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Abstract: In this paper, we consider a multiobjective mathematical programming problem with equilibrium constraints. We define the
generalized Guignard constraint qualification for a multiobjective mathematical programming problem with equilibrium constraints.
We derive the Karush-Kuhn-Tucker type necessary optimality conditions for multiobjective mathematical programmingproblem with
equilibrium constraints and also derive sufficient optimality conditions for multiobjective mathematical programming problem with
equilibrium constraints under assumptions of pseudoconvexity and quasiconvexity. Further, we formulate Wolfe type dual as well as
Mond-Weir type dual models and establish weak and strong duality theorems under pseudoconvexity and quasiconvexity assumptions.

Keywords: Mathematical programming problems with equilibrium constraints, Optimality conditions, Constraint qualifications,
Efficient solutions, Duality.

1 Introduction

Consider a multiobjective mathematical programming
problem with equilibrium constraints as follows:

(MMPEC) min ( f1(z), ..., fl (z))

subject to g(z)≦ 0, h(z) = 0,

G(z)≧ 0, H(z)≧ 0,

G(z)TH(z) = 0,

wheref : Rn → Rl , g : Rn → Rp, h : Rn → Rq, G : Rn → Rm

andH : Rn →Rm are continuously differentiable onRn and
G(z)T indicates the transpose of theG(z).

The concept of mathematical programming problems
with equilibrium constraints (MPEC) has been coined by
Harker and Pang [1] in 1988. MPEC form a relatively
new and interesting subclass of nonlinear programming
problems. MPEC arises frequently in various real world
problems e.g., in chemical process engineering [2],
hydroeconomic river basin model [3], capacity
enhancement in traffic, dynamic pricing in
telecommunication networks [4], multilevel games [5],
chemical equilibria, environmental economics problems
[6] and several other problems [7,8].

Luo et al. [7] presented a comprehensive study of
MPEC. Fukushima and Pang [9] studied some feasibility
conditions in MPEC. Outrata [10] established necessary

optimality conditions for a class of MPEC, provided the
complementarity problem is strongly regular at the
solution. Scheel and Scholtes [11] studied MPEC and
introduced several stationary point concepts. Ye [12]
established necessary and sufficient optimality conditions
for MPEC and obtained new constraint qualifications for
MPEC. It is easy to see that the standard
Mangasarian-Formovitz constraint qualification is
violated at every feasible point of a MPEC [13]. Flegel
and Kanzow [14] introduced Abadie-type and Slater-type
constraint qualifications for MPEC. Flegel and Kanzow
[15] proved that first order optimality conditions for
MPEC may be obtained under assumption of Guignard
constraint qualification.

To the best of our knowledge, there are only a few
papers on the (MMPEC). Baoet al. [16] and
Mordukhovich [17] studied multiobjective optimization
problems with equilibrium constraints described by
parametric generalized equations. Recently, Pandey and
Mishra [18] studied a multiobjective semi-infinite
mathematical programming problems with equilibrium
constraints and defined the concept of Mourdukhovich
stationary point for the nonsmooth multiobjective
semi-infinite mathematical programming problems with
equilibrium constraints in terms of Clarke
subdifferentials. Zhanget al. [19] defined constraint
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qualifications for multiobjective problems with
equilibrium constraints and established relationships
among them, also gave various stationarity conditions in
the proper Pareto sense of multiobjective problem with
equilibrium constraints.

The outline of this paper is as follows: in Sect. 2, we
give some basic definitions. In Sect. 3, we derive
Karush-Kuhn-Tucker type conditions for the (MMPEC)
using generalized Guignard constraint qualification. In
Sect. 4, we derive sufficient optimality conditions for the
(MMPEC). In Sect. 5, we formulate Wolfe type dual and
Mond-Weir type dual and establish duality results for the
(MMPEC). In Sect. 6, we give an application of the
(MMPEC).

2 Preliminaries

In this section, we give some basic definitions and results,
which will be used in the sequel. For any two vectorsx and
y in Rn, we shall use the following conventions:

x ≦ y ⇐⇒ xi ≦ yi , ∀ i = 1, ...,n,

x ≤ y ⇐⇒ x≦ y and x6= y,

x < y ⇐⇒ xi < yi , ∀ i = 1, ...,n.

The following definitions are taken from Cambini and
Martein [20].

Definition 1. A differentiable function f defined on an
open convex set S⊆ Rn is said to be pseudoconvex at z∗

over S, iff following implication holds:

z, z∗ ∈ S, 〈∇ f (z∗),z− z∗〉 ≥ 0⇒ f (z)≥ f (z∗).

Definition 2. A differentiable function f defined on an
open convex set S⊆ Rn is said to be strictly pseudoconvex
at z∗ over S, iff following implication holds:

z, z∗ ∈ S and z6= z∗, 〈∇ f (z∗),z−z∗〉 ≥ 0⇒ f (z)> f (z∗).

Definition 3. A differentiable function f defined on an
open convex set S⊆ Rn is said to be quasiconvex at z∗

over S, iff following implication holds:

z, z∗ ∈ S, f (z)≤ f (z∗)⇒ 〈∇ f (z∗),z− z∗〉 ≤ 0.

The set

P := {z∈ Rn | g(z)≦ 0, h(z) = 0,

G(z)≧ 0, H(z)≧ 0, G(z)TH(z) = 0}

is the set of feasible solutions of the (MMPEC).
The following definitions are taken from Maeda [21].

Definition 4. A vector z∗ ∈ P is said to be a weak efficient
solution to the (MMPEC), if there is no z∈ P, such that

f (z) < f (z∗),

Definition 5. A vector z∗ ∈ P is said to be an efficient
solution to the (MMPEC), if there is no z∈ P, such that

f (z) ≤ f (z∗) .

Given a feasible pointz∗ ∈ P, we consider the
following index sets:

Ig := {i : gi(z
∗) = 0},

α := α(z∗) = {i : Gi(z
∗) = 0 , Hi(z

∗)> 0},

β := β (z∗) = {i : Gi(z
∗) = 0 , Hi(z

∗) = 0},

γ := γ(z∗) = {i : Gi(z
∗)> 0 , Hi(z

∗) = 0}.

The setβ is known as the degenerate set. Ifβ is empty,
then the vector z∗ is said to satisfy the strict
complementarity condition. Also, consider the following
function

θ (z) := G(z)TH(z) (1)

and the gradient is given by

∇θ (z) :=
m

∑
i=1

[Hi(z)∇Gi(z)+Gi(z)∇Hi(z)]. (2)

3 Necessary Optimality conditions for
MMPEC

In 1994, Maeda [21] derived some relations among
various constraint qualifications for multiobjective
nonlinear programming problems and Mishraet al. [22]
extended the concept of Maeda [21] for multiobjective
optimization problems with vanishing constraints. In this
section, we discuss the generalized Guignard constraint
qualification for the (MMPEC) under which the
Karush-Kuhn-Tucker type necessary optimality
conditions for a feasible solution to be an efficient
solution will be given.

Let Q be a non-empty subset ofRn. The tangent cone
to Q atz∗ ∈ clQ is the setT(Q;z∗) defined by,

T(Q,z∗) := {d ∈ Rn | ∃{zn} ⊆ Q,{tn}ց 0 : zn → z∗

and
zn− z∗

tn
→ d},

whereclQ denotes the closure ofQ.
The following sets ofQk andQ for k = 1, ..., l will be

used in the sequel.

Qk := {z∈ Rn | fi(z) ≦ fi(z
∗), ∀ i = 1, ..., l and i 6= k,

gi(z) ≦ 0, ∀ i = 1, ..., p,

hi(z) = 0, ∀ i = 1, ...,q,

Gi(z) ≧ 0, ∀ i = 1, ...,m, (3)

Hi(z) ≧ 0, ∀i = 1, ...,m,

G(z)T H(z) = 0 },
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Q := {z∈ Rn | fi(z) ≦ fi(z
∗),∀ i = 1, ..., l ,

gi(z) ≦ 0, ∀ i = 1, ..., p,

hi(z) = 0,∀i = 1, ...,q,

Gi(z) ≧ 0,∀i = 1, ...,m, (4)

Hi(z) ≧ 0,∀i = 1, ...,m,

G(z)T H(z) = 0}.

For scalar objective programming problems,Q1 = P.
We now extend the Definition 3.1 of Maeda [21] for

the (MMPEC).

TLin(Q,z∗) = {d ∈ Rn | ∇ fi(z
∗)Td ≦ 0 ∀ i = 1, ..., l ,

∇gi(z
∗)Td ≦ 0, ∀ i ∈ Ig,

∇hi(z
∗)Td = 0, ∀ i = 1, ...,q,

∇Gi(z
∗)Td = 0, ∀ i ∈ α, (5)

∇Hi(z
∗)Td = 0, ∀ i ∈ γ,

∇Gi(z
∗)Td ≧ 0, ∀ i ∈ β ,

∇Hi(z
∗)Td ≧ 0, ∀ i ∈ β}.

It is known that the inclusion

T(Q,z∗)⊆ TLin(Q,z∗)

holds and the standard Abadie constraint qualification
(ACQ) for a general nonlinear programming problems is
given by

T(Q,z∗) = TLin(Q,z∗).

The above condition is likely to satisfied by the standard
nonlinear programming problems, but it is not appropriate
for the (MMPEC). Since, in general tangent coneT(Q,z∗)
is not convex, butTLin(Q,z∗) is polyhedral, so convex.
Therefore, we modify above definition as follows:

TLin
MMPEC(Q,z∗) = {d ∈ Rn | ∇ fi(z

∗)Td ≦ 0, ∀ i = 1, ..., l ,

∇gi(z
∗)Td ≦ 0, ∀ i ∈ Ig,

∇hi(z
∗)Td = 0, ∀ i = 1, ...,q,

∇Gi(z
∗)Td = 0, ∀ i ∈ α,

∇Hi(z
∗)Td = 0, ∀ i ∈ γ, (6)

∇Gi(z
∗)Td ≧ 0, ∀ i ∈ β ,

∇Hi(z
∗)Td ≧ 0, ∀ i ∈ β ,

(∇(Gi(z
∗)Td).∇(Hi(z

∗)Td) = 0, ∀ i ∈ β}.

Clearly TLin
MMPEC(Q,z∗)⊆ TLin(Q,z∗).

Definition 6. Let z∗ ∈ P be a feasible solution of the
(MMPEC). Then, the generalized Guignard constraint
qualification (GGCQ) holds at z∗, iff

TLin
MMPEC(Q,z∗)⊆

l
⋂

k=1

cl coT(Qk
,z∗),

where cl coT(Qk,z∗) denotes the closure of the convex hull
of T(Qk,z∗).

We define constraint qualifications which are sufficient
condition for the GGCQ.

Definition 7. Let z∗ ∈ P be a feasible solution of the
(MMPEC). The Abadie constraint qualification holds at
z∗, iff

TLin
MMPEC(Q,z∗)⊆ T(Q,z∗),

and the generalized Abadie constraints qualification
(GACQ) holds at z∗, iff

TLin
MMPEC(Q,z∗)⊆

l
⋂

k=1

T(Qk
,z∗).

The following result gives the KKT type necessary
optimality conditions for efficiency, when the GGCQ
holds at an efficient solution of the (MMPEC).

Theorem 1. Let z∗ ∈ P be an efficient solution of the
(MMPEC). If the GGCQ holds at z∗, then there exist
Lagrange multipliers τi (i = 1, ..., l), λ g

i (i = 1, ..., p),
λ h

i (i = 1, ...,q), λ G
i (i = 1, ...,m) and λ H

i (i = 1, ...,m),
such thatτi > 0, ∀ i = 1, ..., l ,

l

∑
i=1

τi∇ fi(z
∗) +

p

∑
i=1

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)

−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)] = 0, (7)

gi(z
∗)≦ 0 ,λ g

i ≧ 0, λ g
i gi(z

∗) = 0, ∀ i = 1, ..., p,

hi(z
∗) = 0, ∀ i = 1, ...,q, (8)

λ G
i free i∈ α, λ G

i ≧ 0, i ∈ β , λ G
i = 0, i ∈ γ,

λ H
i free i∈ γ, λ H

i ≧ 0, i ∈ β , λ H
i = 0, i ∈ α.

Proof. Suppose thatz∗ ∈ P is an efficient solution of the
(MMPEC) such that GGCQ holds atz∗. Then, by Theorem
3.2 of [21], there exist Lagrange multipliers
τi(i = 1, ..., l), λ g

i (i = 1, ..., p), ρ+
i ,ρ−

i ∈ R (i = 1, ...,q),
λi ∈ R (i = 1, ...,m), µi ∈ R (i = 1, ...,m), δ ∈ R, such
that the following conditions hold:

l

∑
i=1

τi ∇ fi(z
∗)+

p

∑
i=1

λ g
i ∇gi(z

∗)+
q

∑
i=1

ρ+
i ∇hi(z

∗)−
q

∑
i=1

ρ−
i ∇hi(z

∗)

−
m

∑
i=1

λi∇Gi(z
∗)−

m

∑
i=1

µi∇Hi(z
∗)+ δ∇θ (z∗) = 0,

and τi > 0, ∀ i = 1, ...l ,

gi(z
∗) ≦ 0, λ g

i ≧ 0, λ g
i gi(z

∗) = 0, ∀ i = 1, ..., p,

hi(z
∗) ≦ 0, ρ+

i ≧ 0, ρ+
i hi(z

∗) = 0, ∀ i = 1, ...,q,

−hi(z
∗) ≦ 0, ρ−

i ≧ 0, ρ−
i (hi(z

∗)) = 0, ∀ i = 1, ...,q,

−Gi(z
∗) ≦ 0, λi ≧ 0, λi(−Gi(z

∗)) = 0, ∀ i = 1, ...,m,

−Hi(z
∗) ≦ 0, µi ≧ 0, µi(−Hi(z

∗)) = 0, ∀ i = 1, ...,m,

θ (z∗) ≦ 0, δ ≧ 0, δθ (z∗) = 0,
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whereθ denotes the function defined in (1). Now using the
gradient of composite function and setting

ρ+
i −ρ−

i = λ h
i , ∀ i = 1, ...,q,

λi − δHi(z
∗) = λ G

i , ∀ i = 1, ...,m,

µi − δGi(z
∗) = λ H

i , ∀ i = 1, ...,m,

we get the required KKT type necessary optimality
conditions (7) and (8).

4 Sufficient Optimality Conditions for
MMPEC

In a standard nonlinear programming problem there is
only one stationary condition, that is, KKT condition, but
in MPEC there are several stationary point conditions
given in literature, such as W-stationary point,
A-stationary point, C-stationary point, M-stationary
point, S-stationary point [12]. S-stationary point is the
strongest condition among them and M-stationary point
condition is the second strongest stationary condition for
MPEC [12,14,15].

The following definition of M-stationary point for the
(MMPEC) is an extension of Ye [12].

Definition 8.(M-stationary point) A feasible point z∗ of
the (MMPEC) is called Mordukhovich stationary point, if
there existτi > 0 (i = 1, ..., l) andλ = (λ g,λ h,λ G,λ H) ∈
Rp+q+2m, such that the following conditions hold:

l

∑
i=1

τi∇ fi(z
∗) + ∑

i∈Ig

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)

−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)] = 0, (9)

λ g
Ig ≧ 0, λ G

γ = 0, λ H
α = 0,

∀i ∈ β , eitherλ G
i > 0, λ H

i > 0 or λ G
i λ H

i = 0.

Before going to next result, we define some index sets as
follow:

β+ := {i ∈ β : λ G
i > 0,λ H

i > 0},

β+
G := {i ∈ β : λ G

i = 0,λ H
i > 0},

β−
G := {i ∈ β : λ G

i = 0,λ H
i < 0},

β+
H := {i ∈ β : λ H

i = 0,λ G
i > 0},

β−
H : = {i ∈ β : λ H

i = 0,λ G
i < 0},

α+ := {i ∈ α : λ G
i > 0},

α− := {i ∈ α : λ G
i < 0},

γ+ := {i ∈ γ : λ H
i > 0},

γ− := {i ∈ γ : λ H
i < 0},

J+ := {i : λ h
i > 0}, J− := {i : λ h

i < 0}.

Theorem 2.Let z∗ ∈P be a feasible point of the (MMPEC)
and M-stationary condition holds at z∗. Suppose that each
fi (i = 1, ..., l) is pseudoconvex at z∗, gi (i ∈ Ig), hi (i ∈ J+),
−hi (i ∈ J−), Gi (i ∈ α−∪β−

H ), −Gi (i ∈ α+∪β+
H ∪β+),

Hi (i ∈ γ−∪β−
G ), −Hi (i ∈ γ+∪β+

G ∪β+) are quasiconvex
at z∗. If α−∪γ−∪β−

G ∪β−
H = φ , then z∗ is a weak efficient

solution for the (MMPEC).

Proof. Suppose to the contrary thatz∗ ∈ P is not a weak
efficient solution for the (MMPEC). Then there exists a
feasible pointz∈ P such that

fi(z)< fi(z
∗), ∀ i = 1, ..., l .

Since,fi is pseudoconvex,∀ i = 1, ..., l , it follows that

〈∇ fi(z
∗), z− z∗〉< 0, ∀ z∈ P.

Sinceτi > 0, ∀ i = 1, ..., l , we have
〈 l

∑
i=1

τi∇ fi(z
∗),z− z∗

〉

< 0. (10)

Since,z∗ is M-stationary point, then from (9) and (10), we
get
〈

∑
i∈Ig

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)−
m

∑
i=1

[λ G
i ∇Gi(z

∗) (11)

+λ H
i ∇Hi(z

∗)],z− z∗
〉

> 0. (12)

Since, for eachi ∈ Ig(z∗), gi(z∗) ≦ 0= gi(z∗). Hence, by
quasiconvexity ofgi , we get

〈∇gi(z
∗),z− z∗〉≦ 0, ∀z∈ P, ∀i ∈ Ig. (13)

For any feasible pointzof the (MMPEC) and eachi ∈ J−,
hi(z∗)≦ 0= hi(z∗). Hence, by definition of quasiconvexity
of hi, we get

〈∇hi(z
∗),z− z∗〉≦ 0, ∀z∈ P, ∀i ∈ J−. (14)

Similarly, we have

〈∇hi(z
∗),z− z∗〉≧ 0, ∀z∈ P, ∀i ∈ J+. (15)

Since, −Gi(z∗)≦ 0=−Gi(z∗), ∀ i ∈α+∪β+
H ,

we get

〈∇Gi(z
∗),z− z∗〉≧ 0, ∀z∈ P, ∀i ∈ α+∪β+

H . (16)

Similarly

〈∇Hi(z
∗),z− z∗〉≧ 0, ∀z∈ P, ∀i ∈ γ+∪β+

G . (17)

Sinceα− ∪ γ− ∪ β−
G ∪ β−

H = φ , then from equations (13)
to (17), we get

〈

∑
i∈Ig

λ g
i ∇gi(z

∗),z− z∗
〉

≦ 0,

〈

q

∑
i=1

λ h
i ∇hi(z

∗),z− z∗
〉

≦ 0,

〈

∑
i∈α∪β

λ G
i ∇Gi(z

∗),z− z∗
〉

≧ 0,

〈

∑
i∈β∪γ

λ H
i ∇Hi(z

∗),z− z∗
〉

≧ 0.
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Therefore, from above equations, we get
〈

∑
i∈Ig

λ g
i ∇gi(z

∗) +
q

∑
i=1

λ h
i ∇hi(z

∗)−
m

∑
i=1

[λ G
i ∇Gi(z

∗)

+λ H
i ∇Hi(z

∗)], z− z∗
〉

≦ 0, ∀z∈ P,

this implies that

∑
i∈Ig

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)−
m

∑
i=1

[λ G
i ∇Gi(z

∗)

+λ H
i ∇Hi(z

∗)]≦ 0,

which contradicts (11). Therefore,z∗ is a weak efficient
solution for the (MMPEC). ⊓⊔

The following example illustrates the above result.

Example 1.Consider the following MMPEC inR2

min f (z1,z2) := (z3
1+ z1, z2),

subject toG(z1,z2) := z1 ≧ 0, H(z1,z2) := z2 ≧ 0,

G(z1,z2)
TH(z1,z2) := z1z2 = 0, ∀z1,z2 ∈ R.

Let f1(z1,z2) = z3
1 + z1 and f2(z1,z2) = z2. The feasible

region of MMPEC isP1 = {(z1,z2) ∈ R2, such that either
z1 = 0 andz2 ≧ 0 or z2 = 0 andz1 ≧ 0}. If we take point
(z∗1,z

∗
2) = (0,0) in feasible region, then index setsα(0,0)

and γ(0,0) are empty, but β (0,0) = {1}. Also
τ1∇ f1(0,0)+ τ2∇ f2(0,0)− µ∇G(0,0)−ν∇H(0,0) = 0
and either µν = 0 or µ > 0 and ν > 0, then
τ1− µ = 0, τ2−ν = 0. If we takeτ1 = 1, τ2 = 1 , then
µ = 1 and ν = 1, such that MMPEC M-stationary
conditions hold. Therefore, by Theorem2,
(z∗1,z

∗
2) = (0,0) is a weak efficient solution of MMPEC.

Theorem2 can be obtained under slightly weaker
assumption on the objective function and the proof will
follow on the lines of the proof of Theorem2.

Theorem 3. Let z∗ ∈ P be a feasible point of the
(MMPEC) and M-stationary condition holds at z∗.
Suppose that each fi (i = 1, ..., l) is strictly pseudoconvex
at z∗, gi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−), Gi (i ∈
α− ∪ β−

H ), −Gi (i ∈ α+ ∪ β+
H ∪ β+), Hi (i ∈

γ−∪β−
G ), −Hi (i ∈ γ+∪β+

G ∪β+) are quasiconvex at z∗.
If α−∪ γ− ∪β−

G ∪β−
H = φ , then z∗ is an efficient solution

for the (MMPEC).

5 Duality

In this section, we formulate a Wolfe type dual model
and a Mond-Weir type dual model for the (MMPEC) and
establish usual duality theorems under convexity and
generalized convexity assumptions.

We consider the following Wolfe type dual of the
(MMPEC):

(WDMMPEC) max f (u)+
[

∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)]
]

e,

where e= (1,1, ...,1) ∈ Rl
,

subject to
l

∑
i=1

τi ∇ fi(u)+ ∑
i∈Ig

λ g
i ∇gi(u)+

q

∑
i=1

λ h
i ∇hi(u)

−
m

∑
i=1

[λ G
i ∇Gi(u)+λ H

i ∇Hi(u)] = 0,

λ g
Ig ≧ 0, λ G

γ = 0, λ H
α = 0,

∀i ∈ β , eitherλ G
i > 0, λ H

i > 0 or λ G
i λ H

i = 0,

where λ = (λ g
,λ h

,λ G
,λ H) ∈ Rp+q+2m

,

τi ≧ 0, i = 1,2, ..., l and
l

∑
i=1

τi = 1.

Remark.The Wolfe type dual model (WDMPEC) given
by Pandey and Mishra [23], is a special case of the
(WDMMPEC).

Theorem 4. (Weak Duality) Let z be a feasible for the
(MMPEC) and(u,τ,λ ) be feasible for the (WDMMPEC)
whereλ = (λ g,λ h,λ G,λ H) ∈ Rp+q+2m , τ ∈ Rl . fi (i =
1, ..., l) , gi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−), Gi (i ∈ α−∪
β−

H ), −Gi (i ∈ α+∪β+
H ∪β+), Hi (i ∈ γ−∪β−

G ), −Hi (i ∈
γ+ ∪ β+

G ∪ β+) are convex functions. Ifα− ∪ γ− ∪ β−
G ∪

β−
H = φ andτi > 0 ,∀ i = 1, ..., l, then

f (z) � f (u) +
[

∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)]
]

e. (18)

Proof.Suppose to the contrary that equation (18) hold that
is

f (z) � f (u)+
[

∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)]
]

e. (19)

The above equation can be expressed as

fi(z) ≦ fi(u)+ ∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)], ∀ i = 1,2, ..., l ,
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f j (z)< f j(u) + ∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)], ∀ i 6= j.

Since z∗ is feasible for the (MMPEC) and(u,τ,λ ) is
feasible for the (WDMMPEC), then
λ g

Ig
≧ 0, λ G

γ = 0, λ H
α = 0, and index sets implies that

l

∑
i=1

τi fi(z)+ ∑
i∈Ig

λ g
i gi(z)+

q

∑
i=1

λ h
i hi(z)−

m

∑
i=1

[λ G
i Gi(z)

+λ H
i Hi(z)]≦

l

∑
i=1

τi fi(u)+ ∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)], ∀ i = 1,2, ..., l ,

and
l

∑
i=1

τi f j (z)+ ∑
i∈Ig

λ g
i gi(z)+

q

∑
i=1

λ h
i hi(z)−

m

∑
i=1

[λ G
i Gi(z)

+λ H
i Hi(z)]<

l

∑
i=1

τi f j(u)+ ∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)], ∀ i 6= j.

Since∑l
i=1 τi = 1 andτi > 0, ∀ i = 1, ..., l , which implies

that
l

∑
i=1

τi f j (z)+ ∑
i∈Ig

λ g
i gi(z)+

q

∑
i=1

λ h
i hi(z)−

m

∑
i=1

[λ G
i Gi(z)

+λ H
i Hi(z)]<

l

∑
i=1

τi fi(u)+ ∑
i∈Ig

λ g
i gi(u)+

q

∑
i=1

λ h
i hi(u)

−
m

∑
i=1

[λ G
i Gi(u)+λ H

i Hi(u)]. (20)

Since fi(i = 1, ..., l), gi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−),
Gi (i ∈ α−∪β−

H ), −Gi (i ∈ α+∪β+
H ∪β+), Hi (i ∈ γ−∪

β−
G ), −Hi (i ∈ γ+ ∪ β+

G ∪ β+) are convex and from (20),
we get
〈 l

∑
i=1

τi∇ fi(u)+ ∑
i∈Ig

λ g
i ∇gi(u)+

q

∑
i=1

λ h
i ∇hi(u)

−
m

∑
i=1

[λ G
i ∇Gi(u)+λ H

i ∇Hi(u)], z−u

〉

< 0.

Then, we have
l

∑
i=1

τi∇ fi(u)+ ∑
i∈Ig

λ g
i ∇gi(u)+

q

∑
i=1

λ h
i ∇hi(u)

−
m

∑
i=1

[λ G
i ∇Gi(u)+λ H

i ∇Hi(u)]< 0,

which contradicts the assumption of duality. ⊓⊔

Corollary 1. Suppose that Theorem4 holds for the
(MMPEC) and (WDMMPEC). If(z∗,τ∗,λ ∗) is feasible
for the (WDMMPEC) and z∗ is feasible for the
(MMPEC). Then, z∗ is an efficient solution for the
(MMPEC) and(z∗,τ∗,λ ∗) is an efficient solution for the
(WDMMPEC).

Proof. Suppose thatz∗ is not an efficient solution for the
(MMPEC), then there exists a feasible solutionz for the
(MMPEC) such that

fi(z) ≦ fi(z
∗) for some i = 1, ..., l ,

f j(z) < f j (z
∗) for some i 6= j,

from the feasibility condition of the (MMPEC) and
(WDMMPEC) i.e., for gi(z∗) = 0, ∀i ∈ Ig,
hi(z∗) = 0, Gi(z∗) = 0, ∀ i ∈ α ∪ β and
Hi(z∗) = 0, ∀ i ∈ β ∪ γ andλ g

Ig ≧ 0, λ G
γ = 0, λ H

α = 0,
then

∑
i∈Ig

λ g
i ∇gi(z

∗) +
q

∑
i=1

λ h
i ∇hi(z

∗)

−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)] = 0,

and we can write

fi(z)< fi(z
∗) + ∑

i∈Ig

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)

−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)],

∀ i = 1, ..., l ,

f j(z) ≦ f j(z
∗) + ∑

i∈Ig

λ g
i ∇gi(z

∗)+
q

∑
i=1

λ h
i ∇hi(z

∗)

−
m

∑
i=1

[λ G
i ∇Gi(z∗)+λ H

i ∇Hi(z
∗)], i 6= j,

which is contradiction to weak duality Theorem4.

The following lemma is extension of Lemma 2 of
Egudo [24] to the (MMPEC).

Lemma 1. A feasible solution z∗ ∈ P is an efficient
solution for the (MMPEC) iff z∗ solve

Pk(ε) min fk(z),

subject to fj (z) ≦ f j (z
∗), ∀ j 6= k,

for each k= 1, ..., l ,

g(z) ≦ 0,h(z) = 0,

G(z) ≧ 0, H(z)≧ 0,

G (z) TH(z) = 0.

Theorem 5. (Strong Duality) Let z∗ be an efficient
solution for the (MMPEC) and assume that z∗ satisfies the
GGCQ for Pk(ε) f or at least one k= 1, ..., l; then there
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existτ∗ ∈ Rl and λ ∗ ∈ Rp+q+2m, such that(z∗,τ∗,λ ∗) is
feasible for the (WDMMPEC) and if also weak duality
Theorem 4 holds between the (MMPEC) and
(WDMMPEC), then(z∗,τ∗,λ ∗) is an efficient solution for
the (WDMMPEC).

Proof. Sincez∗ is an efficient solution for the (MMPEC),
then from Lemma1, z∗ solvesPk(ε), ∀ k= 1, ..., l . Then,
by hypothesis there existk= 1, ..., l for which z∗ satisfies
GGCQ forPk(ε), then from Theorem1 there existτi > 0,
for i 6= k andλ ∈ Rp+q+2m, such that

fk(z∗) +∑
i 6=k

τi∇ fi(z
∗)+ ∑

i∈Ig

λ g
i ∇gi(z

∗)

+
q

∑
i=1

λ h
i ∇hi(z

∗)−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)] = 0

gi(z
∗)≦ 0 ,λ g

i ≧ 0, λ g
i gi(z

∗) = 0 ∀ i = 1, ..., p,

hi(z
∗) = 0 ∀ i = 1, ...,q,

λ G
i free i ∈ α, λ G

i ≧ 0, i ∈ β , λ G
i = 0, i ∈ γ,

λ H
i free i ∈ γ, λ H

i ≧ 0, i ∈ β , λ H
i = 0, i ∈ α.

Dividing above equations by 1+ ∑i 6=k τi and setting

τ∗k =
1

1+∑i 6=k τi
> 0 andτ∗j =

1
1+∑i 6=k τi

> 0, ∀ j 6= k,

then we get (z∗,τ∗,λ ∗) is feasible solution for the
(WDMMPEC) and from Corollary1, we get result. ⊓⊔

We consider the following Mond-Weir type dual of
the (MMPEC).

(MWDMMPEC) max f (u),

subject to
l

∑
i=1

τi∇ fi(u)+ ∑
i∈Ig

λ g
i ∇gi(u)+

q

∑
i=1

λ h
i ∇hi(u)

−
m

∑
i=1

[λ G
i ∇Gi(u)+λ H

i ∇Hi(u)] = 0, (21)

∑
i∈Ig

λ g
i gi(u)≧ 0,

q

∑
i=1

λ h
i hi(u)≧ 0,

m

∑
i=1

λ G
i Gi(u)≦ 0,

m

∑
i=1

λ H
i ∇Hi(u)≦ 0,

λ g
Ig
≧ 0, λ G

γ = 0, λ H
α = 0,

∀i ∈ β eitherλ G
i > 0, λ H

i > 0 or λ G
i λ H

i = 0.

whereλ = (λ g
,λ h

,λ G
,λ H) ∈ Rp+q+2m

,

τi ≧ 0, i = 1,2, ..., l and
l

∑
i=1

τi = 1.

Remark.The Mond-Weir type dual model (MWDMPEC)
given in Pandey and Mishra [23] is a special case of the
(MWDMMPEC).

Theorem 6. (Weak Duality) Let z be a feasible point for
the (MMPEC) and(u,τ,λ ) be feasible point for the
(MWDMMPEC), whereλ = (λ g

,λ h
,λ G

,λ H) ∈ Rp+q+2m.
Suppose that gi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−),
Gi (i ∈ α− ∪ β−

H ), −Gi (i ∈ α+ ∪ β+
H ∪ β+),

Hi (i ∈ γ−∪β−
G ), −Hi (i ∈ γ+∪β+

G ∪β+) be quasiconvex
at u. If α− ∪ γ− ∪ β−

G ∪ β−
H = φ and any one of the

following holds:
(a) τi > 0,∀i ∈ {1, ..., l} and fi , i = 1, ..., l are

pseudoconvex at u;
(b) τi > 0,∀i ∈ {1, ..., l} and ∑l

i=1τi fi(.) is
pseudoconvex at u;

(c) ∑l
i=1τi fi(.) is strictly pseudoconvex at u. Then,

f (z∗)� f (u). (22)

Proof. Sincegi (i ∈ Ig), hi (i ∈ J+), −hi (i ∈ J−), Gi (i ∈
α− ∪ β−

H ), −Gi (i ∈ α+ ∪ β+
H ∪ β+), Hi (i ∈ γ− ∪ β−

G ),
−Hi (i ∈ γ+∪β+

G ∪β+) are quasiconvex atu. If α−∪γ−∪

β−
G ∪β−

H = φ , then we get

∑
i∈Ig

λ g
i ∇gi(u) +

q

∑
i=1

λ h
i ∇hi(u)

−
m

∑
i=1

[λ G
i ∇Gi(u)+λ H

i ∇Hi(u)]≦ 0,

from (21), we get

l

∑
i=1

τi∇ fi(u)≧ 0,

which implies that
〈

l

∑
i=1

τi∇ fi(u),z−u

〉

≧ 0. (23)

Suppose to the contrary that result (22) hold, i.e.

f (z) ≤ f (u). (24)

The above inequality can be expressed as

fi(z) ≦ fi(u), i = 1, ..., l , (25)

f j(z) < f j (u), i 6= j, (26)

for τi > 0,

τi fi(z) ≦ τi fi(u), i = 1, ..., l ,

τi f j (z) < τi f j(u), i 6= j.

Then,

l

∑
i=1

τi fi(z)≦
l

∑
i=1

τi fi(u). (27)

Since fi , i = 1, ..., l are pseudoconvex, we get
〈

l

∑
i=1

τi∇ fi(u),z−u

〉

< 0, (28)
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which contradicts equation (23).
(b) Since∑l

i=1 τi fi(.) is pseudoconvex at u, then (27)
implies (28) again we get contradiction.

(c) Sinceτi ≧ 0 , i = 1, ..., l , then from (25) and (26),
we get

l

∑
i=1

τi fi(z)≦
l

∑
i=1

τi fi(u). (29)

Since∑l
i=1 τi fi(.) is strictly pseudoconvex at u, again we

get contradiction. ⊓⊔

Corollary 2. Suppose that Theorem6 holds for the
(MMPEC) and (MWDMMPEC). If(z∗,τ∗,λ ∗) is feasible
for the (MWDMMPEC) and z∗ is feasible for the
(MMPEC). Then, z∗ is an efficient solution for the
(MMPEC) and(z∗,τ∗,λ ∗) is an efficient solution for the
(MWDMMPEC).

Proof. Suppose thatz∗ is not an efficient solution for the
(MMPEC), then there exists a feasible solutionz for the
(MMPEC), such that Theorem6 holds. Since(z∗,τ∗,λ ∗)
is feasible for the (MWDMMPEC), then we get a
contradiction. Therefore,z∗ must be an efficient solution
for the (MMPEC). Similarly assuming that(z∗,τ∗,λ ∗) is
not an efficient solution for the (MWDMMPEC), then we
get contradiction.

Hence, (z∗,τ∗,λ ∗) is an efficient solution for the
(MWDMMPEC).

Theorem 7. (Strong Duality) Let z∗ be an efficient
solution for the (MMPEC) and assume that z∗ satisfies the
GGCQ for Pk(ε), f or at least one k= 1, ..., l; then there
existτ∗ ∈ Rl and λ ∗ ∈ Rp+q+2m, such that(z∗,τ∗,λ ∗) is
feasible for the (MWDMMPEC) and if also weak duality
Theorem 6 holds between the (MMPEC) and
(MWDMMPEC), then(z∗,τ∗,λ ∗) is an efficient solution
for the (MWDMMPEC).

Proof. Sincez∗ is an efficient solution for the (MMPEC),
then from Lemma1, z∗ solvesPk(ε), ∀ k= 1, ..., l . Then,
by hypothesis there existk = 1, ..., l for which z∗ satisfies
GGCQ forPk(ε), then from Theorem1 there existτi > 0
for i 6= k andλ ∈ Rp+q+2m, such that

fk (z∗)+∑
i 6=k

τi∇ fi(z
∗)+ ∑

i∈Ig

λ g
i ∇gi(z

∗)

+
q

∑
i=1

λ h
i ∇hi(z

∗)−
m

∑
i=1

[λ G
i ∇Gi(z

∗)+λ H
i ∇Hi(z

∗)] = 0,

gi(z
∗)≦ 0 ,λ g

i ≧ 0, λ g
i gi(z

∗) = 0, ∀ i = 1, ..., p,

hi(z
∗) = 0, ∀i = 1, ...,q,

λ G
i free i ∈ α, λ G

i ≧ 0, i ∈ β , λ G
i = 0, i ∈ γ,

λ H
i freei ∈ γ, λ H

i ≧ 0, i ∈ β , λ H
i = 0, i ∈ α.

Dividing above equations by 1+∑i 6=k τi and settingτ∗k =
1

1+∑i 6=k τi
> 0 andτ∗j =

1
1+∑i 6=k τi

> 0 , ∀ j 6= k, we get

(z∗,τ∗,λ ∗) is a feasible solution for the (MWDMMPEC)
and from Corollary2, we get result. ⊓⊔

6 Applications

A special case of the multiobjective mathematical
programming problem with equilibrium constraints
(MMPEC) studied in the paper, is the following
multiobjective optimization problem with equilibrium
constraints:

(MOPEC) min ( f1(z), ..., fn(z))

subject to z≧ 0, H(z)≧ 0,

zTH(z) = 0.

Siddiqui and Christensen [25] used (MOPEC) to model
energy markets and climate policy along with related
tradeoff. In (MOPEC), the objective functions are social
welfare, greenhouse gas emission (GHG), producer profit,
G(z) = (G1(z), ...,Gm(z)) as taxes, caps and other climate
policy instruments, consumption, price of energy markets,
and H(z) = (H1(z), ...,Hm(z)) as constraints for the
energy and climate policies and markets.

7 Conclusions

We defined the GGCQ for the (MMPEC). We have
derived the KKT type necessary optimality condition
using GGCQ and sufficient optimality conditions for the
(MMPEC) using generalized convexity. We have
formulated Wolfe type dual and Mond-Weir type dual
models and established weak and strong duality
conditions for the (MMPEC) using generalized convexity.
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