section, we formulate a Wolfe type dual model fi(z) = fi(u )+ )‘gg' u)+ ZA hi(u
and a Mond-Weir type dual model for the (MMPEC) and
establish usual duality theorems under convexity and _ i [A.GG,(U)_’_)\.HH,(U)] Vie1.2 |
generalized convexity assumptions. Zi P PO R S D
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fi(2) < fj(u) + § A%i(u +zi)\hh

|Eg

_Z[APGi(u)MiHHi(u)], Vi

Since z' is feasible for the (MMPEC) andu,7,A) is
feasible for the (WDMMPEQC), then
A9 =0, A7 =0, Af' =0, and index sets implies that

Izl i@+ 3 /\gg. +ZA“h| Z °Gi(2)

+AMHi(2)] £ Zl +Z)\gg. +Z)\hh
_zi[,\iGGi(u)+/\iHHi(u)], Vi=12,..,1,

and

Izl ifi@+ 3 Agg| +Zf“h Z Gi(2)

+)\iHHi(z)]<ii T )+ 3 Agg. +21A hi(u

—i[AiGGi(u)MiHHi(u)], Vi

Sincey! ;5 =1and >0, Vi=1,..,

that
ZA Gi(2)

[, which implies

IZ f()+ )\gg. +Z)\h
+AMHi(2)] < zi +Z)\gg. +zi)\hh

—_Zl[)\iGGi(u)+)\iHHi(u)]. (20)
), Oi (i € |g), hi (i S J+), —hj (i S J_),
G(ica UBy), -G (iceatuBjup™), Hi(iey U

Bs), —Hi (i e yr upd up™) are convex and from2(),
we get

<||er.mf +I€Z/\9Dg. +ZA Ohi (u)
—ZAGDG. u><0.

Then, we have
t0fi(u)+ S A%0gi(u) + S AMOhi(u
i; | I i€ I Zi

|
g

Sincefi(i=1,...,1

)+ AR OH (u)], z—

- Zi[’\iGDGi (u)+ A" OH; (u)] <0,

which contradicts the assumption of duality. O

Corollary 1. Suppose that Theorem holds for the
(MMPEC) and (WDMMPEC). Ifiz",7*,A*) is feasible
for the (WDMMPEC) and "z is feasible for the
(MMPEC). Then, %Z is an efficient solution for the
(MMPEC) and(z*,t*,A") is an efficient solution for the
(WDMMPEC).

Proof. Suppose that* is not an efficient solution for the
(MMPEC), then there exists a feasible solutiofor the
(MMPEC) such that

fi(z) < fi(z") forsomei=1,...,1,
fi(2) < fj(Z) for somei # j,
from the feasibility condition of the (MMPEC) and

(WDMMPEC) i.e., for gi(z") = O, Vi€ lg,
hi(z") = 0O, Gi(z') = 0, V ieaup and
Hi(z)=0, Vi eﬁuyand)\l‘; >0, A7 =0, A =0,
then
A%0gi(Z) + S A'Ohi(z
IE I Z
- zi[)\iGDGi (Z')+AMOHi(Z)) =0,
i=
and we can write
fi(z) < fi(z') + S A%Ogi(z +Zi)\ Ohi(z*
IE
— Zl[)\iGDGi (Z)+AHOH(2),
i=
Vi=1,..,l
fi(2) < f5(z) + ¥ A%0gi(Z

)+ 21)\ Ohi(z*
—_;{AFD@@)+AiHDHi<z*>], i,

which is contradiction to weak duality Theoretn

The following lemma is extension of Lemma 2 of
Egudo p4] to the (MMPEC).

Lemmal. A feasible solution ze P is an efficient
solution for the (MMPEC) iff zsolve

R(e)  min f(2),
subject to f(2 < fj(Z), VY j#k
foreach k=1,....1,
9(2) = 0,h(z) =0,
G(z) 2 0, H(2) 20,
G (2 TH(z=0

Theorem 5. (Strong Duality) Let Z be an efficient
solution for the (MMPEC) and assume thatsatisfies the
GGCQ for R(¢) for at least one k=1,...,I; then there

(@© 2019 NSP
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existt* € R andA* € RPH42M sych that(z", 7,1 %) is

feasible for the (WDMMPEC) and if also weak duality the (MMPEC) and(u,7,A) be feasible point
(MMPEC) and (MWDMMPEC), where\ =

Theorem 4 holds between the
(WDMMPEC), thenz*, t*,A*) is an efficient solution for
the (WDMMPEC).

Proof. Sincez" is an efficient solution for the (MMPEC),

then from Lemmd., z* solvesR(¢), V k=1,...,I. Then,
by hypothesis there exidt = 1, ...,1 for which z* satisfies
GGCQ forR(¢€), then from Theorem there existr; > 0,

Theorem 6. (Weak Duality) Let z be a feasible point for
for the
(/\g’)\h7/\G7/\H) c RP+a+2m
Suppose thatig(i € lg), h (i € J"), —hi (i € J7),
G (i€ea UBy), -G (i €ea”upjuph,
Hi iey UBg), —Hi (i€ y"UBS UB™) be quasiconvex
atu. If a Uy UB; UBy = @ and any one of the
following holds:

(@ 1 >0Vviell..,
pseudoconvex at u;

[} and f, i =1,...,1 are

for i#kandA € RPHA+2M sych that

(b) T > 0Vi € {1,..
z) —I—.;Tiljfi(ik)—l—.z A00gi(z

pseudoconvex at u;

A} and YL nfi() is

(c) SlL_,7fi(.)is strictly pseudoconvex at u. Then,
+21/\ Ohi (2 21[/\ 0Gi(Z) +AMOHi(z)] =0  f(Z) £ f(u). (22)
Proof. Sinceg; (i € lg), hi (i€ J"), —hi (i€J™),Gi (i
G(Z)<0,A820, A%gi(Z)=0Vi=1,.,p, a-UBy), —Gi (ieatUByUB™), Hi(iey UBg),
h(z)=0Vi=1,...q, —Hi (ie y"Upg UB™) are quasiconvexat If a~ Uy~ U
AC freeica, AC=0,icB, AC=0,icy, Pe UBy = ¢, thenwe get
A freeicy, AH>0/iep, AH=0ica.

3 498 + 5 AW

Dividing above equations by %+ ¥, 17 and setting

1 m

=7 — >0andrf = - Zi[)\iGDGi(u) +AHOH (W] £ 0,
i=

>0,V j#Kk
1+ 30T ol ST 17
then we get(z',7%,A*) is feasible solution for the

(WDMMPEC) and from Corollaryl, we get result. O from (21), we get

We consider the following Mond-Weir type dual of _erini(u) =0,
the (MMPEC). =
which implies that
(MWDMMPEQ max f(u), |
| q <lzlrini(u),z—u> >0. (23)
subject to Zriljfi(uH— Z/\ingi(u) AMOhi (u) =
= i€ = Suppose to the contrary that res@g) hold, i.e.
m
- Z[AiGDGi W+APOHiI(W] =0, (21) f(2) < f(u). (24)
. The above inequality can be expressed as
q -
A%gi(u) >0, zi)\ihhi(u) > fi(2) = fi(u), i=1..1, (25)
'To = fi(2) < fj(u), i#], (26)
m
Zl)\iGGi ) <0, Zf\ OHi(u) <0, for 1, >0,
. L2 S thi(), i=1,..,1,
A2Z0,A8 =0, A5 =0, Tfj(2) < nfj(u), i#]j.
Vi € B eitherA® >0, A™ > 00rASAH = Then,
whereA = (A9 AN AC AH) Rp+q+2m, | |
| tfi(z) =) wfi(u) (27)
1720, i=12,..1 and ZLTi:l i; i;
= Sincefi, i =1,...,| are pseudoconvex, we get
Remark.The Mond-Weir type dual model (MWDMPEC) |
given in Pandey and Mishr2§] is a special case of the . B
(MWDMMPEC). i;ﬂDﬁ(U),Z u)<o, (28)
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which contradicts equatio28). 6 Applications
(b) Sincey!_, 7 fi(.) is pseudoconvex at u, the@7)
implies 28) again we get contradiction. A special case of the multiobjective mathematical
(c) Sincet; 20, i =1,...,1, then from @5) and @6), programming problem with equilibrium constraints
we get (MMPEC) studied in the paper, is the following
| | multiobjective optimization problem with equilibrium
Zri fi(z) < Zn fi(u). (29)  constraints:
" - (MOPEQ)  min (fi(2),.... fa(2))
Sincey!l_; T fi(.) is strictly pseudoconvex at u, again we subjectto z>0, H( ) >0,
get contradiction. O E H( J—0.

Corollary 2. Suppose that Theorerf holds for the o ,
(MMPEC) and (MWDMMPEC). Ifz*, %,A*) is feasible Siddiqui and Christenser2$] used (MOPEC) to model

for the (MWDMMPEC) and 'z is feasible for the ©neray markets and Climate_ pollicy alon_g with relatfad
(MMPEC). Then, Z is an efficient solution for the tradeoff. In (MOPEC), the objective functions are social
(MMPEC) and(z*,T*,A*) is an efficient solution for the welfare, greenhouse gas emission (GHG), producer profit,
(MWDMMPEC). G(2) = (G1(2),...,Gm(2)) as taxes, caps and other climate

. o ) policy instruments, consumption, price of energy markets,
Proof. Suppose that" is not an efficient solution for the gng H(z) = (H1(2),...,Hn(2)) as constraints for the

(MMPEC), then there exists a feasible solutibfor the energy and climate po”cies and markets.

(MMPEC), such that Theoret® holds. Sincgz", 7%,A*)

is feasible for the (MWDMMPEC), then we get a

contradiction. Thereforeg® must be an efficient solution 7 nclusion

for the (MMPEC). Similarly assuming théz", 7%,A*) is Conclusions

not an efficient solution for the (MWDMMPEC), then we \yie defined the GGCQ for the (MMPEC). We have

get contradictiorl. o » , derived the KKT type necessary optimality condition
Hence, (z',77,A%) is an efficient solution for the qing GGCQ and sufficient optimality conditions for the
(MWDMMPEC). (MMPEC) using generalized convexity. We have

Theorem 7. (Strong Duality) Let % be an efficient formulated Wolfe type dual and Mond-Weir type dual
solution for the (MMPEC) and assume thatsatisfies the models and established weak and strong duality
GGCQ for R(¢), for at least one k= 1,...,1; then there conditions for the (MMPEC) using generalized convexity.
existt* € R andA* € RPT4+2M sych that(z", 7%,A*) is

feasible for the (MWDMMPEC) and if also weak duality

Theorem 6 holds between the (MMPEC) and Acknowledgement
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