On the Decay of Solutions for a Nonlinear Petrovsky Equation

Erhan Pişkin* and Necat Polat

Department of Mathematics, Dicle University, 21280, Diyarbakir, Turkey

Received: 12 Jun. 2013, Revised: 8 Oct. 2013, Accepted: 9 Oct. 2013
Published online: 1 Jan. 2014

Abstract: This work studies the initial boundary value problem for the Petrovsky equation \(u_{tt} + \Delta^2 u - \Delta u_t + |u_t|^{m-1} u_t = |u|^{p-1} u \). Under suitable conditions, decay estimates of the solution are proved by using Nakao’s inequality.

Keywords: Decay, Global Existence, Petrovsky Equation

1 Introduction

In this work we study the following initial-boundary value problem

\[
\begin{cases}
 u_{tt} + \Delta^2 u - \Delta u_t + |u_t|^{m-1} u_t = |u|^{p-1} u, & (x,t) \in \Omega \times (0, T), \\
 u(x, 0) = u_0(x), & x \in \Omega, \\
 u_t(x, 0) = u_1(x), & x \in \Omega, \\
 u(x, t) = \phi(x), & x \in \partial \Omega,
\end{cases}
\]

where \(\Omega \) is a bounded domain with smooth boundary \(\partial \Omega \) in \(\mathbb{R}^n \), \(n \geq 1 \); \(\nu \) is the outer normal.

In the absence of the strong damping term \(\Delta u_t \), the interaction between the nonlinear damping and source term were established by many authors [1, 4]. Recently, Li et al. [5] investigated problem (1) and showed the global existence, energy decay and blow up of the solution.

In this paper, we analyze the influence of the damping terms and source terms on the solutions of problem (1). We obtained the global existence result by potential well method. The exponential decay, for \(m = 1 \) and the polynomial decay, for \(m > 1 \) were established by using Nakao’s inequality.

This paper is organized as follows. In section 2, we present some lemmas, and the local existence theorem. In section 3, the global existence and the decay of the solution are given.

2 Preliminaries

In this section, we shall give some assumptions and lemmas which will be used throughout this paper. Let \(\| \cdot \| \) and \(\| \cdot \|_p \) denote the usual \(L^2(\Omega) \) norm and \(L^p(\Omega) \) norm, respectively.

Lemma 1. (Sobolev-Poincare inequality) [2]. If \(2 \leq p \leq \frac{2n}{n-4} \) (2 \(\leq p < \infty \) if \(n = 1, 2, 3, 4 \)), then

\[
\|u\|_p \leq C_n \|\Delta u\| \quad \text{for } u \in H^2(\Omega)
\]

holds with some constant \(C_n \).

Lemma 2, [3]. Let \(\phi(t) \) be nonincreasing and nonnegative function defined on \([0, T]\), \(T > 1 \), satisfying

\[
\phi^{1+\alpha}(t) \leq w_0(\phi(t) - \phi(t+1)), \quad t \in [0, T]
\]

for \(w_0 \) is a positive constant and \(\alpha \) is a nonnegative constant. Then we have, for each \(t \in [0, T] \),

\[
\begin{cases}
 \phi(t) \leq \phi(0) e^{-w_1[t-1]^+}, & \alpha = 0, \\
 \phi(t) \leq (\phi(0)^{-\alpha} + w_0^{-1} \alpha [t-1]^+)^{-\frac{1}{\alpha}}, & \alpha > 0,
\end{cases}
\]

where \([t-1]^+ = \max\{t-1, 0\} \), and \(w_1 = \ln \left(\frac{m}{w_0} \right) \).

Next, we state the local existence theorem which is proved in [1].

Theorem 1. (Local existence). Suppose that \(m, p \) satisfies

\[
\begin{cases}
 1 < m < \infty, \quad n \leq 4, \\
 1 < m \leq \frac{n+4}{n-4}, \quad n > 4,
\end{cases}
\]

and

\[
\begin{cases}
 1 < p < \infty, \quad n \leq 4, \\
 1 < p \leq \frac{n}{n-4}, \quad n > 4,
\end{cases}
\]
and further \(u_0 \in H^2_0(\Omega) \) and \(u_1 \in L^2(\Omega) \) such that problem (1) has a unique local solution
\[
\begin{align*}
\mathbf{u} & \in C([0,T);H^2_0(\Omega)) \quad \text{and} \\
u \in C([0,T);L^2(\Omega)) \cap L^{p+1}(\Omega \times [0,T)).
\end{align*}
\]
Moreover, at least one of the following statements holds true:
\[
\begin{align*}
i) \ T = \infty, \\
ii) \ |u_t|^2 + |\Delta u|^2 \to \infty \quad \text{as} \ t \to T^-.
\end{align*}
\]

3 Global existence and decay of solutions

In this section, we discuss the global existence and decay of the solution for problem (1).

We define
\[
J(t) = \frac{1}{2} \|\Delta u\|^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1},
\]
and
\[
I(t) = \|\Delta u\|^2 - \|u\|_{p+1}^{p+1}.
\]
We also define the energy function as follows
\[
E(t) = \frac{1}{2} \|u_t\|^2 + \frac{1}{2} \|\Delta u\|^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1}.
\]
Finally, we define
\[
W = \{ u : u \in H^2_0(\Omega), \ I(u) > 0 \} \cup \{0\}.
\]
The next lemma shows that our energy functional (6) is a nonincreasing function along the solution of (1).

Lemma 3. \(E(t) \) is a nonincreasing function for \(t \geq 0 \) and
\[
E'(t) = - \left(\|u_t\|_{m+1}^{m+1} + \|\nabla u_t\|^2 \right) \leq 0.
\]

Proof. Multiplying the equation of (1) by \(u_t \) and integrating over \(\Omega \), using integrating by parts and summing up the product results, we get
\[
E(t) - E(0) = - \int_0^t \left(\|u_t\|_{m+1}^{m+1} + \|\nabla u_t\|^2 \right) d\tau \quad \text{for} \ t \geq 0.
\]

Lemma 4. Suppose that (2) holds. Let \(u_0 \in W \) and \(u_1 \in H^m_0(\Omega) \) such that
\[
\beta = C_\ast \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{p-1}{2}} < 1,
\]
then \(u \in W \) for each \(t \geq 0 \).

Proof. Since \(I(0) > 0 \), it follows the continuity of \(u(t) \) that
\[
I(t) > 0,
\]
for some interval near \(t = 0 \). Let \(T_m > 0 \) be a maximal time, when (5) holds on \([0,T_m]\).

From (4) and (3), we have
\[
J(t) = \frac{1}{p+1} I(t) + \frac{p-1}{2(p+1)} \|\Delta u\|^2
\geq \frac{p-1}{2(p+1)} \|\Delta u\|^2
\]
(11)

By using (11), (6) and Lemma 3, we get
\[
\|\Delta u\|^2 \leq \frac{2(p+1)}{p-1} J(t)
\leq \frac{2(p+1)}{p-1} E(t)
\leq \frac{2(p+1)}{p-1} E(0).
\]
(12)

By recalling Lemma 1 and (12), we have
\[
\|u\|_{p+1}^{p+1} \leq C_\ast \|\Delta u\|^{p+1}
= C_\ast \|\Delta u\|^{p-1} \|\Delta u\|^2
\leq C_\ast 2 \frac{(p+1)}{p-1} E(0)^{\frac{p-1}{2}} \|\Delta u\|^2
= \beta \|\Delta u\|^2
< \|\Delta u\|^2 \quad \text{on} \ t \in [0,T_m].
\]
(13)

Therefore, by using (5), we conclude that \(I(t) > 0 \) for all \(t \in [0,T_m] \). By repeating the procedure, \(T_m \) is extended to \(T \). The proof of Lemma 4 is completed.

Lemma 5. Let assumptions of Lemma 4 holds. Then there exists \(\eta_1 = 1 - \beta \) such that
\[
\|u\|_{p+1}^{p+1} \leq (1 - \eta_1) \|\Delta u\|^2.
\]

Proof. From (13), we get
\[
\|u\|_{p+1}^{p+1} \leq \beta \|\Delta u\|^2.
\]

Let \(\eta_1 = 1 - \beta \), then we have the result.

Remark. From Lemma 5, we can deduce that
\[
\|\Delta u\|^2 \leq \frac{1}{\eta_1} I(t).
\]
(14)

Theorem 2. Suppose that (2) holds. Let \(u_0 \in W \) satisfying (10). Then the solution of problem (1) is global.

Proof. It is sufficient to show that \(\|u_t\|^2 + \|\Delta u\|^2 \) is bounded independently of \(t \). To achieve this we use (5)
and (6) to obtain

\[
E(0) \geq E(t) = \frac{1}{2} \|u_t\|^2 + \frac{1}{2} \|\Delta u\|^2 - \frac{1}{p+1} \|u\|_{p+1}^{p+1} \\
= \frac{1}{2} \|u_t\|^2 + \frac{p-1}{2(p+1)} \|\Delta u\|^2 + \frac{1}{p+1} I(t) \\
\geq \frac{1}{2} \|u_t\|^2 + \frac{p-1}{2(p+1)} \|\Delta u\|^2
\]

since \(I(t) \geq 0 \). Therefore

\[
\|u_t\|^2 + \|\Delta u\|^2 \leq CE(0),
\]

where \(C = \max \left\{ \frac{1}{2}, \frac{2}{2(p+1)} \right\} \). Then by Theorem 1, we have the global existence result.

Theorem 3. Suppose that (2) and (10) holds, and further \(u_0 \in W \). Thus, we have following decay estimates:

\[
E(t) \leq \begin{cases}
E(0) e^{-w_1(t+1)^{\frac{m-1}{m-1}}}, & \text{if } m = 1, \\
\left(E(0) - \alpha + C_7 \alpha \left[t - 1 \right]^+ \right)^{\frac{1}{\alpha}}, & \text{if } m > 1,
\end{cases}
\]

where \(w_1, \alpha \) and \(C_7 \) are positive constants which will be defined later.

Proof. By integrating (8) over \([t, t+1], t > 0\), we have

\[
E(t) = E(t+1) = D^{m+1}(t),
\]

where

\[
D^{m+1}(t) = \int_{t}^{t+1} \left(\|u_t\|_{m+1}^2 + \|\nabla u_t\|^2 \right) dt.
\]

By virtue of (16) and H"older inequality, we observe that

\[
\int_{t}^{t+1} \int_{\Omega} |u_t|^2 \, dx \, dt \leq |\Omega|^{\frac{1}{m+2}} D^2(t) = CD^2(t).
\]

Hence, from (17), there exist \(t_1 \in [t, t+\frac{1}{2}] \) and \(t_2 \in [t+\frac{1}{2}, t+1] \) such that

\[
\|u_t(t_i)\| \leq CD(t), \quad i = 1, 2
\]

Multiplying the equation of (1) by \(u_t \), and integrating it over \(\Omega \times [t_1, t_2] \), we get

\[
\int_{t_1}^{t_2} I(t) \, dt = -\int_{t_1}^{t_2} \int_{\Omega} u_{tt} u_t \, dx \, dt - \int_{t_1}^{t_2} \int_{\Omega} \nabla u_t \nabla u_t \, dx \, dt \\
= \int_{t_1}^{t_2} \int_{\Omega} |u_t| |u_t| u_t \, dx \, dt.
\]

By using (1) and integrating by parts and Cauchy-Schwarz inequality in the first term, and Hölder inequality in the second term of the right hand side of (19), we obtain

\[
\int_{t_1}^{t_2} I(t) \, dt \leq \|u_t(t_1)\| \|u(t_1)\| + \|u_t(t_2)\| \|u(t_2)\| + \|u_t(t_2)\|^2 \, dt + \int_{t_1}^{t_2} \|\nabla u_t\| \|\nabla u_t\| \, dt \\
= \int_{t_1}^{t_2} \int_{\Omega} |u_t| |u_t| u_t \, dx \, dt.
\]

Now, our goal is to estimate the last term in the right-hand side of inequality (20). By using Hölder inequality, we obtain

\[
\int_{t_1}^{t_2} \int_{\Omega} |u_t|^m u_t \, dx \, dt \leq \int_{t_1}^{t_2} \|u_t(t)\|^m \|u(t)\|_{m+1} \, dt
\]

By applying the Sobolev-Poincare inequality and (12), we find

\[
\int_{t_1}^{t_2} \|u_t(t)\|^m \|u(t)\|_{m+1} \, dt \\
\leq C_s \int_{t_1}^{t_2} \|u_t(t)\|^m \|\Delta u(t)\| \, dt
\]

\[
\leq C_s \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \int_{t_1}^{t_2} \|u_t(t)\|^m E^{\frac{1}{2}}(s) \, dt
\]

\[
\leq C_s \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) \int_{t_1}^{t_2} \|u_t(t)\|^m \, dt
\]

\[
\int_{t_1}^{t_2} \|\nabla u_t\| \|\nabla u_t\| \, dt \leq \left(\int_{t_1}^{t_2} \|\nabla u_t\|^2 \, dt \right)^{\frac{1}{2}} \leq CD(t)
\]

Then

\[
\int_{t_1}^{t_2} \|\nabla u_t\| \|\nabla u_t\| \, dt \leq C_{\alpha} \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D(t)
\]

From (12), (18) and Sobolev-Poincare inequality, we have

\[
\|u_t(t_1)\| \|u(t_1)\| \leq C_1 D(t) \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s),
\]

where \(C_1 = 2C_s \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \). Then by (20)-(24) we have

\[
\int_{t_1}^{t_2} I(t) \, dt \leq C_1 \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D(t) + D^2(t)
\]

\[
+ C_{\alpha} \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D(t)
\]

\[
+ C_s \left(\frac{2(p+1)}{p-1} E(0) \right)^{\frac{1}{2}} \sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D^{m}(t).
\]
On the other hand, from (5), (6) and Remark, we obtain

\[E(t) \leq \frac{1}{2} \|u_t\|^2 + C_3 J(t), \quad (26) \]

where \(C_3 = \frac{1}{2} \frac{p-1}{p+1} + \frac{1}{p+1} \).

By integrating (26) over \([t_1, t_2]\), we have

\[\int_{t_1}^{t_2} E(t) \, dt \leq \frac{1}{2} \int_{t_1}^{t_2} \|u_t\|^2 \, dt + C_3 \int_{t_1}^{t_2} I(t) \, dt. \]

Then by (21) and (27), we get

\[\int_{t_1}^{t_2} E(t) \, dt \leq \frac{1}{2} C D^2(t) + C_3 C_2 \left(\sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D(t) + D^2(t) \right) \]

\[+ C C_1 \left(\frac{2(p+1)}{p-1} E(0) \right) \left(\sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D(t) \right) \]

\[+ C_4 \left(\frac{2(p+1)}{p-1} E(0) \right) \left(\sup_{t_1 \leq s \leq t_2} E^{\frac{1}{2}}(s) D^m(t) \right) \]

By integrating \(\frac{d}{dt} E(t) \) over \([t_1, t_2]\), we obtain

\[E(t) = E(t_2) + \int_{t_1}^{t_2} \left(\|u_t\|_{m+1}^2 + \|\nabla u_t\|^2 \right) \, dt. \quad (29) \]

Therefore, since \(t_2 - t_1 \geq \frac{1}{2} \), we conclude that

\[\int_{t_1}^{t_2} E(t) \, dt \geq (t_2 - t_1) E(t_2) \geq \frac{1}{2} E(t_2). \]

That is,

\[E(t_2) \leq 2 \int_{t_1}^{t_2} E(t) \, dt. \quad (30) \]

Consequently, exploiting (15), (28)-(30), and since \(t_1, t_2 \in [t, t+1] \), we get

\[E(t) \leq 2 \int_{t_1}^{t_2} E(t) \, dt + \int_{t_1}^{t_2} \left(\|u_t\|_{m+1}^2 + \|\nabla u_t\|^2 \right) \, d\tau \]

\[= 2 \int_{t_1}^{t_2} E(t) \, dt + D^{m+1}(t). \quad (31) \]

Then, by (28), we have

\[E(t) \leq \left(\frac{1}{2} C + C_3 C_2 \right) D^2(t) + D^{m+1}(t) \]

\[+ C_4 \left(\|D(t) + D^m(t)\| E^{\frac{1}{2}}(t) \right). \]

Hence, by Young inequality, we obtain

\[E(t) \leq C_5 \left[D^2(t) + D^{m+1}(t) + D^{2m}(t) \right]. \quad (32) \]

Case 1: When \(m = 1 \), from (32), we obtain

\[E(t) \leq 3C_5 D^2(t) = 3C_5 [E(t) - E(t+1)]. \]

By Lemma 2, we get

\[E(t) \leq E(0) e^{-w_1 |t-1|}. \]

where \(w_1 = \ln \frac{3C_5}{\pi^p t}. \)

Case 2: When \(m > 1 \), from (32), we obtain

\[E(t) \leq C_5 D^2(t) \left(1 + D^{m-1}(t) + D^{2(m-1)}(t) \right). \]

Then since \(E(t) \leq E(0) \), \(\forall t \geq 0 \), we see from (15)

\[E(t) \leq C_5 \left(1 + E^{\frac{m-1}{2}}(0) + E^{\frac{2m-1}{2}}(0) \right) D^2(t) \]

\[\leq C_6 D^2(t), \quad t \geq 0. \]

Then we obtain

\[E(t)^{\frac{m}{2}} \leq C_7 D^{m+1}(t) \]

\[\leq C_7 E(t - E(t+1)). \quad (33) \]

Thus, from (33) and Lemma 2, we have

\[E(t) \leq \left(E(0)^{-\alpha} + C_7^{-1} \alpha |t-1|^{+} \right)^{-\frac{1}{\alpha}}. \]

The proof of Theorem 3 is completed.

References

Erhan Pişkin received his BS, MS and PhD degrees in Mathematics from at the Dicle University, Diyarbakr, Turkey (2005, 2009, 2013). He currently works as a research assistant at the Department of Mathematics, Dicle University, Turkey. His research interests are in local existence, global existence, continuous dependence, global nonexistence, asymptotic behavior and decay of solutions for nonlinear hyperbolic differential equations, analysis of nonlinear differential equations, and mathematical behavior of nonlinear differential equations.

Necat Polat graduated from Department of Mathematics, Dicle University, Diyarbakr, Turkey in 1997 and received her MS and PhD degrees in Applied Mathematics from Dicle University in 2000 and 2005, respectively. He currently works as an Associate Professor at Department of Mathematics in Dicle University. His research interests are in local existence, global existence, continuous dependence, global nonexistence, asymptotic behavior, decay, stability and instability of solutions for nonlinear hyperbolic and parabolic differential equations, analysis of nonlinear differential equations, and mathematical behavior of nonlinear differential equations.