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Abstract: Discrete distribution is normally used to study the count data but most of the time count data are not equi-dispersed but they

are under dispersed or over dispersed. To model these type of data we need appropriate probability distributions. Some weighted or

mixture distributions are used to analyse the under and over dispersed count data. In this paper, an attempt has been made to propose

a new kind of Poisson distribution. Some statistical properties are derived such as probability generating function, moment generating

function, characteristics function, cumulant generating function, moments, coefficient of variation, reoccurrence relation and index of

dispersion. Parameters are estimated by the method of moments and maximum likelihood estimators. The proposed distribution is

applied on real data sets to check the suitability of proposed distribution over some competent distribution. The proposed distribution

is found a better choice than others.
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1 Introduction

Poisson distribution is a popular discrete distribution which is used to explain the count data due to its simplicity. It is an
equi-dispersed distribution (its variance and mean are equal), but the count data are not equi-dispersed every time. It may
be under dispersed (variance less than the mean) or over dispersed (variance greater than the mean). Fisher [1]
introduced the weighted distribution first time to learn the biases among the data sets, which was further formalized by
Rao [2] in a unified way to deal with the problem arises when the data obtained from non-experimental, non-replicated
and non-random categories. Patil and Rao [3] studied the size-biased distribution which is a weighted distribution with
weight function that is may or may not be bounded to unity. Weighted discrete distributions provide more flexible
probability models to explain the over/under dispersed data as well as truncated data Patil et al. [4].

There are many researchers who discussed the weighted Poisson distribution in their study for under as well as over
dispersed data sets (Efron [5], Cameron and Johansson [6], Ridout and Besbeas [7], Castillo and Pérez-Casany [8,9],
Kokonendji et al. [10] and Balakrishnan et al. [11]). Consul and Jain [12] proposed the a new class of generalized
Poisson distribution which is the limiting form of generalized negative binomial distribution and its properties and
applications are discussed Consul [13]. Johnson et al. [14] also described the generalized Poisson distribution and some
of its important properties.

The concept of mixture distribution is also used to explain the count data. Sankaran [15] introduced the
Poisson-Lindley distribution (PLD) first time to explain the count data. Ghitany and Al-Mutairi [16] studied the PLD in
depth and derive its several important properties. Shanker et al. [17] derived the general expression for rth factorial
moment of PLD and applied on count data obtained from biological sciences and PLD gives very close fit than the
Poisson distribution. Singh et al. [18] used PLD along with Poisson-exponential and Poisson-Gamma for explaining
number of child death data and found PLD is a better model. Generalization of PLD is provided by many of the
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researchers e.g. Shanker & Mishra [19,20] provided a two parameter PLD and a quasi-PLD. Further Shanker and Tekie
[21] developed a new quasi PLD. Zero-truncated Poisson-Lindley distribution introduced by Ghitany et al. [22], to model
the count data with excluding zero counts. Ghitany and Mutairi [16] discussed the method of estimation for discrete
PLD. Inflated Poisson-Lindley distribution is considered by Borah and Deka [23] and further Singh et al. [24] used this
for modelling out migration from the household.

A size-biased Poisson-Lindley distribution (SBPLD), developed by Ghitany and Al-Mutairi [25] by compounding
size biased Poisson distribution with Lindley distribution, SBPLD is the size-biased version of the PLD. Shanker et al.
[26] studied the SBPLD in detail and found that SBPLD is a suitable model for thunderstorms data. Mahmoudi and
Zakerzadeh [27] provided the generalized Poisson-Lindley distribution (GPLD), which is a mixture of Poisson and two-
parameter generalized Lindley distribution (GLD), proposed by Zakerzadeh and Dolati [28], and generalized size-biased
Poisson-Lindley distribution (GSBPLD) provided by Shankar and Shukla [29]. GSBPLD is the size biased version of
generalized Poisson-Lindley distribution (GPLD), to explain the count data excluding zero counts due to have enough
flexibility in two-parameter GSBPLD than the one-parameter SBPLD. Singh et al. [30] introduced a generalized version
of Lindley type distribution that can be used with Poisson distribution. In this paper an attempt has been made to develop
a new kind of Poisson distribution and to explore its various statistical properties.

2 Proposed Distribution

The probability density function of proposed distribution i.e. Under-dispersed Poisson distribution (UDPD-I) is given by

p(x;λ ,θ ) =
e−λ λ x−1(λ +θx)

(1+θ )x!
;θ > 0,λ > 0 & x = 0,1,2, .... (1)

In fact, this is a mixture of two distributions such as Poisson distribution and size-biased Poisson distribution which is
given as

p(x) = α p1(x)+(1−α)p2(x), where α =
1

1+θ

p1(x) =
e−λ λ x

x!
, λ > 0,x = 0,1,2, .. and p2(x) =

e−λ λ x−1

(x− 1)!
,λ > 0,x = 1,2, .. (2)

If θ is zero then the UDPD-I converted into simple Poisson distribution. If θ is increasing the weight of size-biased
Poisson distribution is increasing.

Weighted distributions provide flexible probability models for studying over/under-dispersed data as studied by Patil
and Rao [3]. A weighted distribution is defined as follows

P∗(x,λ ) =
w(x)P(xi;λ )

E[w(x)]
; x ∈ R,λ > 0. (3)

Where w(x) is the weight function, P(xi;λ ) is the parent distribution. The probability distribution given in (1) can be

obtained as a weighted Poisson distribution where weight function
(

1+ θx
λ

)

. If θ is equal to λ then the UDPD-I becomes
a single parameter weighted Poisson distribution i.e. UDPD-II with weight function is (1+ x) given in (4)

p(x;λ ) =
e−λ λ x(1+ x)

(1+λ )x!
;λ > 0 & x = 0,1,2, .... (4)

The plot of probability mass function of UDPD-I is given in Fig 1. It has been observed that for a fix value of θ , if the
value of λ is increasing, the shape of PMF become flat. Also it has been observed that for fix value of λ , if the value of
θ is increasing, the probability of non happening of the event is decreasing and mode of the distribution is increasing.

c© 2021 NSP

Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 8, No. 3, 205-213 (2021) / www.naturalspublishing.com/Journals.asp 207

Fig. 1: PMF plot (smooth) of proposed distribution UDPD-I for different values of θ and λ .

The cumulative mass function of UDPD-I can be written as

F(x) =
x

∑
u=0

p(u;λ ) =
e−λ

(1+θ )

x

∑
u=0

λ u

u!
+

θe−λ

(1+θ )

x

∑
u=1

λ u−1

(u− 1)!
(5)

Hazard function of the UDPD-I is given by

h(x) =
f (x)

1−F(x)
=

e−λ λ x−1(λ+θx)
(1+θ)x!

1− e−λ

(1+θ)

x

∑
u=0

λ u

u!
+ θe−λ

(1+θ)

x

∑
u=1

λ u−1

(u−1)!

(6)

3 Statistical Properties of Proposed Distribution UDPD-I

3.1 Probability Generating Function:

The probability generating function of the UDPD-I is obtained as

Px(s) = E(sX ) =
∞

∑
x=0

sx e−λ λ x

(1+θ )x!
+

∞

∑
x=1

sx θe−λ λ x−1

(1+θ )(x− 1)!

=
e−λ

(1+θ )

(

1+
sλ

1!
+

s2λ 2

2!
+ . . .

)

+
θe−λ

(1+θ )

(

s+
s2λ

1!
+

s3λ 2

2!
+ . . .

)

=
1

(1+θ )
eλ (s−1)+

θ

(1+θ )
seλ (s−1) =

(1+θ s)

(1+θ )
eλ (s−1) (7)

3.2 Moment Generating Function

The moment generating function of the UDPD-I is obtained as

Mx(t) = E(etX ) =
∞

∑
x=0

etx p(x;λ ) =
∞

∑
x=0

etx e−λ λ x

(1+θ )x!
+

∞

∑
x=1

etx θe−λ λ x−1

(1+θ )(x− 1)!
(8)
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After solving the above equation (8), we get

Mx(t) =
(1+θet)

(1+θ )
eλ (et−1) (9)

3.3 Cumulant Generating Function

The cumulant generating function of the UDPD-I is given by

κx(t) = logMx(t) = log

[

(1+θet)

(1+θ )
eλ (et−1)

]

=λ (et − 1)+ log
(

1+θet
)

− log(1+θ ) (10)

After solving the above equation (10), we get

κx(t) = λ

(

t +
t2

2!
+

t3

3!
+ · · ·

)

+θ

(

1+ t+
t2

2!
+

t3

3!
+ · · ·

)

−
θ 2

2

(

1+ 2t+
(2t)2

2!
+

(2t)3

3!
+ · · ·

)

+
θ 3

3

(

1+ 3t+
(3t)2

2!
+

(3t)3

3!
+ · · ·

)

−
θ 4

4

(

1+ 4t+
(4t)2

2!
+

(4t)3

3!
+ · · ·

)

+ · · ·−

(

θ −
θ 2

2
+

θ 3

3
−·· ·

)

(11)

First Cumulant κ1 is mean, which is given by the coefficient of t in equation number (11).

κ1 = µ ′
1 = λ+

(

θ −θ 2 +θ 3 −θ 4 + · · ·
)

= λ +θ (1+θ )−1

Therefore E(X) = κ1 = λ +
θ

1+θ
(12)

The second cumulant κ2 is varience µ2, which is given by the coefficient of t2

2!
in equation number (11)

κ2 =V (X) = µ2 = λ +
θ

(1+θ )2
(13)

κ3 = µ3 = λ +
θ (1−θ )

(1+θ )3
(14)

κ4 = λ +
θ (1−θ )2 − 2θ 2

(1+θ )4
(15)

µ4 = κ4 + 3κ2
2 = λ + 3λ

[

λ +
2θ

(1+θ )2

]

+
θ

(1+θ )2

[

1−
3θ

(1+θ )2

]

(16)

The coefficient of variation is obtained as

CV =
SD

Mean
=

√

λ + θ
(1+θ)2

λ + θ
1+θ

=

√

λ (1+θ )2 +θ

λ (1+θ )+θ
(17)

The coefficient of skewness and kurtosis is obtained as

β1 =
µ2

3

µ3
2

=

(

λ + θ(1−θ)

(1+θ)3

)2

(

λ + θ
(1+θ)2

)3
=

[

λ (1+θ )3 +θ (1−θ )
]2

[λ (1+θ )2+θ ]3
(18)

and

β2 =
µ4

µ2
2

=
λ + 3λ

[

λ + 2θ
(1+θ)2

]

+ θ
(1+θ)2

[

1− 3θ
(1+θ)2

]

[

λ + θ
(1+θ)2

]2
=

(1+θ )2
[

λ (1+ 3λ )(1+θ )2+θ (1+ 6λ )
]

− 3θ 2

[λ (1+θ )2+θ ]2
(19)
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Now we have Fisher’s Index of dispersion is as follows

γ =
Varience

Mean
=

λ + θ
(1+θ)2

λ + θ
1+θ

=
λ (1+θ )2+θ

(1+θ ) [λ (1+θ )+θ ]
(20)

From the above expression (20) it is clear that Fisher’s index of dispersion is less than 1 means the distribution is under-
dispersed for every value of λ and θ .

3.4 Characteristics Function

Characteristics function can be obtain by replacing for in moment generating function given in equation number (9), we
get

Φx(t) =
(1+θeit)

(1+θ )
eλ (eit−1) (21)

Raw moments are computed from the moment generating function given in equation (9) by differentiating with respect to
t and equating with zero as follows

µ ′
r =

∂ r

∂ tr
MX (t)|t=0

µ ′
1 = λ +

θ

1+θ
; µ ′

2 = λ 2 +
λ (3θ + 1)+θ

1+θ

µ ′
3 = λ 3 +

2λ 2(2θ + 1)+λ (9θ + 2)+θ

1+θ
; µ ′

4 = λ 4 +
λ 3(8θ + 5)+λ 2(21θ + 6)+λ (21θ + 3)+θ

1+θ
(22)

3.5 Reoccurrence Relation

For obtaining the probability of different value of x we need reoccurrence relation. The reoccurrence relation of the
UDPD-I is as follows

p(x+ 1) =
λ [λ +θ (x+ 1)]

[(λ +θx)(x+ 1)]
p(x) (23)

and p(0) = e−λ

(1+θ)
; once p(0) is obtained, we can easily obtain p(1), p(2), p(3), · · · with the help of (23) and so on.

4 Entropy

Entropy is a measure of uncertainty. It is easily seen that the entropy ∆ associated with UDPD-I is given by

∆ =−
∞

∑
k=0

p(k;θ ,λ ) log p(k;θ ,λ ) =−
∞

∑
k=0

p(k;θ ,λ ) log

[

e−λ

1+θ

λ k−1(λ +θk)

k!

]

=− log

(

e−λ

1+θ

)

− logλ
∞

∑
k=0

(k− 1)p(k;θ ,λ )−
∞

∑
k=0

log(λ +θk)p(k;θ ,λ )+
∞

∑
k=0

log(k!)p(k;θ ,λ )

=− log

(

e−λ

1+θ

)

−

(

λ −
1

1+θ

)

logλ −

(

e−λ

1+θ

)

Ωk,n(λ ,θ )+

(

e−λ

1+θ

)

Φk(λ ,θ ) (24)

where Ωk,n(λ ,θ ) =
∞

∑
k=0

∞

∑
n=0

(−1)n−1

n

(

θk
λ

)n λ k−1(λ+θk)
k!

and Φk(λ ,θ ) =
∞

∑
k=0

λ k−1(λ+θk)
k!

log(k+ 1)!
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5 Estimation of Parameters

5.1 Method of Moments

The UDPD-I has two parameters then at least two moments are required to get the estimates of the parameters. From
equation (12) and (13) we have

V (X) = E(X)−
θ

1+θ
+

θ

(1+θ )2
= E(X)−

θ 2

(1+θ )2

θ 2

(1+θ )2
= E(X)−V (X) = K (say) (25)

From the above equation (25) we find that the mean is greater than the variance because θ 2

(1+θ)2 > 0 because θ > 0 i.e.

the UDPD-I is under-dispersed.

Also, we have from equation (25)

θ 2(K − 1)+ 2Kθ +K = 0 where K = E(X)−V(X) (26)

The above equation (26) is a quadratic equation of θ and can be estimated easily. The which can be obtained by substituting

the value of θ̂ in equation (27).

λ̂ = E(X)−
θ̂

1+ θ̂
(27)

5.2 Maximum Likelihood Estimation

Let X = (x1,x2,x3, · · · ,xn) be a random sample of size n from the UDPD-I(λ ,θ ) distribution. Thus from the equation (1)
the likelihood function, L of the UDPD-I can be written as

L =
n

∏
i=1

p(xi;λ ,θ ) =
n

∏
i=1

e−λ λ xi−1(λ +θxi)

(1+θ )xi!
=

e−nλ

(1+θ )n
λ

n

∑
i=0

(xi−1) n

∏
i=1

(

λ +θxi

xi!

)

(28)

Now, the log likelihood function is given by

logL =−nλ − n log(1+θ )+ logλ
n

∑
i=1

(xi − 1)+
n

∑
i=1

log

(

λ +θxi

xi!

)

(29)

Differentiating the log likelihood function (29) partially with respect to λ and θ equating with zero then we get

∂

∂λ
logL =−n+

1

λ

n

∑
i=1

(xi − 1)+
n

∑
i=1

1

(λ +θxi)
= 0

n

(

λ + 1

λ

)

=
nx̄

λ
+

n

∑
i=1

1

(λ +θxi)
(30)

∂

∂θ
logL =−

n

1+θ
+

n

∑
i=1

(

xi

λ +θxi

)

= 0

n

1+θ
=

n

∑
i=1

(

xi

λ +θxi

)

(31)

The above equations (30) and (31) are non-linear equations and cannot be solved analytically, so we can obtain the
solutions of these equations by using existing iterative procedures.
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6 Applications

The application of UDPD-I and II is discussed with the some real data sets. The first data set is relating to the number of
outbreaks of strikes in the UK coal mining industry in successive four week periods in the years 1948-1959, Kendall [31]
and second date set is the data of number of sperm in the egg related to fertilization in a sea-urchin’s egg by Morgan [32].
The third data set is about the word length in the Turkish poem Gidisat by Ercüment Behzat Lâv available in Wimmer et
al. [33]. Here, the count for the response x is treated as (x− 1). These data sets exhibit under dispersion with a Fisher’s
index of dispersion less than one. The suitability of UDPD-I and II is compared fitted along with Poisson distribution,
Com-Poisson distribution given by Efron [5] and generalized Poisson distribution proposed by Consul and Jain [12]. From
Table 1, we found that the UDPD-I and II show a significant departure from the Poisson and COM-Poisson distribution and
a considerable improvement from Generalized Poisson distribution. The Chi-square value for the UDPD-I and II is lower
among all the distribution discussed. Table 2, also represent that the UDPD-I and II gives better fit than other alternative
distributions and has smallest Chi-square. Expected frequencies given by UDPD-I and II are very close to observed one
than expected frequencies given by other alternative distributions. From the Table 3 it is clear that the UDPD-I and II are
a competent competitor of the other distributions considered here.

Table 1: Expected frequencies and value of chi-square with degree of freedom from fitted distributions to the number
outbreak of strikes data of Kendall [31].

Number of

outbreaks

Observed

frequencies

Distributions

Poisson COM-Poisson GPD UDPD-I UDPD-II

0 46 57.76 68.33 49.22 47.20 52.39

1 76 57.39 59.35 66.70 71.74 64.23

2 24 28.51 22.33 32.57 29.24 29.53

3 9 9.44 5.15 6.90 6.64 8.05

4 1 2.90 0.84 0.61 1.18 1.80

Total 156 156.00 156.00 156.00 156.00 156.00

λ̂ 0.9936 0.8899 -0.1610 0.4872 0.613

θ̂ - 1.207 1.154 1.026 -

χ2 9.59 14.78 4.59 1.83 3.97

Degree of freedom 2 1 1 1 2

p−value 0.008 0.000 0.032 0.176 0.137

Table 2: Expected frequencies and value of chi-square with degree of freedom from fitted distributions to the number of
sperm in egg data from R. W. Morgan [32].

Number of

sperm in egg

Observed

frequencies

Distributions

Poisson COM-Poisson GPD UDPD-I UDPD-II

0 28 37.32 50.51 29.02 27.29 35.12

1 44 28.46 24.39 40.93 45.06 31.68

2 7 10.85 4.60 10.04 7.05 10.72

3 1 3.37 0.50 0.01 0.60 2.49

Total 80 80.00 80.00 80.00 80.00 80.00

λ̂ 0.7625 0.5845 -0.3299 0.1646 0.451

θ̂ - 1.356 1.014 1.487 -

χ2 13.53 27.45 0.71 0.06 8.285

Degree of freedom 1 - - - 1

p−value 0.000 - - - 0.004
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Table 3: Expected frequencies and value of chi-square with degree of freedom from fitted distributions to the number of
word length in Turkish poem, Wimmer et al. [33].

Number of

word length

Observed

frequencies

Distributions

Poisson COM-Poisson GPD UDPD-I UDPD-II

1 64 80.67 59.69 61.96 61.09 65.29

2 131 127.94 141.87 135.34 143.83 139.72

3 122 101.46 118.70 121.25 114.39 112.12

4 61 53.64 53.92 57.43 52.67 53.32

5 13 21.27 15.88 15.46 16.90 17.83

≥ 6 3 9.02 3.94 2.56 5.12 5.73

Total 394 394.00 394.00 394.00 394.00 394.00

λ̂ 2.586 2.377 1.850 1.013 1.070

θ̂ - 1.506 -0.166 1.341 -

χ2 15.93 2.91 0.66 4.89 5.15

Degree of freedom 4 2 2 3 4

p−value 0.000 0.234 0.719 0.181 0.272

7 Conclusions

This paper studied a well known and widely used Poisson distribution and weighted as well as mixture distribution.
The various statistical properties of the UDPD-I is discussed and also applied on real data sets. It performs better than
various other distributions for two data sets and for one data set UDPD-I shows that this may be used as an alternative.
Generalization proposed here is simple and can be used to handle various real data sets with complex structure. If both

the parameters are same as λ then the UDPD-I become a single parameter distribution UDPD-II with average
λ (2+λ )
(1+λ )

is

again useful to model a phenomenon.
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