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Abstract: To reduce uncertainty due to model selection when a large number of potential candidate models is available, the use of
Bayesian Model Averaging (BMA) has emerged as an important tool. As known, the BMA methodology is a coherent approach since
we can express the desired quantities as a weighted average of model specific quantities with the weights determined based on how
much the data supports each model. In toxicological studies, a wide range of statistical models have been utilized for dose-response
modeling and risk assessment with no particular model receiving a universal acceptance. Here, we consider the application of BMA
for benchmark dose estimation in developmental toxicity experiments. In such experiments, as in all noncancer studies, the choice of
the model can play a crucial role in the final benchmark dose estimates. A Bayesian approach along with the MCMC method is used
to fit each individual model used as a component in model averaging and to derive the posterior weights. A simulation studyof a
developmental toxicity experiment is used to illustrate the methodology.
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1 Introduction

The benchmark dose (BMD) approach to determine safe
exposure levels in toxicological studies has become the
standard and widely accepted method for risk assessment.
Typically, animal bioassay experiments are conducted to
assess the adverse effect of chemicals in doses that are
much higher than the human exposure levels. A
dose-response model is fitted to the data to establish a
mathematical relationship between the response rate and
the dosage level. The model is then used for extrapolation
to estimate safe human exposure levels (BMDs) for a
small predetermined change in response that can be
considered toxicologically adverse for humans, called the
benchmark risk (BMR). Technical guidelines for
application of BMD approach is provided in a recent
publication by the environmental protection agency [1].

A major problem in applying the BMD methodology
is that many dose-response models may fit the data quite
well in the experimental dose range, but when
extrapolated to the low levels, the BMD estimates can
often vary by an order of magnitude. To allow for more
conservative considerations, often the lower confidence

limit (BMDL) of the BMD is used. [2] show that ”an
uncomfortably high percentage of instances can occur
where the true extra risk at the BMD lower confidence
limit (BMDL) under misspecified or incorrectly selected
model can surpass the target BMR, exposing potential
danger of traditional strategies for model selection when
calculating BMDs and BMDLs”. To account for the
uncertainty due to the choice of the dose-response model,
model averaging has recently been introduced and
utilized in a number of risk assessment problems. For
example, [3] and [4] have applied the model averaging
techniques for microbial risk assessment. [5] and [6] used
model averaging for estimating the benchmark dose in
cancer studies and found good results. In a later study, the
same authors [7] used a large amount of response data to
examine the performance of the model averaging
procedure. Since observational data were available at the
low dose region, the authors were able to estimate the
benchmark dose and compare with the observed risk at
low doses. They found that the model averaging technique
works well and that quantitative risk estimates based on
model averaging is a promising alternative to linear
extrapolation based on a single model. Other authors also
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found that model averaging approach to calculating the
BMDs can result in improved risk estimation [8]. In
model averaging, rather than using a single mathematical
relationship as dose-response model, several potential
candidate models are considered and a weighted average
of these models is utilized for extrapolation. An approach
to model averaging that has found widespread popularity
is the Bayesian Model Averaging (BMA).The advantage
of BMA is that the weights are determined in such a way
that they are proportional to the posterior probability that
each model is correct given the observations. Therefore
the weights show the extent of support in the data for each
model. There was also consideration of the properties of
the BMA technique in benchmark dose estimation and it
was shown that the derived estimates more accurately
reflect uncertainty in the understanding of the effects of
exposure on the occurrence of adverse responses [9].

Here, we consider the application of BMA in
quantitative risk assessment for developmental toxicity
studies. In such studies, pregnant female animals are
exposed to a dose of a chemical during a critical time of
the gestation period. The animals are sacrificed just
before term and the uterine content is examined for a
variety of developmental and skeletal defects such as
malformation and fetal weight. A crucial issue in
modeling responses from such experiments is the
consideration of the litter effect. Since it is known that
responses from fetuses in the same litter behave more
similarly than fetuses from different litters, incorporation
of this intra-litter correlation is considered to be vital and
highly important in dose-response modeling and risk
assessment. Several approaches have been introduced
using various techniques to analyze the data from
developmental toxicity experiments. See for example
[10], [11], [12], and references therein. Many of these
models consider multiple outcomes. However, in the
present paper in order to examine the effect of the BMA
technique in developmental toxicity, we only consider a
single binary outcome such as the occurrence of
malformation in the fetus. A full Bayesian approach is
used to fit each dose response model and the MCMC
method is utilized to determine the parameter estimates
for each model. In the next section, we describe our
modeling approach and in section 3 our parameter
estimation method is described. The application of BMA
technique in developmental toxicology is discussed in
section 4 and section 5 is devoted to the illustration of our
methodology through simulation.

2 Model Description

Suppose that a developmental toxicity experiment
consists of a control andg nonzero dose levels with
0 = d0 < d1 < .. . < dg. Assume thatmi (i = 0, . . . ,g)
pregnant female dams are exposed to dosedi according to
some predetermined dose regimen. In developmental
toxicity experiments, exposure generally occurs during a

critical time of the gestation period. For example in
experiments with mice, exposure is generally during days
5 to 12 of the gestation. Also, depending on the toxic
substance, exposure could occur in a variety of formats. It
could be in the diet, through gavage, by inhalation or
dermal. Animals are sacrificed just before term and the
fetuses are examined for developmental defects. Letni j
be the number of fetuses andXi j be the number of
responses i.e. fetuses with a defect e.g. malformation in
the jth litter of the ith dose level for j = 1, . . . ,mi and
i = 0,1, . . . ,g. Then if we denote bypi j the probability of
response in thejth litter of theith dose level, we have

P(Xi j = xi j|pi j) =
(ni j

xi j

)

p
xi j
i j (1− pi j)

ni j−xi j xi j = 0,1, . . . ,ni j

(1)
Now, because of the litter effect, the probability of
responsepi j varies from one litter to another. If we
assume a beta distribution for the litter response
probabilities,

P(pi j) = B−1(αi,βi)pαi−1
i j (1− pi j)

βi−1
, αi > 0,βi > 0

(2)
whereB(αi,βi) is the beta function, then the marginal

distribution of Xi j is the familiar beta-binomial model
given by

P(xi j) =

(

ni j

xi j

)

B(αi + xi j,βi + ni j − xi j)

B(αi,βi)
(3)

The unconditional mean and variance ofXi j are
respectively given by

E(Xi j) = ni jµi (4)

and

V (Xi j) = ni jµi(1− µi){1+
θi

1+θi
(ni j −1)} (5)

whereµi =
αi

αi+βi
and θi = (αi +βi)

−1. Note that in
this case, the intralitter correlation assumed to be the
same for all litters in the same dose group is given by
ρi = corr(Xi jl ,Xi jl′) =

θi
1+θi

, whereXi jl denotes the pup

specific response of thelth pup in the jth litter of the ith

dose group for l = 1, . . . ,ni j, j = 1, . . . ,mi, and
i = 1, . . . ,g.

The application of beta-binomial model for
developmental toxicity experiments was first suggested
by Williams [13] who used it to detect a treatment effect.
Expressing the model in terms of the beta distribution
mean function also makes it convenient to use a link
function P(d) to relate the mean response to the dose
through a dose-response relationship. Several
dose-response models have been introduced and applied
to teratological data. For example, Hoel et al.[14] used the
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one-hit model. [15] considered an extension of the one-hit
model that incorporated the litter effect and [16] proposed
the Weibull model. Since then, there has been a variety of
dose-response models that have been proposed by various
authors each with some specific properties and for a
review of these models, we refer to [17] and [11]. It is to
be noted that the Beta-Binomial distribution is probably
one of the earliest approaches for developmental toxicity
modeling and once again many other approaches have
been proposed. For example [18] applied the Generalized
Estimating Equation (GEE) approach while [19]
discussed the application of the quasi-likelihood method.
Since in addition to structural malformation, in
developmental toxicity studies, often other outcomes such
as fetal weight, death and resorption status are also
observed, several authors have developed approaches that
consider multiple responses simultaneously. See for
example, [20] and [21]. But the goal in this paper is not so
much to compare the approaches, but rather to
demonstrate the application of BMA technique in
reducing uncertainty in dose-response modeling for
developmental toxicity experiments. For this reason, we
consider a single outcome models and we resort to the
likelihood approach and apply the beta-binomial model.
Now, the likelihood function is given by

L ∝
g

∏
i=1

mi

∏
j=1

{
∏

Xi j−1
k=0 (µi + kθi)∏

ni j−Xi j−1
k=0 (1− µi+ kθi)

∏
ni j−1
k=0 (1+ kθi)

}

(6)
whereµi is replaced by the probability of responseP(di)
at dosedi with P(d) being a monotonic dose-response
model. Once the model parameters are estimated, the
process of risk assessment and determination of BMD can
begin. Here, we use the additional risk, defined as the
excess risk over background due to exposure i.e.
π(d) = P(d)−P(0), whereP(0) is the risk of an adverse
effect at the background level, as the measure of
increased risk. Thus ifπ∗ denotes the BMR, a low fixed
level of risk, then the BMD is the dose level
corresponding to the riskP(0) + π∗. For practical
purposes, the value ofπ∗ is generally chosen to be
between 0.01 or 0.1. This methodology is widely utilized
to determine safe exposure levels, but unfortunately, the
value of BMD can severely change depending on the
choice ofP(d) in (6). There are several candidate models,
but as pointed out in [22], ”the misspecification of the risk
model can adversely affect the inference on the BMD and
the associated risk” This justifies the use of model
averaging to reduce uncertainty in the choice of risk
models which we adopt here for developmental toxicity
experiments. But first, in the next section, we describe our
parameter estimation method for each model.

3 Parameter Estimation

To fit each dose-response model, a Bayesian approach is
adopted and the MCMC method is applied for simulation
and to determine the parameter estimates. Dunson [23]
points out several advantages in using a Bayesian
approach to joint modeling of clustered multiple
outcomes of different types. A general framework is
developed using latent variables for discrete outcomes
and the exact posterior distributions of parameters and
latent variables are derived using MCMC methods. The
approach is based on an earlier work by [24]. Bayesian
approach for joint modeling of clustered outcomes has
also been discussed in [25] and [26]. More recently,
Bowman & George [27] developed a Bayesian
methodology for joint regression modeling of discrete and
continuous outcomes. Their method is assuming Gaussian
latent variables for binary and ordinal outcomes and
Gaussian distributions for continuous observations.

Shao & Small [28] describe a methodology for
MCMC which they call a hybrid approach of
Metropolis-within Gibbs-algorithm. In this approach, new
samples are proposed via one parameter at a time, but
with a common distribution. The advantage of this
approach is that knowledge of the conditional parameter
distribution is not required. New samples are kept or
rejected in favor of the old one based on the ratio of
prior-likelihood product of the new sample as compared
to the old one. Their methodology was successfully
applied in model averaging to demonstrate the reduction
in the value of uncertainty in BMD estimation of
carcinogenic substances when additional dose levels can
be made available. Accordingly, ifK candidate models
are used in the model averaging procedure and if we
denote thekth model by Pk(d) = Fk(γ1k + γ2kdh) for
k = 1, . . . ,K, then the joint posterior distribution of all
model parameters given the data is proportional to the
product of the likelihood and the joint prior distribution of
all the parameters, that is

P(γ1,γ2|X1, . . . ,Xg) ∝ P(γ1,γ2)∗L

where γ1 = (γ11, . . . ,γ1K)
T ,

γ2 = (γ21, . . . ,γ2K)
T ,Xi = (Xi1, . . . ,Ximi)

T for i = 1, . . . ,g,
P(γ1,γ2) is the joint prior distribution ofγ1 andγ2, andL
is given by (6). Following [28] we also assume that the
prior distributions of parameters of all the dose-response
models used for model averaging i.e.γ11, . . . ,γ1k and
γ21, . . . ,γ2k are independent and noninformative and that
no parametric specification of the prior distribution is
required. Once the parameter estimates are determined,
the BMD for each modelPj(d) for a given level of riskπ∗

can be derived from

BMDk =
[{F−1

k (π∗)− γ1 j}

γ2k

]

1
h

k = 1, . . . ,K (7)
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Table 1: Parameter estimates for the five dose-response models with their corresponding standard deviations in parentheses at the
different BMR levels starting from 0.01.

Model Parameter 0.01 0.025 0.05 0.075 0.1
Logistic γ11 -0.8244(0.14) -0.8329(0.14) -0.8163(0.14) -0.8038(0.15) -0.8287(0.15)

γ21 3.5041(0.75) 3.5068(0.77) 3.4523(0.81) 3.41(0.79) 3.4257(0.85)
Probit γ12 -0.1081(0.057) -0.1444(0.09) -0.1179(0.059) -0.1573(0.069) -0.1333(0.053)

γ22 0.7447(0.38) 1.0667(0.5) 0.7766(0.38) 1.1(0.63) 0.7215(0.34)
Quantal Quadratic γ13 0.1946(0.026) 0.1914(0.02) 0.204(0.026) 0.1905(0.03) 0.1962(0.027)

γ23 15.675(2.42) 17.659(3.39) 17.33(3.33) 16.1(2.34) 16.49(2.55)
Weibull (h = 5) γ14 0.2885(0.0337) 0.2811(0.0333) 0.2763(0.0347) 0.278(0.0315) 0.2786(0.0361)

γ24 323.84(69.57) 334.05(72.71) 318.56(67.67) 337.07(62.32) 322.51(71.28)
Weibull (h unfixed) γ15 0.1679(0.025) 0.1675(0.027) 0.1619(0.029) 0.1638(0.026) 0.1735(0.028)

γ25 8.3453(3.41) 8.0121(3.74) 7.763(2.37) 7.734(2.48) 9.176(3.22)
h 1.5291(0.21) 1.491(0.24) 1.5092(0.18) 1.4826(0.189) 1.586(0.21)

Table 2: BMD estimates for the five dose-response models.
Model 0.01 0.025 0.05 0.075 0.1

Logistic 0.0141 0.0347 0.0695 0.1051 0.1410
Probit 0.0683 0.1186 0.2899 0.4420 0.7203

Quantal Quadratic 0.0282 0.0424 0.0608 0.0776 0.0894
Weibull (h = 5) 0.1337 0.1598 0.1858 0.1995 0.2146

Weibull (h unfixed) 0.0366 0.0615 0.0995 0.1262 0.1751

Table 3: The 5% BMDL estimates for the five dose-response models.
Model 0.01 0.025 0.05 0.075 0.1

Logistic 0.0103 0.0245 0.0486 0.0709 0.0959
Probit 0.0234 0.0370 0.0858 0.1020 0.2070

Quantal Quadratic 0.0251 0.0408 0.0530 0.0698 0.0825
Weibull (h = 5) 0.1246 0.1493 0.1734 0.1879 0.2031

Weibull (h unfixed) 0.0139 0.0272 0.0398 0.0786 0.1363

By applying the MCMC methodology, we can
generate a large sequence of parameter estimates for each
model and determine the BMD. Using a measure of the
center e.g. the average, we have a point estimate for BMD
and using the 5th percentile value, we have the
corresponding BMDL.

4 Bayesian Model Averaging in
Developmental Toxicology

The choice of a suitable dose-response modelP(d) in (6)
is a critical issue and benchmark dose estimates can vary
depending on the choice of the model. As pointed out in
[29], it is possible to postulate different models that
provide equally significant statistical fit to the data in the
experimental range, but when extrapolated to low doses,
give point estimates for the risk that can vary by several
orders of magnitude. Using a data set from an
epidemiological study, Morales et al. [30] show that in
cancer studies, the risk estimate can severely vary
depending on the choice of the dose-response model. For
this reason, several functions have been applied in

practice, but no single model has found universal
acceptance for dose-response modeling in developmental
toxicology. Noting this issue, Razzaghi [31] proposes the
use of mixture models. The study argues that not only
such models are more flexible and thus provide better fit
to the data, but they also account for any
non-homogeneity such as susceptibility in the population.
A mixture of two logistic models was applied with some
success. In this respect, therefore, the BMA methodology
whereby a weighted average of several candidate models
can be applied, appears to be very appealing in reducing
uncertainty due to modeling. The challenge, however, to
determine the weights and the attraction of the BMA
technique is that the weights are determined in such a way
that models which have a better fit have higher weights
and conversely, models with poorer fit have a lesser
contribution to the final average. For a discussion on the
choice of weights and the advantages of the BMA
approach, see [32].

In the BMA methodology, we begin by assuming that
all theK models have a priori equal weights, that is

P(Wk) =
1
K

k = 1,2, . . . ,K
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Table 4: BIC estimates associated with the five dose-response modelsfor varying added risk values.
Model 0.01 0.025 0.05 0.075 0.1

Logistic 1510.558 1510.278 1511.438 1513.038 1510.828
Probit 1562.318 1556.178 1561.098 1555.858 1560.244

Quantal Quadratic 1464.017 1466.998 1470.758 1466.198 1466.444
Weibull (h = 5) 1498.038 1497.798 1499.698 1497.598 1499.082

Weibull (h unfixed) 1463.478 1463.637 1463.877 1464.357 1463.877

Table 5: Weights associated with the BIC estimates of the five dose-response models for different added risk values determined by
using (10).

Model 0.01 0.025 0.05 0.075 0.1
Logistic 3.391×10−11 6.278×10−11 4.555×10−11 1.921×10−11 4.994×10−11

Probit 1.953×10−22 6.773×10−21 7.4989×10−22 9.665×10−21 9.288×10−22

Quantal Quadratic 0.4331 0.1571 0.0311 0.2848 0.2169
Weibull (h = 5) 1.774×10−08 3.2190×10−08 1.614×10−08 4.327×10−08 1.775×10−08

Weibull (h unfixed) 0.5669 0.8430 0.9689 0.7152 0.7831

Table 6: BMA estimates for BMD and BMDL of the five dose-response models for different added risk values obtained by using BIC
weights.

BMR level BMA for BMD BMA for BMDL
0.01 0.03184 0.02025
0.025 0.05852 0.02934
0.05 0.09824 0.04020
0.075 0.11235 0.07608
0.1 0.15651 0.12463

Then, the final weights are determined by the posterior
model probabilities, which by Bayes’ theorem are given
by

P(WK |L) ∝ K−1P(L|WK) k = 1,2, . . . ,K (8)

whereP(L|WK) represents the marginal distribution of the
likelihood given each model. Now, as explained in [9], the
computation of the marginal distributions for calculation
of the posterior model probabilities in the implementation
of BMA, requires solving an integral that is difficult to
calculate except for very simple cases. Indeed, in most
cases, especially data related to environmental and
epidemiological studies derivation of closed form
solutions is not feasible and the use of the Bayesian
Information Criteria (BIC) to approximate the marginal
distributions has successfully been adopted. Specifically,
Raftery [33] suggests the following approximation,

P(WK |L) ∝ exp(−
1
2

BIC(WK)) k = 1, . . . ,K

with

BIC(WK) =−2log(maxL|WK)+ aklog(n)

whereak is the number of parameters forWK , n is the
sample size and maxL is the maximum of the likelihood
function. Note that in developmental toxicity

experiments, the sample size is the litter size. According
to Wasserman [34], this approximation works well in
moderate sample sizes when the covariates are
independent. Thus, the weights may be determined from

P(Wk|L) =
exp(− 1

2BIC(Wk))

∑K
r=1 exp(− 1

2BIC(Wr))
k = 1, . . . ,K (9)

This procedure has been successfully applied in
several applications with dichotomous responses, see for
example [35] and [22]. However, [36] suggest replacing
BIC(Wk) by

∆(k) = BIC(Wk)−min1≤r≤KBIC(Wr) (10)

for calculating the weights. The advantage of this
method is that the∆ values are on a continuous scale of
information and are interpretable regardless of the
measurement scale and whether the data are continuous,
discrete or categorical. We have found that this approach
is more computationally stable specially whenBIC(Wk) is
relatively large. Using this approach on the data set
utilized in [5], the same set of weights results. For more
information on advantages of using the∆ values, we also
refer to [37] and [38].
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Table 7: DIC estimates associated with the five dose-response modelsfor varying added risk values.
Model 0.01 0.025 0.05 0.075 0.1

Logistic 1514.71 1515.44 1514.54 1516.12 1515.08
Probit 1569.21 1564.31 1566.53 1570.00 1563.63

Quantal Quadratic 1466.39 1472.94 1475.73 1471.51 1470.13
Weibull (h = 5) 1501.33 1501.99 1504.24 1501.05 1504.68

Weibull (h unfixed) 1467.38 1466.54 1471.30 1466.45 1465.6

Table 8: Weights associated with the DIC estimates of the five dose-response models for different added risk values determined by
using (10).

Model 0.01 0.025 0.05 0.075 0.1
Logistic 1.999×10−11 2.318×10−11 3.639×10−10 1.517×10−11 1.595×10−11

Probit 2.926×10−23 5.649×10−22 1.871×10−21 3.032×10−23 4.575×10−22

Quantal Quadratic 0.6213 0.0391 0.0974 0.0739 0.09183
Weibull (h = 5) 1.608×10−08 1.919×10−08 6.292×10−08 2.853×10−08 2.901×10−09

Weibull (h unfixed) 0.3787 0.9609 0.9026 0.9262 0.9082

Table 9: BMA estimates for BMD and BMDL of the five dose response modelsfor different added risk values obtained by using DIC
weights.

BMR level BMA for BMD BMA for BMDL
0.01 0.03138 0.02086
0.025 0.06078 0.02773
0.05 0.09568 0.04108
0.075 0.12261 0.07792
0.1 0.16723 0.13136

5 Simulation

In a study of the properties of BMDL using BMA,
Wheeler & Bailer [5] conclude that model averaging
accounts for uncertainty in model selection and results in
BMDL estimates with near nominal coverage in many
situations. They suggest a list of 10 commonly-used
dose-response functions all of which are in the US EPA
Benchmark Dose Software [39]. [9] also use 10 functions
many of which are similar to those utilized by [5]. For the
purpose of the current study, we usedK = 5
dose-response models. Below is the list of these models
with their respective expressions for the BMD derived
from (7).

1.Logistic

P1(d) = {1+ exp[−(γ11+ γ21d)]}−1

BMD1 =
1

γ21
log

(exp(−γ11)π∗

1−π∗

)

(11)

2.Probit

P2(d) = φ(γ12+ γ22d)

BMD2 =
φ−1(π∗)− γ12

γ22
(12)

3.Quantal Quadratic:

P3(d) = 1− exp(−(γ13+ γ23d
2))

BMD3 =
[ log(1−π∗)−1− γ13

γ23

]

1
2

4.Weibull, shape parameterh = 5:

P4(d) = 1− exp(−(γ14+ γ24d5))

BMD4 =
[ log(1−π∗)−1− γ14

γ24

]

1
5

(13)

5.Weibull, shape parameter unknown:

P5(d) = 1− exp(−(γ15+ γ25dh))

BMD5 =
[ log(1−π∗)−1− γ15

γ25

]

1
h

(14)

We simulate a developmental toxicity experiment
which mimics a study on the effect of exposure to
diethylhexyl phthaliate (DEHP) in mice. For detail of the
study, we refer to [40]. We consider an experiment with
dose levels 0, .044, .091, .191, and .292 g/kg of body
weight. The litter sizes are generated using the empirical
distribution of the number of implants from the data set.
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Fig. 1: Trace plots of the Weibull model parameter estimates
with (h unfixed) obtained from the MCMC simulation at BMR
level of 0.1. The posterior mean estimates with the corresponding
standard deviations obtained after a burn-in period of 5000
iterations are:γ15 = 0.174(0.027), γ25 = 9.176(3.22), andh =
1.5868(0.21).

In order to generate the number of responses per litter, we
use the beta-binomial model with the probability of
response being the Weibull distribution. Chen & Kodell
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Fig. 2: MCMC trace plot of the BMD (upper panel) when the
Weibull model is used withh (unfixed) and BMR level of 0.1. The
BMD posterior mean is 0.1751 with standard deviation of 0.039
obtained after a burn-in period of 5000 iterations. The red dot in
the 2nd plot represent the 5% lower confidence bound (BMDL),
which is approximately 0.1363 and is derived by sorting the last
1000 iterations of the BMD trace plot above and taking its 5th
percentile.

[16] analyzed this model and used the same data set to
demonstrate their methodology. Thus using the results of
their parameter estimates at each dose level, we estimate
the response probabilitiespi j using a beta distribution.
The individual pup responses for thejth litter of the ith

dose level are then determined by generatingni j Bernoulli
random variables with success probability ofpi j. For each
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of the models P1(d), . . . ,P5(d) listed above, a full
Bayesian approach along with MCMC techniques based
on implementation of the Metropolis-Hastings algorithm
(See [41]) is used to estimate the parameters and the
benchmark dose value. The BMDL is approximated via
the lower 5th percentile from BMD Monte Carlo chain.
All simulations and computations are performed by using
the statistical software package R.

6 Results

Table 1 gives the parameter estimates for the five
dose-response models. Tables 2 and 3 respectively present
the estimated BMDs and BMDLs at different BMR
values ranging from .01 to .1. As expected, the BMDs and
BMDLs increase in value as the BMR is enlarged. The
BIC values and the respective model weights are
displayed in Tables 4 and 5. It is clear that, as stated
before, the value of BMD varies substantially based on
the selected model, justifying the use of model averaging.
Interestingly, the weights appear to be rather consistent
and do not vary much as the risk level changes. It is
encouraging to see that the Weibull model with the
estimated shape parameter of approximately 1.5 and the
quantal quadratic model account for 99% of the weights
since the data are generated using the Weibull
dose-response model of Chen & Kodell [16]. To
demonstrate the MCMC results, the developed trace plots
for the three parameters of our model 5, the Weibull
model with unknown shape parameter, are displayed in
Fig. 1. Similarly, in Fig. 2 the MCMC trace plot for the
BMD resulting from model 5 at BMR level 0.1 is shown
together with respective BMDLs. Finally, in order to
confirm the results obtained from the BMA methodology,
the alternative method of Deviance Information Criterion
(DIC) for model selection is also applied to the same data.
Similar to the BIC approach, the DIC approach is based
on selecting a model with the lowest deviance, see [42].
Interestingly, we find that results are very similar and the
model weights as well as the BMDs and BMDLs are very
close to those derived from the BIC method. Tables 7-9
give the DIC values, and the BMD and BMDL values
derived from applying the DIC criterion for model
selection.

7 Perspective

Although risk assessment procedures and determination
of safe exposure levels for noncancer endpoints have
traditionally relied on the use of the No Observed
Adverse Effect Level (NOAEL) and Safety Factor (SF)
methods, model based approaches to determine the
benchmark doses have become rather standard in recent
years. Unfortunately though, estimation of BMD is
generally highly model-dependent. This is the main

reason why selection of the most appropriate
dose-response model becomes of crucial importance. In
developmental toxicology, a variety of dose response
models have been utilized to derive BMD’s for various
toxicants with no single one being considered as the
”best”. In this paper, we have proposed the application of
BMA methodology to reduce the uncertainty in
dose-response modeling. The advantage, as demonstrated,
is that models that have a low posterior probability of
being correct given the data would have a lower weight.
The fact that the determined weights appear to have a
consistency across the varying risk levels is encouraging.
In addition, the simulation results show that the procedure
works well in determining the associated weight for each
model. It is, however, worth mentioning that the current
study considers only a single outcome. Realistically, in
developmental toxicity experiments multiple outcomes
are observed on each offspring. These outcomes could be
a combination of discrete and continuous variables. For
example, Catalano, Ryan, & Scharfstein [43] consider
joint modeling of the binary outcomes fetal death and
malformation while Regan & Catalano [44] discuss joint
modeling of clustered binary and continuous outcomes
with application in developmental toxicity studies. More
recently, Najita & Catalano [45] studied the BMD
determination for multiple outcomes from developmental
toxicity experiments. It would be interesting to see how
the BMA methodology would perform in selecting the
right model or a weighted sum of models when multiple
outcomes are considered.
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