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Abstract: We study diffusion of active ingredients in coated textibgsa three-scale model. These scales consist of a fiber level
representing the fiber with its polymer coating containimgaative ingredient, a yarn level, and the level of the rooriding the
textile. An analysis of the model is carried out using therabteristic times of the different levels. We investigdte influence of the
parameters in the model by solving several inverse problems
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1 Introduction reducing the model to its variously scaled components
when simplifying it.
The characteristic times are calculated using Laplace

We study the diffusion of a volatile trapped in a polymer .
coating on textiles fibers. These fibers are used totransformatlon based org]and compared to generated

construct an intelligent textile. The coating consists of a]?utcorges ct):\ the model. tl):nplemen:jatmn_ofcbloth the
polymer solution of an active ingredient (Al), e.g. an orward as the Inverse problem was doneé in L-language
insect repellent, a perfume or a healing substance. Thi%ISIngI soda [5]andthefi t command irGnupl ot .
substance can easily be replaced by other volatiles. The

goal is to slow down the release of the Al in order to T
increase the active lifetime of the textile. We want to Z_Cha_raCte”S“Ct'm%for the three-level
investigate how much of the Al has to be present on thediffusion

textile fiber and which polymer substance to use, to coat ) )

the fiber so that the concentration at the outer boundary of Ne governing system of equations of the complete three-
the textile stays high enough for as long as required to bdevel model P] is

effective (e.g. repel or even kill mosquitoes, spread a

noticeable odor for humans, have a healing effect ...). [ 9Ct(p,t) _ 1 9 ( o 9Cs(p.t)

Therefore a forward problem is implemented in ot - pop put ap ’
C-language and an inverse problem is solved using the

Levenberg-Marquardt method. The forward model gw _19 (erDydCY(r’t)>+l'm(Q,t),
consists of a three-scale approach based upahl, 4] . ot ror or

The model is given ing]: a one-dimensional cylindrical 0C(x,t) 0 0C(x,t)

diffusion equation on the fiber and yarn levels and a T ax  dx (DT>’

one-dimensional diffusion model for the room. To analyse

and simplify the model, its characteristic times are furthe with p € [R¢,2R¢], r € [0,2Ry] andx € [Ry,L]. There is an
investigated in this paper. At these times the fiber andevaporation flux at the right boundaries for the fiber and
yarn model, and the yarn and room model, respectivelyyarn model, and a homogeneous Neumann BC at their left
tend to reach an equilibrium concentration. The boundaries. Forthe room model a homogeneous Neumann
identification of these characteristic times is key in BCis present at the right boundary and an evaporation flux
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gives the respective moments of the probability
distribution function, e.g. the meadvly and varianceu.
We also look at the series expansion of the
cumulant-generating functiag(—s), i.e. the logarithm of
the Laplace transform of the flux, whemeis in the
Laplace domain. The cumulants are given by

0n
= — (—s)‘ .
os" s=0

Cn

bawor | f 1 We are particularly interested in the first and second
/ cumulant. The first cumulant is

leas 1A 00001 [ i 100 Loow Lo TeHIE

1= S logl (7))

s=0

Figure 1: Logarithmic concentration vs logarithmic time o L
with D = 1 x 10_10¥, Dy =1x 10_6@ andD = 1 x Whl_ch is the_ mean of the prc_)bablllty d_lstrlbunon, i.e. the
residence time of the diffusion equation or the average
time it takes a particle to pass a certain point. Also the
second cumulant or the second derivative of the logarithm
of the Laplace transform of the flux in= 0, i.e. the
variance of the logarithmic flux, is useful for interpreting
at the left boundary coming from the concentration in thethe system. All of the characteristic values can be exactly
yarn evaporating to the room. calculated in function of the parameters in the above

_ The concentration of the Al is tracked starting in the equations and will help to understand the diffusion in
fiber coating. Once the outer boundary of the coating isppen textile structures.

reached the Al is evaporating to the yarn air gaps, and

further on to the outside of the textile into the room.

Plotting the logarithmic concentration against the3Ca|cu|ati0n of the characteristic times
logarithmic time scale shows that, for standard

parameters, after a rather short time (approxlmately 1008k, calculate the exact characteristic times the Laplace
the fiber and yarn concentrations coincide and after,

; X hal ransformation of each of the three governing equations is
approximately 10< 10°s those concentrations coincide g gaeq

i th o in th iddle of th taken. More details can be found i8]
with the concentration in the middle of the room, see\ye  yse the notation % = Z[Ct(p,1)](9),

Figure 1. We will further investigate these moments in _ _

time where equilibrium is reached between the diﬁerem‘i:n?j[yroduc{[tﬁye(:‘ﬁ]éﬁgn and ZIG DI
levels to have a better understanding of the interactions in

the model and to be able to predict when the In(\/ST X) 2 Kn(y/STf X)
concentration of the Al reaches a certain position in the Fn(xy) = W (=1) Wv
textile and in the room. As a consequence it becomes

possible to adjust the textile product to the standardswhich is a combination of modjfied Bessel functions of
needed. first and second kind, whete= 52 is the diffusion time.

For the fiber equation we define

—5mm?
10 mT

and

A way to calculate these characteristic times uses the

i\ -1
Laplace transform of the flux. At interesting points of the X = |14 _Pi %o(1, grr:;r:()

system we interpret the diffusive flux#t(x) as the ﬁ@l(l,@)

probability distribution function of the time$ when a max )

particle passes a certain positionx. The _ b (1_ M) St
moment-generating function is then related to the Laplace 2ps Paax

transform of the flux: .
whereps = % is the Raclet number for the fiber level and

+o0
Mt (—s) = Er(e~ST) :/0 e Fr(t)dt=L[FTO](5).  ti; = Bmax js the transport time.
This dimensionlesX makes sure the BC on the right

A series expansion of this function can be written in the form
g & Ds 9 Co\ Co
ZFr(O)(8) = Mo —Mis+Maz; —Ma= + . vl b5 )=x(4-%)
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which we can use to calculat&; once we have, as term, the coefficient of-s and the coefficient of? by
differentiating and setting equal to zero. We will do this

Co Co for the most interesting interfaces in the model, that is the
Zilprs)=—+ (fy(fa s)— §> transition from one level to another.
5 Puin When we look at concentration passing from the fiber
. go(ma pmax) level to the yarn levelp = pmax, We can calculate the
) /st T zeroth moment,
‘930(135%1)4— Pt 931(17%)

1 iy +t
Mo — - (M) D

For the yarn level the same strategy is followed taking the 4 trx+try

Laplace transformed equation and solving it f&(r, s),

with For the yarn and room similar results are achieved. The
transition from yarn to room, thus takimg= R, andx=0
s =2Pix =X o _HPryc - X leads to
ts Pmax ts Pmax 1/ t1GCo
Moy =3 \tnrtry )
and fx fy

L where now in the numerator only the transport time in the

lo (+/(5+ S )tv room appears. For the room flux, which gives an idea of
Y=|1+ o (V(s+Sty) By how the particles in the room are distributed, the zeroth
11 (V/(s+S0ty) /(s+S0)ty moment is
t
2py \" " PRa ’ 2\t ty

where in the nominator the dependence of the flux on the
evaporation rate in the air gaps of the yarn becomes clear.
MMiso for the first and second moments the same
dependencies appear, but now in a quadratic relation,

2 B B 2 since a variance has been calculated. For example, for the
ty =Tmax/Dy, By =Vyfmax/Dy =ty/tty, iy =Tmax/Vy-  fx'in the room the first moment is

9 (04
=5 (5 9)|,

where we use the diffusion time, thed®t number for
the yarn level and the transport time for the yarn equatio
defined as

The BC on the right can again be written as

g 409)
Zi(Ry,8) — 40,9 =Y —— — %4(0,s
WR,9) = £(0.9 (s(s+ sy 7109 1/ tyGo (Ztex+try), | tix
o\ Trty2) |16 Ty
which allows to solve for%, in function of % (0,s). This Pty
last term will be calculated by taking the Laplace +tf—ytx+—(2tfx+tfy)tff+2tfxtf].
transformation of the room PDE, which leads to 3 4 y
cosh(+/SE(1-XNY (-2 _ & 0,s Analogous results are found for the second moments on

Z(xs) = Px (‘/—&( L)) (S<S+31) fl )) fiber and yarn level,

’ sinh(y/sk) v/Sk ’

(’5) Moo — 0 (0%

with S, S andY as above and the diffusion tinte= ., LT = " 5s ap (-s) <o
transport timetx = % and the R¢let number for the
room level py = t% = %. By settingx = 0 in (x), we Myy = _ﬁ (%(—s))’ ,
arrive at a linear, thus solvable, equation i4 (0,s). gs \ or s=0

Mind that we first need the solution fd¥; to be able to  where we need to stress that for the interesting transition
calculateZy, which, on its turn, is needed fdr. from yarn to room (ar = R, andx = 0) these last two
moments can be found in two ways resulting twice in the
To calculate the characteristic times, i.e. the first andsame expression. We can look at the series expansion of
second moment, and the residence time of diffusion andhe derivatives of the fluxes%, and % and calculate
the variance of the flux (the first and second cumulant ofthem for the positiom = R, andx = 0, or we can look at
the system), we look at the fluxes of the solutions foundthe derivatives of the differencd.%, — %), once
0% 0% ddﬂ representing the flux at the right boundary of the yarn
op ' or ox (r = Ry and once representing the flux at the left
For the zeroth, first and second moments we write theboundary of the roonx(= 0).
fluxes in their series expansion and look for the constanin each of these first moments there is an expected

above
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dependence on the initial concentration and theof ty we only get both the transport times to travel inside

denominator each time has the same structure, dependirgf the yarn and in the room.

on the distance that should be travelled by the particle. There is also a term ity¢, the transport time in the fiber,
Even more interesting to look at are the cumulants,with the same coefficient as, the diffusion time, but four

which represent the several times were the actuatimes as large.

transition from one level to another happens. The

cumulantsc; (the mean of the flux, or thus the mean The residence time at the transition point from yarn to

position in time where a particle passes at a certairoom level, ar = R, andx=0is

position) andc, (the variance of the flux) can be found

from the above calculated moments, using the chain rule ts (thx+tfy) ty ( tex >

Cl,y = Cl,r =

for the cumulant-generating function; 16 tix+try 4 \ tex+try
9 (0g2LN| M Lk (L) L (M)
Crr =~ 52 (1095~ o Mo 3 \tix +ty 4\ tix+tey
' 2 tixtty
1 92 0%, Mo My . T
Cos == = | log—— = =) — =, fx ey
’ 2 0<? de =0 Mo’* Mo’*

) Again the same coefficients are present, iflg.for the
wherex stands forf, y orr ande for p, r orx, respectively. term int;, % for the terms irty andit and% for the term

.For the.flber the flrst.qumulant @ = Pmax, 1.€. the. in ty. The coefficient ot again is four times as large as
residence time at the position where the Al leaves the flbeEhe one oft;. Every term has a positive sign since there

coating and evaporates to the yarn air gaps., is can only be a positive effect from each of the underlying
te [ 2ttt levels. The recurring denominator is the combined effect
CLf = il (M> of the transport times in the yarn and the room.

16 tfx"‘tfy
ty [ tix (2r2(tfx+tfy) — R§(2tfx+tfy)) The second cumulants both are of the same form and
2 2ty +try) (2tre £ try) represent quadratic times since they stand for variances of
Ry (Tt ty) (Zex+ ey the flux distribution,
tx ( textry ter [ 2tix+ty
+ = +— (— 1 tr (1. 1 1
3 \ (tix +try) (2x+ s 4 \ tix+ts Cow = 5 | 7= | ~oau + =apty + agts + 2
( x2 y) (2ix+tey) x+ Ly 2 = Tt ) |16 \ 28 1+ 580ty + Sastts +2a
+ tfxtfy ty 1 1
(tex +try) (2ix +try) +2 <1_2a5ty+ >3l +2a7)
We get an expected dependence between the residence  tx [ 1 1 1 1
time and the fiber's diffusion time, or the time for a 3 1_56‘8t)‘+§agtf +§a10ty+§alltff + 281

particle to travel over distancpmax Via diffusion with tes
diffusion coefficientD¢. In the coefficient oft; the +—<
transport timesy andtyy (the times it takes a particle to 4
travel via evaporation in the room and yarn air gaps) arer
also likely to appear, since movement out of the fiber isg;iiar as for the residence times and again can be
controlled by the evaporation rate. It is also worth attributed to the system’s dimensions.

mentioning that the transport time of the room seems to
be twice as sensitive as the transport time in the yarn air
gaps. This is because of the dimension of the systempe

1
ViR 26114) tes + tf2><tf2y}

he coefficients of the respective terms are completely

For a general pair dimensiahthe residence time for

. . ; - room is
(d = 2), which plays an important role in all coefficients,
e.g. theli6 in the first term. The coefficient ofty is - ty dtfy +tsy ty  tix oty
always equal tal. LT A btix+Ctyy | ebtyg+Ctry 3 bty Clry
Also a dependence dp andty is present. The respective tee iy At teot
coefficients again show the same linear combination g Xy Pty

(2tx + try) multiplied with the quadratic distance to e btyx+ctry btyx+Clry

travel which is present in all the terms. The coefficient of
ty has a factotr, which is logical when we bear in mind
that this is the transport time for a particle to get from the g2 d+2

coating to the air gaps by evaporation. The sign is a=4d+2), b=—,, c=——, e=4

negative because the concentration of Al present in the

yarn air gaps inhibits this evaporation and tl}fleagain if d is not divisible by 4, and id is divisible by 4 the
comes from the system’s dimensions. For the coefficientoefficients are twice as large. These coefficients are also

with coefficientsa, b, ¢, ande
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present in the other cumulants. “ e

At these residence times the system reaches an

equilibrium. In [3] the theoretical values were compared
with these numerical solutions of the model. These
numerical values are visible in the plot of the logarithmic
concentration vs. the logarithmic time scale, Figure

The symbolic form calculated above now makes it i amaad
possible to explain even further the accordance between a0
both. '

w

(a) Initial guess of 11 for both parameters.

model ——

4 Inverse problem

With the programming code utilized it is possible to use |
Gnuplot’s fit command to calculate some inverse |
problems. Starting from an estimated initial value for the |
unknown parameter, the model will be fitted to ‘
experimental values of the forward problem using [
nonlinear least squares regression.

In practice measurements of the concentration of the Al 0 o
in a room can be done, and the model could be fitted to (b) Initial guess of 11 for Cy and 0001 forD.
these values. That way the right polymer may be chosen

depending on the required diffusion coefficient in the Figure 2. Inverse problem for determining initial

coating and the initial concentration could be determine%oncentratiorco and diffusion coefficient in the room
It becomes possible to decide on the right composition of,o4elD.

the textile, answering the questions of how many fibers
are needed to get to the right surface/volume ratio, on its
turn determining the needed evaporation rate. The inverse
problem is using the same C-code of the 3 level diffusion
system as the forward model. Although this does not
work for all parameters due to high complexity of some
of them and the dependencies between them, it is possible
to estimate those of high impact.

For example it is possible to fit the initial If for example we try to estimat®+ andD from data
concentratiorCy and the diffusion coefficient in the room fitting, the inverse problem does not converge to the
D (in mn? /s) starting forCy (in mg/mm?) at an initial ~ correct values. This is because the time frame wherein the
guess of 11 and forD at 11 x 107°. As data points we Al's particles are moving through the fiber is much
use the values optioned by the forward model with smaller than the time these particles are moving through
Co = 1.234 andD = 2.345x 10° and a uniform error in  the room. As a consequence we have too little data to be
[~3;3] x 105 is superimposed. We want to trace back able to trace back the diffusion coefficient in the fiber.
the values foCy andD after fitting the inverse problem.  The diffusion coefficient in the room is however traceable
This is the case after 5 iterations with a root-mean-squar@nd the models fit is not too bad after all. After 5
of residuals (RMS) of &35x 1078, The calculated set of iterations the fit converged with an RMS aB86x 10°°.
parameters i€y = 1.23401 with an asymptotic SE of The fittedD was 2.3495% 10~° with an asymptotic SE of
+0.002 or 0179% andD = 2.33142x 10~ with an SE ~ +0.0145 or 0616%. ParametdD; however was fitted as
of +0.016 or 0682%. The data fitting of this problem is 127.905 with asymptotic SE 0f1994 or 1559%. The
shown in Figure2(a) correlation between these parameters-£048, so it is

However if we start from a very bad initial guess for not responsible for the bad fit. The data fitting can be seen
D at 0.001x 10~° the inverse problem does not converge in Figure 3. Fitting can also be done for more than two
because a singular matrix is encountered, resulting in afparameters at a time. For example, it is possible to
estimation of 83887 for D. Using the least squares estimate the three paramet€s vt andD. In the forward
method of Gnuplot thus requires some a priori knowledgeproblem the values used were224, 1 and 356x 107,
about the parameters, but our earlier analysis ofrespectively. Starting from.1, 0.5 and 11 x 10~° it was
characteristic times helps in selecting these. The modepossible to trace back these values after 5 iterations with
plot corresponding to this problem is found in Figure an RMS of 9243x 107°. The estimated model solving
2(b). the inverse problem is shown in Figuée
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