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Abstract: This work studies the initial boundary value problem for the Petrovskwaimuuy + A%u— Au + |u|™ Tu = u[P~1u.
Under suitable conditions decay estimates of the solution are proved lyNiakaos inequality.
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1 Introduction and||.||,, denote the usual®(Q) norm andLP (Q) norm,

respectively.
In this work we study the following initial-boundary value ) ) )
problem Lemma 1(Sobolev-Poincare inequality@]. If 2 < p <

2 (2<p<wifn=1,234),then

U+ A20— Au A+ u™ g = ulP o, (xt) € 2 % (0,T),
u(x,0) = uo (x), U (x,0) = uy (X), X€ Q, [ully < Cs || Aul| forue H3 (Q)
u(xt) =dyu(x,t) =0, XeoQ,

(1) holds with some constant.C
whereQ is a bounded domain with smooth boundai
in R", n> 1; v is the outer normal.

In the absence of the strong damping tefxu;, the
interaction between the nonlinear damping and source 1+a
term were established by many authdr,s4[.pRgcently, Li ¢ O =wo(p(t)—e(t+1), te[0.T]
et. al ] investigated problemlj and showed the global for wy is a positive constant andr is a nonnegative

Lemma 2[3]. Let ¢(t) be nonincreasing and nonnegative
function defined ofD, T], T > 1, satisfying

existence, energy decay and blow up of the solution. constant. Then we have, for each {0, T],
In this paper, we analyze the influence of the damping .
terms and source terms on the solutions of problém ( o(t) < @(0)e -1, a=0,

We obtained the global existence result by potential well -1
method. The exponential decay, fon = 1 and the
polynomial decay, fom > 1 were established by using
Nakao’s inequality.

This paper is organized as follows. In section 2, we Next, we state the local existence theorem which is proved
present some lemmas, and the local existence theorem. In .~ P

() < (9(0) “+wytat—1") @, a>0,

where[t —1]" = max{t — 1,0}, and w = In (W‘c’)vﬁl) .

section 3, the global existence and the decay of the solutio" [1].
are given. Theorem 1(Local existence). Suppose that psatisfies

l<m<o, n<4; @
2 Preliminaries 1<m< X2 n>4
In this section, we shall give some assumptions and l<p<o, n<4; 3
lemmas which will be used throughout this paper. LLéit l<p<ii;, n>4, ®)
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and further y € H3(Q) and u € L?(Q) such that
problem (L) has a unique local solution

ueC([0,T);H3(Q)) and
u € C([0,T);L3(Q)) L™ (2 x[0,T)) .

Moreover, at least one of the following statements holds

true:

i) T = oo,
i) w2+ [ Aul2 — o ast — T~

3 Global existence and decay of solutions

In this section, we discuss the global existence and decay

of the solution for problemX).

We define
_1 2 1 p+1
J(t)_ 2||AUH p_|_1Hu||p+17 (4)
and
1
L(t) = || Aul® = [lullpis- (5)
We also define the energy function as follows
2121 2 1 . pn
EM) =3Il + g 180 - S ©)
Finally, we define
W ={u:ueHZ(Q), I (u)>0}u{o}. 7)

The next lemma shows that our energy functior@l (
is a nonincreasing function along the solution Df. (

Lemma 3E (t) is a nonincreasing function fort 0 and
E'®) = (lulni+Itul’) <o ®

Proof Multiplying the equation of 1) by u; and integrating

over Q, using integrating by parts and summing up the

product results, we get
t
E(M)—E© =~ [ (lurllpii+[Cur]?) dr fort > 0.
9)

Lemma 4. Suppose that?) holds. Let y € W and y €
Hg'(Q) such that

5_c. (2(ppfll)E(0>) = “1,

(10)

then ue W for each t> 0.

ProofSincel (0) > 0, it follows the continuity ofu(t) that
I(t) >0,

for some interval nedr= 0. Let T, > 0 be a maximal time,
when 6) holds on[0, Ty .
From @) and @), we have

I = -1+ 2(pp+11)

p+1
1Aul?

12l
p—1
>
= 2(p+1)
By using (1), (6) and Lemma 3, we get

2(p+1)
p—1
2(p+1)
p—1
2(p+1)
p—1
By recalling Lemma 1 andl@), we have

11)

1Au)? < J()

< E(t)

E(0). (12)

+1 1
Iullpit < Coll Al

= C. [ AulP | Aul?

<c (Z(p“) E<0>) 7 au?

p—1
= BllAu|?
< ||Aulj? ont € [0, Tr]. (13)

Therefore, by usingH), we conclude thalkt(t) > 0 for all
t € [0, Tm] . By repeating the procedurg;, is extended to
T. The proof of Lemma 4 is completed.

Lemma 5Let assumptions of Lemma 4 holds. Then there
existsn; = 1— B such that

1 2
ul[pi: < (1= na) | Aul?.
ProofFrom (13), we get
1 2
ull by < BllAul®.
Letny = 1— (3, then we have the result.

RemarkErom Lemma 5, we can deduce that

lau2< L. (14)
m

Theorem 2Suppose that?) holds. Let y € W satisfying
(10). Then the solution of problemis global.

Prooflt is sufficient to show that|u]||? + || Aul? is
bounded independently ¢f To achieve this we useb)
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and @) to obtain

p+l

E(O) >E{t) = fHutll +*||AUI| _p+1H lpi1

1. .2, P-

=z ——||Au I(t

> lu >+ (pﬂ)n P+ o1

1 pP—

= Au

> 5 Il + <p+1> | sul?
sincel (t) > 0. Therefore

luel?+ [ Aull < CE(0),
whereC = max{Z, Z(ppff) } . Then by Theorem 1, we have
the global existence result.

Theorem 3Suppose that) and (@0) holds, and further
Up € W. Thus, we have following decay estimates:
E(0)e”

s { (EQ)“+C/laft-

where w, a and G are positive constants which will be
defined later.

walt=1" if m=1,

_1
7)) @, ifm>1,

ProofBy integrating 8) over|t,t + 1], t > 0, we have
E(t)—E(t+1) =D (1), (15)

where

t+1
D™ (0) = [ (luel i+ 10ue ) e

By virtue of (16) and Hlder inequality, we observe that

(16)

t4+1 :
/t /Q|ut|2dxdtg|Q|$12D2(t):CD2(t). (17)

Hence, from 17), there existt; € [t,t+;11] and
ty € [t+3,t+1] such that
Ju (t)[| <CD(t), i=1,2 (18)

Multiplying the equation of1) by u, and integrating it over
Q x [t1,tp], we get

to to 153
/t [(t)dt = —/t /Quutdxdt—/t /QDutDudxdt
s 1 1 -
to 1
—/ / |ug| ™ uudxdt
t, Jo

(19)

By using @) and integrating by parts and Cauchy-Schwarz

inequality in the first term, and &lder inequality in the
second term of the right hand side @B, we obtain

[F10et < @l uwl +u G ue)
+ [ I [ jou) joul ot

—K /Q|ut\m’1utudxdt
s

(20)

Now, our goal is to estimate the last term in the right-hand
side of inequality 20). By using Hblder inequality, we
obtain

to . t2
L™ vt [ O 00 1t
t1 JQ 1
(21)
By applying the Sobolev-Poincare inequality add)( we
find

't2 m
[k O 1)y 1
s

t2
<c [ lu O, 1 | Au )] dt
1

<c (A le o>)2 [ I, @

2(p+1 :
<c (2P Ve©)” spEb(s) [ u i
p_l 11 <s<tp
1
2
<c (2('““)5(0)) sup EZ (s)D™(t). 22)
p-1 t1<s<t,

t2
| ow 1w dt
6]

oty
<C. [ "Il jau)

<c (Bt le )/nmutnEz
2(p+1) :

<c, E0)) supE3(s /||Dut||dt,
p-1 f<s<ty ty

which implies

to to % to 2 %
[ imwien < ([ 200)" ([ o)
t1 ty t

<CD(t)
Then
sup E3 (s)D(t)

f1<s<tz
(23)
From (12), (18) and Sobolev-Poincare inequality, we have

lue ()| u(t)]| < C1D(t) sup EZ(s),

t1<s<tp

1
J2 0wl Duldt < cc. (224PE(0))*

(24)

1
20 E(0 ))2 Then by 20)-(24) we

whereC;, = 2C, (

[

dt < C; sup E2(s)D(t)+D2(t)

t1<s<t

ree (B e0)” sw et
e (P e0) s el 90m. @9
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On the other hand, fronbj, (6) and Remark, we obtain
1.2
E(1) < 5 llul®+Cal (1), (26)

1 p-1 1
whereCs = TGRS + 5

By integrating 26) over [t3,t] , we have

t2 1 [t 2 2
E(t)dtgf/ ol dt+C3/ ldt.  (27)
2y t

6]

Then by @1) and @7), we get

1.
/ZE(t)dt < lep? (t)+CaCz | sup Ez (s)D(t)+D(t)
Ju 2 t<s<t

1
2

+cc (ME(O)> sup E (s)D(t)

p-1 ti<s<t,
1
2

. (2(p+ 1)E(0)> sup E2 (9) Dm(t)](28)

p—1 ti<s<t,

By integrating%E (t) over|t,ty], we obtain

t+1
Q=B+ [ (lulfd+Oul)ar. @9)

Therefore, sinc& —t; > 3, we conclude that

ttZE(t)dt > (th—t1)E (tp) > %E(tz).
That s, .
E(t) <2/ E)dt (30)

<]
Consequently, exploitindl§), (28)-(30), and sincés,t; €
[t,t+1], we get

to t+1
EM <2 Emdi+ [ (uelpid+0ul) dr
1

— 2 [*E(®)dt+D™ (1), (31)

<]

Then, by £8), we have
E(t) < (;C+C3C2> D?(t) + D™ (1)

+C4[D(t) + D™ (1) EZ (t).
Hence, by Young inequality, we obtain

E(t) <Cs[D?(t) + D™ (t) +D®™(1)].  (32)
Case 1:.Whenm= 1, from (32), we obtain

E(t) < 3CsD?(t) = 3Cs [E (1) — E(t +1)].
By Lemma 2, we get

E(t) < E(0)e Walt-1"

_1n_3Cs
wherew; = In o

Case 2Whenm > 1, from (32), we obtain
E (t) < CsD(t) (1+ D™ (t) + DA™Y (t)) .

Then sinceE (t) < E(0), ¥Vt > 0, we see from15)

2(m-1)

E(t) < Cs (1+ERH (0)+E ™t (0)) D2(t)
< CgD?(t), t>0.
Then we obtain
EM)"Z <cD™()
<C/(E(t)-E(t+1)). (33)
Thus, from 83) and Lemma 2, we have

1
a

Et)<(EQO) “+Claft-1")"

The proof of Theorem 3 is completed.
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