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Abstract: This work studies the initial boundary value problem for the Petrovsky equation utt +∆2u−∆ut + |ut |
m−1ut = |u|p−1u.

Under suitable conditions decay estimates of the solution are proved by using Nakaos inequality.
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1 Introduction

In this work we study the following initial-boundary value
problem






utt +△2u−△ut + |ut |
m−1ut = |u|p−1u, (x, t) ∈ Ω × (0,T) ,

u(x,0) = u0 (x) , ut (x,0) = u1 (x) , x∈ Ω ,

u(x, t) = ∂υu(x, t) = 0, x∈ ∂Ω ,

(1)
whereΩ is a bounded domain with smooth boundary∂Ω
in Rn, n≥ 1; ν is the outer normal.

In the absence of the strong damping term△ut , the
interaction between the nonlinear damping and source
term were established by many authors [1,4]. Recently, Li
et. al [5] investigated problem (1) and showed the global
existence, energy decay and blow up of the solution.

In this paper, we analyze the influence of the damping
terms and source terms on the solutions of problem (1).
We obtained the global existence result by potential well
method. The exponential decay, form = 1 and the
polynomial decay, form > 1 were established by using
Nakao’s inequality.

This paper is organized as follows. In section 2, we
present some lemmas, and the local existence theorem. In
section 3, the global existence and the decay of the solution
are given.

2 Preliminaries

In this section, we shall give some assumptions and
lemmas which will be used throughout this paper. Let‖.‖

and‖.‖p denote the usualL2 (Ω) norm andLp (Ω) norm,
respectively.

Lemma 1.(Sobolev-Poincare inequality) [2]. If 2 ≤ p ≤
2n

n−4 (2≤ p< ∞ if n = 1,2,3,4) , then

‖u‖p ≤C∗ ‖△u‖ for u∈ H2
0 (Ω)

holds with some constant C∗.

Lemma 2.[3]. Let φ (t) be nonincreasing and nonnegative
function defined on[0,T] , T > 1, satisfying

φ1+α (t)≤ w0 (φ (t)−φ (t +1)) , t ∈ [0,T]

for w0 is a positive constant andα is a nonnegative
constant. Then we have, for each t∈ [0,T] ,

{

φ (t)≤ φ (0)e−w1[t−1]+ , α = 0,

φ (t)≤
(

φ (0)−α +w−1
0 α [t −1]+

)− 1
α , α > 0,

where[t −1]+ = max{t −1,0} , and w1 = ln
(

w0
w0−1

)

.

Next, we state the local existence theorem which is proved
in [1].

Theorem 1.(Local existence). Suppose that m, p satisfies
{

1< m< ∞, n≤ 4;
1< m≤ n+4

n−4, n> 4, (2)

{

1< p< ∞, n≤ 4;
1< p≤ n

n−4, n> 4, (3)
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and further u0 ∈ H2
0 (Ω) and u1 ∈ L2 (Ω) such that

problem (1) has a unique local solution

u ∈ C
(

[0,T) ;H2
0 (Ω)

)

and

ut ∈ C
(

[0,T) ;L2 (Ω)
)

∩Lm+1 (Ω × [0,T)) .

Moreover, at least one of the following statements holds
true:

i) T = ∞,

ii) ‖ut‖
2+‖△u‖2 −→ ∞ ast −→ T−.

3 Global existence and decay of solutions

In this section, we discuss the global existence and decay
of the solution for problem (1).

We define

J(t) =
1
2
‖△u‖2−

1
p+1

‖u‖p+1
p+1 , (4)

and
I (t) = ‖△u‖2−‖u‖p+1

p+1 . (5)

We also define the energy function as follows

E (t) =
1
2
‖ut‖

2+
1
2
‖△u‖2−

1
p+1

‖u‖p+1
p+1 . (6)

Finally, we define

W =
{

u : u∈ H2
0 (Ω) , I (u)> 0

}

∪{0} . (7)

The next lemma shows that our energy functional (6)
is a nonincreasing function along the solution of (1).

Lemma 3.E (t) is a nonincreasing function for t≥ 0 and

E′ (t) =−
(

‖ut‖
m+1
m+1+‖∇ut‖

2
)

≤ 0. (8)

Proof.Multiplying the equation of (1) by ut and integrating
over Ω , using integrating by parts and summing up the
product results, we get

E (t)−E (0) =−
∫ t

0

(

‖uτ‖
m+1
m+1+‖∇uτ‖

2
)

dτ for t ≥ 0.

(9)

Lemma 4.Suppose that (2) holds. Let u0 ∈ W and u1 ∈
Hm

0 (Ω) such that

β =C∗

(

2(p+1)
p−1

E (0)

)

p−1
2

< 1, (10)

then u∈W for each t≥ 0.

Proof.SinceI (0)> 0, it follows the continuity ofu(t) that

I (t)> 0,

for some interval neart = 0. Let Tm> 0 be a maximal time,
when (5) holds on[0,Tm] .

From (4) and (3), we have

J(t) =
1

p+1
I (t)+

p−1
2(p+1)

‖△u‖2

≥
p−1

2(p+1)
‖△u‖2 (11)

By using (11), (6) and Lemma 3, we get

‖△u‖2 ≤
2(p+1)

p−1
J(t)

≤
2(p+1)

p−1
E (t)

≤
2(p+1)

p−1
E (0) . (12)

By recalling Lemma 1 and (12), we have

‖u‖p+1
p+1 ≤ C∗ ‖△u‖p+1

= C∗ ‖△u‖p−1‖△u‖2

≤ C∗

(

2(p+1)
p−1

E (0)

)

p−1
2

‖△u‖2

= β ‖△u‖2

< ‖△u‖2 on t ∈ [0,Tm] . (13)

Therefore, by using (5), we conclude thatI (t) > 0 for all
t ∈ [0,Tm] . By repeating the procedure,Tm is extended to
T. The proof of Lemma 4 is completed.

Lemma 5.Let assumptions of Lemma 4 holds. Then there
existsη1 = 1−β such that

‖u‖p+1
p+1 ≤ (1−η1)‖△u‖2

.

Proof.From (13), we get

‖u‖p+1
p+1 ≤ β ‖△u‖2

.

Let η1 = 1−β , then we have the result.

Remark.From Lemma 5, we can deduce that

‖△u‖2 ≤
1

η1
I (t) . (14)

Theorem 2.Suppose that (2) holds. Let u0 ∈ W satisfying
(10). Then the solution of problem (1) is global.

Proof.It is sufficient to show that‖ut‖
2 + ‖△u‖2 is

bounded independently oft. To achieve this we use (5)
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and (6) to obtain

E (0) ≥ E (t) =
1
2
‖ut‖

2+
1
2
‖△u‖2−

1
p+1

‖u‖p+1
p+1

=
1
2
‖ut‖

2+
p−1

2(p+1)
‖△u‖2+

1
p+1

I (t)

≥
1
2
‖ut‖

2+
p−1

2(p+1)
‖△u‖2

sinceI (t)≥ 0. Therefore

‖ut‖
2+‖△u‖2 ≤CE(0) ,

whereC= max
{

2, 2(p+1)
p−1

}

. Then by Theorem 1, we have

the global existence result.

Theorem 3.Suppose that (2) and (10) holds, and further
u0 ∈W. Thus, we have following decay estimates:

E (t)≤

{

E (0)e−w1[t−1]+ , if m= 1,
(

E (0)−α +C−1
7 α [t −1]+

)− 1
α , if m> 1,

where w1, α and C7 are positive constants which will be
defined later.

Proof.By integrating (8) over [t, t +1] , t > 0, we have

E (t)−E (t +1) = Dm+1 (t) , (15)

where

Dm+1 (t) =
∫ t+1

t

(

‖uτ‖
m+1
m+1+‖∇uτ‖

2
)

dτ . (16)

By virtue of (16) and Ḧolder inequality, we observe that
∫ t+1

t

∫

Ω
|ut |

2dxdt≤ |Ω |
r+1
r+2 D2 (t) =CD2 (t) . (17)

Hence, from (17), there exist t1 ∈
[

t, t + 1
4

]

and
t2 ∈

[

t + 3
4, t +1

]

such that

‖ut (ti)‖ ≤CD(t) , i = 1,2 (18)

Multiplying the equation of (1) byu, and integrating it over
Ω × [t1, t2] , we get
∫ t2

t1
I (t)dt = −

∫ t2

t1

∫

Ω
uuttdxdt−

∫ t2

t1

∫

Ω
∇ut∇udxdt

−
∫ t2

t1

∫

Ω
|ut |

m−1utudxdt. (19)

By using (1) and integrating by parts and Cauchy-Schwarz
inequality in the first term, and Ḧolder inequality in the
second term of the right hand side of (19), we obtain
∫ t2

t1
I (t)dt ≤ ‖ut (t1)‖‖u(t1)‖+‖ut (t2)‖‖u(t2)‖

+
∫ t2

t1
‖ut (t)‖

2dt+
∫ t2

t1
‖∇ut‖‖∇u‖dt

−
∫ t2

t1

∫

Ω
|ut |

m−1utudxdt. (20)

Now, our goal is to estimate the last term in the right-hand
side of inequality (20). By using Ḧolder inequality, we
obtain
∫ t2

t1

∫

Ω
|ut |

m−1utudxdt≤
∫ t2

t1
‖ut (t)‖

m
m+1‖u(t)‖m+1dt

(21)
By applying the Sobolev-Poincare inequality and (12), we
find

∫ t2

t1
‖ut (t)‖

m
m+1‖u(t)‖m+1dt

≤ C∗

∫ t2

t1
‖ut (t)‖

m
m+1‖△u(t)‖dt

≤ C∗

(

2(p+1)
p−1

E (0)

)
1
2
∫ t2

t1
‖ut (t)‖

m
m+1E

1
2 (s)dt

≤ C∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)

∫ t2

t1
‖ut (t)‖

m
m+1dt

≤ C∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)Dm(t) . (22)

∫ t2

t1
‖∇ut‖‖∇u‖dt

≤ C∗

∫ t2

t1
‖∇ut‖‖△u(t)‖dt

≤ C∗

(

2(p+1)
p−1

E (0)

)
1
2
∫ t2

t1
‖∇ut‖E

1
2 (s)dt

≤ C∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)

∫ t2

t1
‖∇ut‖dt,

which implies
∫ t2

t1
‖∇ut‖dt ≤

(

∫ t2

t1
1dt

)
1
2
(

∫ t2

t1
‖∇ut‖

2dt

)
1
2

≤ CD(t)

Then

∫ t2
t1
‖∇ut‖‖∇u‖dt ≤CC∗

(

2(p+1)
p−1 E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)D(t)

(23)
From (12), (18) and Sobolev-Poincare inequality, we have

‖ut (ti)‖‖u(ti)‖ ≤C1D(t) sup
t1≤s≤t2

E
1
2 (s) , (24)

whereC1 = 2C∗

(

2(p+1)
p−1 E (0)

)
1
2
. Then by (20)-(24) we

have
∫ t2

t1
I (t)dt ≤ C1 sup

t1≤s≤t2
E

1
2 (s)D(t)+D2 (t)

+CC∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)D(t)

+C∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)Dm(t) . (25)
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On the other hand, from (5), (6) and Remark, we obtain

E (t)≤
1
2
‖ut‖

2+C3I (t) , (26)

whereC3 =
1

η1

p−1
2(p+1) +

1
p+1.

By integrating (26) over [t1, t2] , we have
∫ t2

t1
E (t)dt ≤

1
2

∫ t2

t1
‖ut‖

2dt+C3

∫ t2

t1
I (t)dt. (27)

Then by (21) and (27), we get

∫ t2

t1
E (t)dt ≤

1
2

CD2 (t)+C3C2

[

sup
t1≤s≤t2

E
1
2 (s)D(t)+D2 (t)

+CC∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)D(t)

+C∗

(

2(p+1)
p−1

E (0)

)
1
2

sup
t1≤s≤t2

E
1
2 (s)Dm(t)

]

.(28)

By integrating d
dt E (t) over [t, t2] , we obtain

E (t) = E (t2)+
∫ t+1

t

(

‖uτ‖
m+1
m+1+‖∇uτ‖

2
)

dτ . (29)

Therefore, sincet2− t1 ≥ 1
2, we conclude that

∫ t2

t1
E (t)dt ≥ (t2− t1)E (t2)≥

1
2

E (t2) .

That is,

E (t2)≤ 2
∫ t2

t1
E (t)dt. (30)

Consequently, exploiting (15), (28)-(30), and sincet1, t2 ∈
[t, t +1] , we get

E (t) ≤ 2
∫ t2

t1
E (t)dt+

∫ t+1

t

(

‖uτ‖
m+1
m+1+‖∇uτ‖

2
)

dτ

= 2
∫ t2

t1
E (t)dt+Dm+1 (t) . (31)

Then, by (28), we have

E (t) ≤

(

1
2

C+C3C2

)

D2 (t)+Dm+1 (t)

+C4 [D(t)+Dm(t)]E
1
2 (t) .

Hence, by Young inequality, we obtain

E (t)≤C5
[

D2 (t)+Dm+1 (t)+D2m(t)
]

. (32)

Case 1:Whenm= 1, from (32), we obtain

E (t)≤ 3C5D2 (t) = 3C5 [E (t)−E (t +1)] .

By Lemma 2, we get

E (t)≤ E (0)e−w1[t−1]+
,

wherew1 = ln 3C5
3C5−1.

Case 2:Whenm> 1, from (32), we obtain

E (t)≤C5D2 (t)
(

1+Dm−1 (t)+D2(m−1) (t)
)

.

Then sinceE (t)≤ E (0) , ∀t ≥ 0, we see from (15)

E (t) ≤ C5

(

1+E
m−1
m+1 (0)+E

2(m−1)
m+1 (0)

)

D2 (t)

≤ C6D2 (t) , t ≥ 0.

Then we obtain

E (t)
m+1

2 ≤ C7Dm+1 (t)

≤ C7 (E (t)−E (t +1)) . (33)

Thus, from (33) and Lemma 2, we have

E (t)≤
(

E (0)−α +C−1
7 α [t −1]+

)− 1
α
.

The proof of Theorem 3 is completed.
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