

Information Sciences Letters An International Journal

http://dx.doi.org/10.18576/isl/110204

Matroidal and Lattices Structures of Rough Sets and Some of Their Topological Characterizations

Abd El Fattah A. El Atik^{1,*} and Manal E. Ali²

Received: 31 Aug. 2021, Revised: 24 Oct. 2021, Accepted: 20 Nov. 2021

Published online: 1 Mar. 2022

Abstract: Matroids, rough set theory and lattices are efficient tools of knowledge discovery. Lattices and matroids are studied on preapproximations spaces. Li et al. proved that a lattice is Boolean if it is clopen set lattice for matroids. In our study, a lattice is Boolean if it is closed for matroids. Moreover, a topological lattice is discussed using its matroidal structure. Atoms in a complete atomic Boolean lattice are completely determined through its topological structure. Finally, a necessary and sufficient condition for a predefinable set is proved in preapproximation spaces. The value k for a predefinable set in lattice of matroidal closed sets is determined.

Keywords: Matroids, lattices, preapproximation spaces, predefinable sets

1 Introduction

Matroids initiated by Whitney [1] and seem in several combinatorial and algebraic contexts [2,3,4,5,6,7]. Rough set theory were initiated by Pawlak [8] through the approximation space in eighties, many authors have turned their attention to the generalization rough sets [9, 10, 11, 12, 13, 14]. Lattices are mathematical objects that have been used to solve some problems in computer science, approximation spaces [15, 16, 17, 18, 19, 20, 21, 22,23]. The class of preopen sets is applied in general topology by researchers in [24], to investigate preapproximation spaces. Some algebraic applications were studied on rough (resp. prerough) sets and named Ω (resp. Ω_p). For example, each of rough and prerough sets as lattices, as congruences. The approximations were used to calculate the accuracy [25]. Some new results on rough (resp. prerough) sets were presented. Also, new order relations on lattices [26,27] were defined. The concept of lattice constructed based on approximate operators were introduced and studied in [28,29]. Also, Yao [30] introduced a different concept for lattice and compared it with another notions in data analysis. Recently, topological structures have been used to study graphs as in [31,32,33,34,35]. Also, many researchers suggested topological models in biology [36,37,38], medicine [39, 40,41], physics [42,43,44,45] and smart city [46].

In terms of preapproximations and prerough sets, some topological lattice models throughout this paper are presented and studied. Some algebraic properties for Abd El Monsef's preapproximation space, such as a complete Boolean lattice is investigated. It will be created new preapproximation types of upper lower. preapproximation in the preapproximation Eventually, the value of k in which $P\mathscr{D}$ $(\overline{\mathfrak{apr}}_{\Omega_n})$ $\subseteq \ \{\overline{\mathfrak{apr}}^k_{\Omega_p}(X) \ : \ X \ \in \ \mathscr{P}(\mathfrak{U})\} \quad \text{ and } \quad P\mathscr{D}(\underline{\mathfrak{apr}}_{\Omega_p})$ $\subseteq \{\underbrace{\mathfrak{apr}^k_{\Omega_p}(X): X \in \mathscr{P}(\mathfrak{U})}\}$ is determined. A comparison between $\overline{\mathfrak{apr}}_{\Omega}$ (resp. $\underline{\mathfrak{apr}}_{\Omega}$) and $\overline{\mathfrak{apr}}_{\Omega_p}$ (resp. $\underline{\mathfrak{apr}}_{\Omega_p}$), respectively is discussed. Finally, we prove that \mathfrak{apt}_{O}^{n} is the \mathcal{M} matroidal closure. This means that this set will be predefinable in lattice matroidal closed sets and the value k is necessary condition for the predefinability for any subset of the universal set \mathfrak{U} .

2 Preliminary Results

Definition 1. [14] The pair (X, int) is a topological space if $\forall A \subseteq X$, there is an operator int(A), say, the interior of A, s.t. the conditions are satisfied (i) $\text{int}(A) \subseteq A$; (ii) int(int(A)) = int(A);

¹Mathematics Department, Faculty of Science, Tanta University, 31511 Tanta, Egypt

²Department of Physics and Engineering Mathematics, Faculty of Engineering, Kafrelsheikh University, 33516, Kafrelsheikh, Egypt

^{*} Corresponding author e-mail: aelatik@science.tanta.edu.eg

(iii) int(X) = X;

(iv) $\operatorname{int}(A \cap B) = \operatorname{int}(A) \cap \operatorname{int}(B)$, for any $A, B \subseteq X$.

Each set in (X, \mathfrak{int}) is open and its complement is closed.

Definition 2. [47] A is preopen w.r.to τ if $A \subseteq int(\mathfrak{cl}(A))$.

Definition 3. [48] Consider $\bigcap_{i \in I} X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \subseteq \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \in \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathcal{L} \in \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathscr{P}(\mathfrak{U}) \ \forall \ \{X_i : X_i \in \mathscr{P}(\mathfrak{U}) \ \} \ \}$

 $i \in I\} \subseteq \mathcal{L}$. Then, \mathcal{L} is called a closure system. A closure system with ordered lattice is named complete in which $\land_{i \in I} X_i = \bigcap_{i \in I} X_i \text{ and } \lor_{i \in I} X_i = \bigcap_{i \in I} \{Y \in \mathscr{P}(\mathfrak{U}) : \bigcap_{i \in I} X_i \subseteq Y\}.$

Definition 4. [2,5] Let E be the ground set and \mathscr{I} be a subclass of E. $\mathscr{M} = (E,\mathscr{I})$ is a matroid if the conditions hold

(I1) $\phi \in \mathscr{I}$.

(12) If $I \in \mathcal{I}$ and $I^{'} \subseteq I$, then $I^{'} \in \mathcal{I}$.

(13) If $I, J \in \mathcal{I}$ and |I| < |J|, then $\exists j \in J - I$ s.t. $I \cup \{j\} \in \mathcal{I}$ where |I| denotes the cardinality of I.

Each element in \mathscr{I} is called an independent set. Any subset of $\mathscr{P}(E) - \mathscr{I}$ is called dependent, where $\mathscr{P}(E)$ is the power set of E.

Definition 5. [4] Let $\mathcal{M} = (E, \mathcal{I})$ be a matroid. Then,

- (i) Each element in $\mathcal I$ is said to be an independent set. Otherwise, it was called dependent.
- (ii) A base element is the maximal set in \mathcal{I} in the sense of inclusion. The minimal set is called a circuit of the matroid \mathcal{M} and is denoted by $\mathcal{C}(\mathcal{M})$.
- (iii) The singleton circuit is called a loop. If $\{a,b\}$ is a circuit, then a and b are said to be parallel.
- (iv) $\forall A \subseteq E$, the closure operator $\mathfrak{cl}_{\mathscr{M}}(A)$ of a matroid \mathscr{M} is defined as $\mathfrak{cl}_{\mathscr{M}}(A) = \{a \in E : f(A) = f(A \cup \{a\})\}$ and $\mathfrak{cl}_{\mathscr{M}}(A)$ is called the closure of A in \mathscr{M} . When there is no confusion, the symbol $\mathfrak{cl}(X)$ is used for abbreviation. A is called a flat or a closed set if $\mathfrak{cl}(A) = A$.

Proposition 1. [5] The following properties are hold for $\mathfrak{cl}_{\mathscr{M}}$:

(i) $\forall X \subseteq \mathfrak{U}, X \subseteq \mathfrak{cl}_{\mathscr{M}}(X)$.

(ii) $\mathfrak{cl}_{\mathscr{M}}(X) \subseteq \mathfrak{cl}_{\mathscr{M}}(Y)$ if $X \subseteq Y$.

 $(iii) \, \mathfrak{cl}_{\mathscr{M}}(\mathfrak{cl}_{\mathscr{M}}(X)) = \mathfrak{cl}_{\mathscr{M}}(X).$

(iv) $\forall X \subseteq \mathfrak{U}$ and $x \in \mathfrak{U}$, if $y \in \mathfrak{cl}_{\mathscr{M}}(X \cup \{x\}) - \mathfrak{cl}_{\mathscr{M}}(X)$, then $x \in \mathfrak{cl}_{\mathscr{M}}(X \cup \{y\})$.

Lemma 1.7.3 in [5] proved that the class of lattice matroidal closed sets is lattice and is denoted by $\mathscr{CL}(\mathcal{M})$. In this lattice, $A \wedge B = \mathfrak{cl}_{\mathscr{M}}(A \cap B)$ and $A \vee B = \mathfrak{cl}_{\mathscr{M}}(A \cup B)$, $\forall A, B \in \mathscr{CL}(\mathscr{M})$.

Proposition 2. [3] $r_{\mathscr{M}}(A) = |A| \text{ iff } A \in \mathscr{I}, \forall A \subseteq E.$

Definition 6. [3] The closure operator $\mathfrak{cl}_{\mathscr{M}}(A) = \{u \in E : r_{\mathscr{M}}(A) = r_{\mathscr{M}}(A \cup \{u\})\}, \forall A \subseteq E. \mathfrak{cl}_{\mathscr{M}}(A) \text{ is said to be the closure of } A \text{ w.r.to } \mathscr{M}.$

3 Main Results

Throughout this section, consider $\overline{\mathfrak{apr}}_{\Omega_p}$ and $\underline{\mathfrak{apr}}_{\Omega_p}$ are denoted to the upper and lower approximation w.r.to the preapproximation space (\mathfrak{U}, Ω_p) .

3.1 Prerough sets and some algebraic properties

Definition 7. Let $\mathfrak U$ be a finite nonempty set and $(\mathfrak U,\Omega)$ is a generalized approximation space, where Ω is a relation which will be a subbase for a topological space, say, τ . Then, a class of preopen sets called $\mathscr{PO}(\mathfrak U,\tau)$ from τ is generated. If Ω_p is a relation on $\mathscr{PO}(\mathfrak U,\tau)$, then $\mathscr{PO}(\mathfrak U,\Omega_p)$ is said to be a preapproximation space.

From Definition 7, $\mathfrak{U}/\Omega_p = \{[x]_{\Omega_p} : x \in \mathfrak{U}\}$ s.t. $[x]_{\Omega_p} = \{y \in \mathfrak{U} : x\Omega_p y\}$ is satisfied.

Definition 8. Let (\mathfrak{U}, Ω_p) be a preapproximation space. A prelower and preupper approximation of X is

 $\underline{\mathfrak{apr}}_{\Omega_p}(X) = \{x \in \mathfrak{U} : \Omega_p(x) \subseteq X\}, and$

 $\overline{\mathfrak{apr}}_{\Omega_p}(X) = \{x \in \mathfrak{U} : \Omega_p(x) \cap X \neq \emptyset\}, \text{ respectively. This can be shown in Figure 1.}$

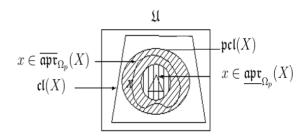


Fig. 1: A prerough approximations.

X is a lower predefinable in (\mathfrak{U},Ω_p) if $\underline{\mathfrak{apr}}_{\Omega_p}(X)=X$ and is denoted by $P\mathscr{D}(\underline{\mathfrak{apr}}_{\Omega_p})$. Similarly, X is an upper predefinable set in (\mathfrak{U},Ω_p) if $\overline{\mathfrak{apr}}_{\Omega_p}(X)=X$ is denoted by $P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$. Hence, X is predefinable if $\underline{\mathfrak{apr}}_{\Omega_p}(X)=\overline{\mathfrak{apr}}_{\Omega_p}(X)=X$ and is denoted by $P\mathscr{D}(\mathfrak{U},\Omega_p)$.

In Definition 9, $\mathfrak{pint}(X)$ (resp. $\mathfrak{pcl}(X)$) denotes to preinterior (resp. preclosure) operators w.r.to the preapproximation space (\mathfrak{U}, Ω_p) .

Definition 9. Let (\mathfrak{U}, Ω_p) be a preapproximation space and $X \subseteq \mathfrak{U}$. Then,

(i) X is a preexact if pint(X) = pcl(X).

(ii) X is a prerough if $pint(X) \neq pcl(X)$.

By analogous of results of Zhu in [49], it is easy to prove propositions 3 and 4.

Proposition 3. If (\mathfrak{U}, Ω_p) is a preapproximation space, where the relation Ω_p is serial and $X,Y \subseteq \mathfrak{U}$, then the following are verified:

$$(i)\ \underline{\mathfrak{apr}}_{\Omega_n}(\mathfrak{U})=\mathfrak{U}.$$

$$(ii) \underbrace{\operatorname{apr}_{\Omega_p}}^{p}(X \cap Y) = \underbrace{\operatorname{apr}_{\Omega_p}}(X) \cap \underbrace{\operatorname{apr}_{\Omega_p}}(Y).$$

$$(iii) X \subseteq Y \Rightarrow \underline{\mathfrak{apr}}_{\Omega_p}(X) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}(Y).$$

$$(vi) X \subseteq Y \Rightarrow \overline{\mathfrak{apr}}_{\Omega_p}(X) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(Y).$$

$$(v) \ \overline{\mathfrak{apr}}_{\Omega_p}(X \cup Y) = \overline{\mathfrak{apr}}_{\Omega_p}(X) \cup \overline{\mathfrak{apr}}_{\Omega_p}(Y).$$

(iv)
$$\overline{\mathfrak{apr}}_{\Omega_p}(\phi) = \phi$$
.

$$(vii) \ \underline{\mathfrak{apr}}_{\Omega_p}(X^c) = (\overline{\mathfrak{apr}}_{\Omega_p}(X))^c.$$

Proposition 4. For a relation Ω_p on \mathfrak{U} , we get (i) Ω_p is reflexive iff $\underline{\mathfrak{apt}}_{\Omega_p}(X) \subseteq X$ iff $X \subseteq \overline{\mathfrak{apt}}_{\Omega_p}(X)$. (ii) Ω_p is transitive iff $\underline{\mathfrak{apt}}_{\Omega_p}(X) \subseteq \underline{\mathfrak{apt}}_{\Omega_p}(\underline{\mathfrak{apt}}_{\Omega_p}(X))$ iff $\overline{\mathfrak{apt}}_{\Omega_p}(\overline{\mathfrak{apt}}_{\Omega_p}(X)) \subseteq \overline{\mathfrak{apt}}_{\Omega_p}(X)$, $\forall X \subseteq \mathfrak{U}$.

Remark 1. According to Proposition 3, $\mathfrak{U} \in P\mathscr{D}(\underbrace{\mathfrak{apt}_{\Omega_p}})$, $\phi \in P\mathscr{D}(\overline{\mathfrak{apt}_{\Omega_p}})$. This means that $P\mathscr{D}(\underbrace{\mathfrak{apt}_{\Omega_p}})$ and $P\mathscr{D}(\overline{\mathfrak{apt}_{\Omega_p}})$ are nonempty in some cases, while $P\mathscr{D}(\underbrace{\mathfrak{apt}_{\Omega_p}}) \cap P\mathscr{D}(\overline{\mathfrak{apt}_{\Omega_p}})$ may be empty other cases.

Remark 2. Since each open set is preopen, then a definable set is predefinable [48]. Generally, the inverse direction is not hold.

Example 1. Let $\mathfrak{U}=\{\mathfrak{a},\mathfrak{b},\mathfrak{c}\}$ and $\mathfrak{U}/\Omega=\{\{\mathfrak{a}\},\{\mathfrak{b},\mathfrak{c}\}\}$ be a subbase for τ . If $X=\{\mathfrak{a},\mathfrak{b}\}$ be a rough set, then the expansion of given approximation space is $\tau_{\Omega}=\mathscr{PO}(\mathfrak{U},\tau)=\{\mathfrak{U},\phi,\{\mathfrak{a}\},\{\mathfrak{b}\},\{\mathfrak{a},\mathfrak{b}\},\{\mathfrak{b},\mathfrak{c}\}\}$. The subsets $\{\mathfrak{a}\}$ and $\{\mathfrak{b},\mathfrak{c}\}$ are predefinable, but neither of them is definable.

For computing the families $P\mathscr{D}\left(\underline{\mathfrak{apr}}_{\Omega_p}\right)$ and $P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$, the following notions are introduced $\underline{\mathfrak{apr}}_{\Omega_p}^0(X) = X$, $\underline{\mathfrak{apr}}_{\Omega_p}^1(X) = \underline{\mathfrak{apr}}_{\Omega_p}(X)$, $\underline{\mathfrak{apr}}_{\Omega_p}^2(X) = \underline{\mathfrak{apr}}_{\Omega_p}\left((\underline{\mathfrak{apr}}_{\Omega_p})(X)\right)$, $\underline{\mathfrak{apr}}_{\Omega_p}^{k+1}(X) = \underline{\mathfrak{apr}}_{\Omega_p}\left((\underline{\mathfrak{apr}}_{\Omega_p}^k)(X)\right)$; $\overline{\mathfrak{apr}}_{\Omega_p}^0(X) = X$, $\overline{\mathfrak{apr}}_{\Omega_p}^1(X) = \overline{\mathfrak{apr}}_{\Omega_p}(X)$, $\overline{\mathfrak{apr}}_{\Omega_p}^2(X) = \overline{\mathfrak{apr}}_{\Omega_p}\left((\overline{\mathfrak{apr}}_{\Omega_p}^k)(X)\right)$.

Lemma 1. In a space (\mathfrak{U}, Ω_p) , if $\overline{\mathfrak{apr}}_{\Omega_p}(X) = X$, then $\overline{\mathfrak{apr}}_{\Omega_p}^k(X) = X$, $\forall k \in \mathbb{N}$, for $X \subseteq \mathfrak{U}$.

 $\begin{array}{lll} & Proof. & \text{The relation is true for } k=1. \text{ For } k>1, \\ & \overline{\mathfrak{apr}}_{\Omega_p}^2(X) = \overline{\mathfrak{apr}}_{\Omega_p}(X) = X, & \text{implies } \overline{\mathfrak{apr}}_{\Omega_p}^3(X) = \\ & \overline{\mathfrak{apr}}_{\Omega_p}(X) = X \text{ and so on to } \overline{\mathfrak{apr}}_{\Omega_p}^k(X) = \overline{\mathfrak{apr}}_{\Omega_p}(X) = X. \end{array}$

Example 2. Let $\mathfrak{U}=\{1,2,3,4,5,6\}$ with $\mathfrak{U}/\Omega_p=\{\{1\},\{2\},\{3\},\{1,4\},\{4,5\}\}$. By Definition 12, $\tau_{\Omega_p}=\{\mathfrak{U},\phi,\{1\},\{2\},\{3\},\{4\},\{1,4\},\{4,5\},\{1,2\}\}$. So, $\mathscr{PO}(\mathfrak{U},\tau_{\Omega_p})=\{\mathfrak{U},\phi,\{1\},\{2\},\{3\},\{4\},\{1,2\},\{1,3\},\{2,3\},\{1,4\},\{2,4\},\{3,4\},\{4,5\},\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\},\{1,4,5\},\{2,4,5\},\{3,4,5\},\{1,2,3,4\},\{1,2,4,5\}\}$. By Definition 8, $\overline{\mathfrak{apr}}_{\Omega_p}(\{1\})=$

 $\begin{array}{ll} \{1,6\}, \ \overline{\mathfrak{apr}}_{\Omega_p}^2(\{1\}) = \overline{\mathfrak{apr}}_{\Omega_p} \ (\{1,\ 6\}) = \{1,6\}. \ \text{Then,} \\ \overline{\mathfrak{apr}}_{\Omega_p}(\{1\}) \in P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p}). \ \ \text{Also,} \ \ \underline{\mathfrak{apr}}_{\Omega_p}(\{1,4,6\}) = \\ \{1,4\}, \ \overline{\mathfrak{apr}}_{\Omega_p}^2(\{1,4,6\}) = \overline{\mathfrak{apr}}_{\Omega_p} \ (\{1,4\}) = \{1,4\}. \ \text{Then,} \\ \overline{\mathfrak{apr}}_{\Omega_p}(\{1,4,6\}) \in P\mathscr{D} \ (\underline{\mathfrak{apr}}_{\Omega_p}). \end{array}$

By a mathematical induction, it is easy to prove Proposition 5 and so the proof is omitted.

Proposition 5. Given (\mathfrak{U}, Ω_p) and $k \in \mathbb{N}$. Then, $\forall X, Y \in \mathscr{P}(\mathfrak{U})$,

$$(L1) \ \underline{\mathfrak{apr}}_{Q_n}^k(\mathfrak{U}) = \mathfrak{U}.$$

(U1)
$$\overline{\mathfrak{apr}}_{\Omega_n}^{k}(\mathfrak{U}) = \mathfrak{U}.$$

(L2)
$$\operatorname{\mathfrak{apr}}_{Q_n}^k = \emptyset$$
.

(U2)
$$\overline{\mathfrak{apr}}_{\Omega_n}^k(\phi) = \phi$$
.

(L3)
$$\underline{\mathfrak{apr}}_{\Omega_p}^k(X) = (\overline{\mathfrak{apr}}_{\Omega_p}^k(X^c))^c$$
.

$$(U3) \ \overline{\mathfrak{apr}}_{\Omega_p}^k(X) = (\underline{\mathfrak{apr}}_{\Omega_p}^k(X^c))^c.$$

$$(L4) \ \underline{\mathfrak{apr}}_{\Omega_p}^k(X \cap Y) = \underline{\mathfrak{apr}}_{\Omega_p}^k(X) \cap \underline{\mathfrak{apr}}_{\Omega_p}^k(Y).$$

$$(U4) \ \overline{\mathfrak{apr}}_{\Omega_p}^{k'}(X \cup Y) = \overline{\mathfrak{apr}}_{\Omega_p}^{k'}(X) \cup \overline{\mathfrak{apr}}_{\Omega_p}^{k'}(Y).$$

(L5) If
$$X \subseteq Y$$
, then $\underline{\mathfrak{apr}}_{\Omega_p}^k(X) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}^k(Y)$.

(U5) If
$$X \subseteq Y$$
, then $\overline{\mathfrak{apr}}_{\Omega_p}^k(X) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}^k(Y)$.

(L6) If
$$\Omega_p$$
 is reflexive, then $\underline{\mathfrak{apr}}_{\Omega_p}^k(X) \subseteq X$.

(U6) If
$$\Omega_p$$
 is reflexive, then $X \subseteq \overline{\mathfrak{apr}}_{\Omega_p}^k(X)$.

Definition 10. The sets X and Y in (\mathfrak{U}, Ω_p) are called (i) preroughly bottom equal $X \overline{\sim}_p Y$ if $\underset{\Omega_p}{\operatorname{apt}}_{\Omega_p}(X) = \underset{\Omega_p}{\operatorname{apt}}_{\Omega_p}(Y)$.

(ii) preroughly top equal $X \simeq_p Y$ if $\overline{\mathfrak{apr}}_{\Omega_p}(X) = \overline{\mathfrak{apr}}_{\Omega_p}(Y)$. (iii) preroughly equal $X \approx_p Y$ if $X \approx_p Y$ and $X \simeq_p Y$.

Remark. The equivalence class of \approx_p , for $X\subseteq \mathfrak{U}$, has the form $[X]_{\approx_p}=\{A\subseteq \mathfrak{U}: \underbrace{\mathfrak{apr}}_{\Omega_p}(A)=\underbrace{\mathfrak{apr}}_{\Omega_p}(X) \text{ and } \overline{\mathfrak{apr}}_{\Omega_p}(A)=\overline{\mathfrak{apr}}_{\Omega_p}(X)\}.$

Definition 11. For any $[X]_{\approx_p}$ and $[Y]_{\approx_p}$ in $\Omega_p(\mathfrak{U})$, a relation $[X]_{\approx_p} \leq [Y]_{\approx_p}$ if $\underline{\mathfrak{apr}}_{\Omega_p}(X) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}(Y)$ and $\overline{\overline{\mathfrak{apr}}}_{\Omega_p}(X) \subseteq \overline{\overline{\mathfrak{apr}}}_{\Omega_p}(Y)$.

Six types of approximations in terms of bottom (resp. prebottom) rough are given if $X\overline{\sim}Y$ (resp. $X\overline{\sim}_pY$). Similarly, top (resp. pretop) rough if $X\simeq Y$ (resp. $X\simeq_p Y$). Then, $\approx=\overline{\sim}\cap\simeq$ and $\approx_p=\overline{\sim}_p\cap\simeq_p$. Each of relations $\overline{\sim},\simeq,\overline{\sim}_p$ and \simeq_p is equivalence.

Lemma 2. The relation \simeq (resp. $\overline{\sim}$) is a congruence on $(\mathscr{P}(\mathfrak{U}), \cup)$ (resp. $(\mathscr{P}(\mathfrak{U}), \cap)$).

Proof. Let \simeq and $\overline{\sim}$ be equivalence relations on $\mathscr{P}(\mathfrak{U})$. Then, for A,B,C,D are subsets of $\mathscr{P}(\mathfrak{U})$, we have

(i) If $A\simeq B$ and $C\simeq D$, then $\overline{\operatorname{apr}}_{\Omega_p}(A)=\overline{\operatorname{apr}}_{\Omega_p}(B)$ and $\overline{\operatorname{apr}}_{\Omega_p}(C)=\overline{\operatorname{apr}}_{\Omega_p}(D)$. Since $\overline{\operatorname{apr}}_{\Omega_p}(A\cup C)=\overline{\operatorname{apr}}_{\Omega_p}(A)\cup \overline{\operatorname{apr}}_{\Omega_p}(C)=\overline{\operatorname{apr}}_{\Omega_p}(B)\cup \overline{\operatorname{apr}}_{\Omega_p}(D)=\overline{\operatorname{apr}}_{\Omega_p}(B\cup D)$, then $A\cup C\simeq B\cup D$ and so \simeq is a congruence on $(\mathscr{P}(\mathfrak{U}),\cup)$.

(ii) If $A \overline{\sim} B$ and $C \overline{\sim} D$, then $\underline{\operatorname{apt}}_{\Omega_p}(A) = \underline{\operatorname{apt}}_{\Omega_p}(B)$ and $\underline{\operatorname{apt}}_{\Omega_p}(C) = \underline{\operatorname{apt}}_{\Omega_p}(D)$. Now, since $\underline{\operatorname{apt}}_{\Omega_p}(A \cap C) = \underline{\operatorname{apt}}_{\Omega_p}(A) \cap \underline{\operatorname{apt}}_{\Omega_p}(C) = \underline{\operatorname{apt}}_{\Omega_p}(B) \cap \underline{\operatorname{apt}}_{\Omega_p}(D) = \underline{\operatorname{apt}}_{\Omega_p}(B \cap D)$. Thus, $A \cap C \overline{\sim} B \cap D$. Therefore, $\overline{\sim}$ is a congruence on $(\mathscr{P}(\mathfrak{U}), \cap)$.

Remark 3. Relations $\overline{\sim}_p$ and \simeq_p are not usually congruences. Because of $\underline{\mathfrak{apr}}_{\Omega_p}(X \cap Y) = \underline{\mathfrak{apr}}_{\Omega_p}(X) \cap \underline{\mathfrak{apr}}_{\Omega_p}(Y)$ is not truthful, in general and $\overline{\mathfrak{apr}}_{\Omega_p}(X \cup Y) \neq \overline{\mathfrak{apr}}_{\Omega_p}(X) \cup \overline{\mathfrak{apr}}_{\Omega_p}(Y)$.

Lemma 3. Let (\mathfrak{U}, Ω_p) be a preapproximation space. Then

(i) If $\overline{\sim}$ is a congruence on $(\mathscr{P}(\mathfrak{U}),\cap)$ and $X\overline{\sim}Y$, then $X\wedge Z\overline{\sim}Y\wedge Z$.

(ii) If \simeq is a congruence on $(\mathscr{P}(\mathfrak{U}), \cup)$ and $X \simeq Y$, then $X \vee Z \simeq Y \vee Z$.

(iii) If $X \overline{\sim} Z$ and X < Z < Y, then $X \overline{\sim} Z$.

(iv) If $X \simeq Z$ and $X \leq Z \leq Y$, then $Y \simeq Z$, $\forall X, Y, Z \in \mathscr{P}(\mathfrak{U})$.

 $\begin{array}{ll} \textit{Proof.} & \text{(i)} \;\; \text{Assume that} \; \overline{\sim} \; \text{is a congruence on} \; (\mathscr{P}(\mathfrak{U}), \cap). \\ \text{If} \;\; X \; \overline{\sim} \; Y, \;\; \text{then} \;\; Z \; \overline{\sim} \; Z \;\; \text{and so} \;\; X \wedge Z \; \overline{\sim} \; Y \wedge Z, \;\; \text{because} \\ X \; \overline{\sim} \;\; Y. \;\; \text{Hence,} \;\; \underline{\mathfrak{apt}}_{\Omega_p}(X) = \;\; \underline{\mathfrak{apt}}_{\Omega_p}(Y) \;\; \text{and so} \;\; \underline{\mathfrak{apt}}_{\Omega_p}(Z) = \\ \underline{\mathfrak{apt}}_{\Omega_p}(Z), \;\;\; \underline{\mathfrak{apt}}_{\Omega_p}(X \wedge Z) = \;\; \underline{\mathfrak{apt}}_{\Omega_p}(X) \wedge \;\; \underline{\mathfrak{apt}}_{\Omega_p}(Z) = \\ \underline{\mathfrak{apt}}_{\Omega_p}(Y) \wedge \;\; \underline{\mathfrak{apt}}_{\Omega_p}(Z) = \;\; \underline{\mathfrak{apt}}_{\Omega_p}(Y \wedge Z). \quad \;\; \text{Then,} \\ X \wedge Z \overline{\sim} \; Y \wedge Z. \end{array}$

(ii) Similar to (i).

(iii) Since $X \le Z \le Y$, then $X = X \wedge Z$ and $Z = Y \wedge Z$. If $X \sim Y$, then $X \wedge Z \sim Y \wedge Z$. Therefore, $X \sim Z$.

(iv) The proof is true for \simeq by replacing every \wedge by \vee in (iii).

Theorem 4. Let \simeq be a congruence on $(\mathscr{P}(\mathfrak{U}), \cup)$. Then, (i)If $(\mathscr{P}(\mathfrak{U})/\approx, \vee)$ is a join semilattice, then a quotient map q from $\mathscr{P}(\mathfrak{U})$ into $\mathscr{P}(\mathfrak{U})/\approx$ and is defined by $q(A)=[A]_{\Theta}$ is a join homomorphism.

(ii)If congruence Θ is a bottom rough, then q from $\mathscr{P}(\mathfrak{U})$ into $\mathscr{P}(\mathfrak{U})/\Theta$ is a meet homomorphism.

Proof. (i) It is clear that $(\mathscr{P}(\mathfrak{U})/\approx,\vee)$ is a join semilattice. The map q is a join homomorphism of $\mathscr{P}(\mathfrak{U})$ onto $\mathscr{P}(\mathfrak{U})/\approx$, for A,B in $P(\mathfrak{U}),\ q(A)=[A]_\approx,\ q(B)=[B]_\approx,\ q(A\vee B)=[A\vee B]_\approx=[A]_\approx\vee[B]_\approx=q(A)\vee q(B)$. Thus, q is a join homomorphism.

(ii) is similar to (i).

3.2 Relation between prerough inclusion and lattices

There are six types of inclusion based on upper and lower approximations that applied on preapproximation spaces.

Definition 12. $\forall A, B \subseteq \mathfrak{U}$, the relations are (i) $A \subseteq B$ if $\underset{\longrightarrow}{\operatorname{apt}}_{O}(A) \subseteq \underset{\longrightarrow}{\operatorname{apt}}_{O}(B)$.

 $\begin{array}{ll} (ii) \ A \overset{\sim}{\subset} B \ if \ \overline{\mathfrak{apr}}_{\Omega}(A) \subseteq \overline{\mathfrak{apr}}_{\Omega}(B). \\ (iii) \ A \equiv B \ if \ \underline{\mathfrak{apr}}_{\Omega}(A) \subseteq \underline{\mathfrak{apr}}_{\Omega}(B) \ \ and \ \overline{\mathfrak{apr}}_{\Omega}(A) \\ \subseteq \overline{\mathfrak{apr}}_{\Omega}(B). \\ (iv) \ A \underset{\sim}{\subset}_p B \ if \ \underline{\mathfrak{apr}}_{\Omega_p}(A) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}(B). \\ (v) \ A \overset{\sim}{\subset}_p B \ if \ \overline{\mathfrak{apr}}_{\Omega_p}(A) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(B). \\ (vi) \ A \equiv_p B \ if \ \underline{\mathfrak{apr}}_{\Omega_p}(A) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}(B) \ \ and \ \overline{\mathfrak{apr}}_{\Omega_p}(A) \\ \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(B). \end{array}$

To avoid a confusion in Definition 12, Ω is a Pawlak equivalence relation and Ω_p is a relation that forms a preapproximation space.

Remark 5. If (\mathfrak{U}, Ω_p) be a preapproximation space, then the relations in Definition 12 are partially ordered in $\mathscr{P}(\mathfrak{U})$. Moreover, each of $(\mathscr{P}(\mathfrak{U}), \subset)$, $(\mathscr{P}(\mathfrak{U}), \subset)$, $(\mathscr{P}(\mathfrak{U}), \subset)$, $(\mathscr{P}(\mathfrak{U}), \subset)$, $(\mathscr{P}(\mathfrak{U}), \subset)$ and $(\mathscr{P}(\mathfrak{U}), \equiv)$ is a lattice.

Proposition 6. Each of lattices $(\mathscr{P}(\mathfrak{U}), \subseteq)$ and $(\mathscr{P}(\mathfrak{U}), \cong)$ are sublattices of $(\mathscr{P}(\mathfrak{U}), \subseteq)$.

Proof. Firstly, for any $X,Y\subseteq \mathscr{P}(\mathfrak{U})$, suppose that $\underline{\mathfrak{apr}}_{\Omega_n}(X), \ \underline{\mathfrak{apr}}_{\Omega_n}(Y)$ are subsets of $(\mathscr{P}(\mathfrak{U}), \subset)$. Then, $\underline{\mathfrak{apr}}_{\Omega_n}(X) \wedge \underline{\mathfrak{apr}}_{\Omega_n}(Y) = \underline{\mathfrak{apr}}_{\Omega_n}(X \wedge Y)$ which implies $\underline{\mathfrak{apt}}_{\Omega_p}(X) \wedge \underline{\mathfrak{apt}}_{\Omega_p}(Y) \in (\mathscr{P}(\mathfrak{U}), \subset).$ Now, we show that $\underline{\mathfrak{apr}}_{\Omega_p}(X) \,\vee\, \underline{\mathfrak{apr}}_{\Omega_p}(Y) = \underline{\mathfrak{apr}}_{\Omega_p}(\underline{\mathfrak{apr}}_{\Omega_p}(X) \,\vee\, \underline{\mathfrak{apr}}_{\Omega_p}(Y)),$ $\underline{\mathfrak{apr}}_{\Omega_p}(X) \leq \underline{\mathfrak{apr}}_{\Omega_p}(X) \vee \underline{\mathfrak{apr}}_{\Omega_p}(Y)^r \text{ and } \underline{\mathfrak{apr}}_{\Omega_p}(X) =$ $\underline{\mathfrak{apr}}_{\Omega_p}(\underline{\mathfrak{apr}}_{\Omega_p}(X) \ \lor \ \underline{\mathfrak{apr}}_{\Omega_p}(Y)). \ \text{Similarly,} \ \underline{\mathfrak{apr}}_{\Omega_p}(Y) \ \le \\$ $\underline{\mathfrak{apr}_{\Omega_p}} \ (\underline{\mathfrak{apr}_{\Omega_p}}(X) \ \lor \ \underline{\mathfrak{apr}_{\Omega_p}}(Y)) \ \text{is proved. Thus,} \ \underline{\mathfrak{apr}_{\Omega_n}}$ $(\underline{\mathfrak{apr}}_{\Omega_n}(X) \vee \underline{\mathfrak{apr}}_{\Omega_n}(Y))$ is an upper bound of $\underline{\mathfrak{apr}}_{\Omega_n}(X)$ and $\underbrace{\mathfrak{apt}}_{\Omega_p}(Y)$. Therefore, $\underline{\mathfrak{apt}}_{\Omega_p}(X) \vee \underline{\mathfrak{apt}}_{\Omega_p}(Y) \leq$ $\underline{\mathfrak{apr}}_{\Omega_p}(\underline{\mathfrak{apr}}_{\Omega_p}(X) \vee \underline{\mathfrak{apr}}_{\Omega_p}(Y))$. Secondly, since $\underline{\mathfrak{apr}}_{\Omega_p}(X)$ $\leq X$, then $\sup_{\Omega_n} (\underbrace{\mathfrak{apr}_{\Omega_n}}(X) \vee \underbrace{\mathfrak{apr}_{\Omega_n}}(Y)) \leq \underbrace{\mathfrak{apr}_{\Omega_n}}(X) \vee \underbrace{\mathfrak{apr}_{\Omega_n}}(X)$ $\underline{\mathfrak{apr}}_{\Omega_p}(Y)$. Then, $\underline{\mathfrak{apr}}_{\Omega_p}$ $(\underline{\mathfrak{apr}}_{\Omega_p}(X) \vee \underline{\mathfrak{apr}}_{\Omega_p}(Y)) =$ $\underline{\mathfrak{apr}}_{\Omega_p}(X) \quad \vee \underline{\mathfrak{apr}}_{\Omega_p}(Y) \quad \text{and so} \quad \underline{\mathfrak{apr}}_{\Omega_p}(X) \quad \vee \underline{\mathfrak{apr}}_{\Omega_p}(Y)$ $\in (\mathscr{P}(\mathfrak{U}), \subseteq)$. In the same manner, $(\mathscr{P}(\mathfrak{U}), \cong)$ is sublattices of $(\mathscr{P}(\mathfrak{U}),\subseteq)$.

Example 3. Let $\mathfrak{U} = \{\alpha, \beta, \gamma\}$ with a relation Ω defined as $\Omega = \{(\alpha, \alpha), (\beta, \alpha), (\beta, \gamma), (\gamma, \gamma)\}$. Then, the topology which associated with R is $\tau = \{\phi, \{\alpha\}, \{\gamma\}, \{\alpha, \gamma\}, \mathfrak{U}\}$. The lattice of $(\mathscr{P}(\mathfrak{U}), \subseteq)$ is shown in Figure 2. From Table 1 and Figures 3 and 4, each of lattices $(P(\mathfrak{U}), \subseteq)$ and $(\mathscr{P}(\mathfrak{U}), \widetilde{\subset})$ is sublattices of $(\mathscr{P}(\mathfrak{U}), \subseteq)$. Also, from Figures 3 and 4, we show that $X \subseteq Y$ if $\underline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \underline{\operatorname{apr}}_{\Omega_p}(Y)$ and $X \subset Y$ if $\overline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}(Y)$ (cf. Definition 12).

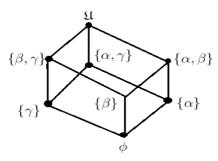


Fig. 2: The lattice of $(\mathscr{P}(\mathfrak{U}),\subseteq)$.

Table 1: The approximations of $\mathscr{P}(\mathfrak{U})$

A	$\overline{\mathfrak{apr}}_{\Omega}(A)$	$\underline{\mathfrak{apr}}_{\Omega}(A)$
$\{\alpha\}$	$\{\alpha, \beta\}$	$\{\alpha\}$
$\{oldsymbol{eta}\}$	$\{oldsymbol{eta}\}$	ϕ
$\{\gamma\}$	$\{oldsymbol{eta}, oldsymbol{\gamma}\}$	$\{\gamma\}$
$\{\alpha,\beta\}$	$\{\alpha,\beta\}$	$\{\alpha\}$
$\{\alpha, \gamma\}$	U	$\{\alpha,\beta\}$
$\{oldsymbol{eta}, oldsymbol{\gamma}\}$	$\{oldsymbol{eta}, oldsymbol{\gamma}\}$	$\{\gamma\}$
φ	φ	φ
U	u	u

Remark 6. Each of relations \approx and \approx_{Ω_p} is equivalence, but not usually congruences on $(\mathcal{P}(\mathfrak{U}), \cup)$. This can be shown in Figures 3 and 4 in Example 3.

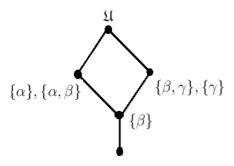


Fig. 3: A sublattice on $\mathscr{P}(\mathfrak{U})$ if $\mathfrak{apr}_{\mathcal{O}}(X) \subseteq \mathfrak{apr}_{\mathcal{O}}(Y)$.

Example 4. Consider a universal set $\mathfrak{U} = \{\mathfrak{x},\mathfrak{y},\mathfrak{z}\}$ with a relation $\Omega_p = \{(\mathfrak{x},\mathfrak{x}), (\mathfrak{y},\mathfrak{x}), (\mathfrak{y},\mathfrak{y})\}$. Then, the topology will be $\tau = \{\{\mathfrak{x}\}, \{\mathfrak{x},\mathfrak{y}\}, \mathfrak{U}, \phi\}$. By Table 2, the lattices which are given from relations \subseteq , \cong , \cong , and \cong are deduced. Since there are some elements which have the same approximation (upper or lower), then we give only one chain. So, there are four cases:

Case 1: $X \cong Y$ if $\overline{\mathfrak{apr}}_{\Omega}(X) \subseteq \overline{\mathfrak{apr}}_{\Omega}(Y)$ and all congruences on chain lattice are shown in Figure 5. Theses congruences are ordered by normal inclusion such that $\theta_i \leq \theta_i$ iff $\theta_i \subseteq$ θ_j , for $i \neq j$ and $i, j \in \{1, 2 \dots, 6\}$. This can be shown in Figure 6.

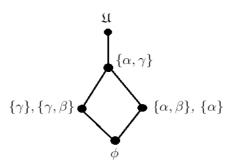


Fig. 4: A sublattice on $\mathscr{P}(\mathfrak{U})$ if $\overline{\mathfrak{apr}}_{\Omega}(X) \subseteq \overline{\mathfrak{apr}}_{\Omega}(Y)$.

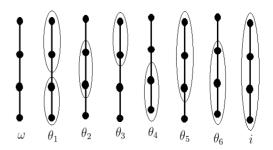


Fig. 5: Congruence lattices.

Case 2: $X \subset Y$ iff $\overline{\mathfrak{apr}}_{\Omega}(X) \subseteq \overline{\mathfrak{apr}}_{\Omega}(Y)$. By similarity, chain lattice and congruence lattices are also shown in Figure 5.

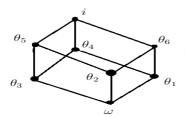


Fig. 6: Congruence with normal inclusion.

Table 2: The preapproximations of $\mathscr{P}(\mathfrak{U})$

		1.1		
A	$\overline{\mathfrak{apr}}_{\Omega}(A)$	$\underline{\mathfrak{apr}}_{\Omega}(A)$	$\overline{\mathfrak{apr}}_{\Omega_p}(A)$	$\underline{\mathfrak{apr}}_{\Omega_p}(A)$
$\{\mathfrak{x}\}$	IJ	$\{\mathfrak{x}\}$	U	$\{\mathfrak{x}\}$
$\{\mathfrak{y}\}$	$\{\mathfrak{y},\mathfrak{z}\}$	φ	$\{\mathfrak{y}\}$	ϕ
{3}	{3}	φ	{3}	φ
$\{\mathfrak{x},\mathfrak{y}\}$	U	$\{\mathfrak{x},\mathfrak{y}\}$	u	$\{\mathfrak{x},\mathfrak{y}\}$
$\{\mathfrak{x},\mathfrak{z}\}$	IJ	$\{\mathfrak{x}\}$	U	$\{\mathfrak{x},\mathfrak{z}\}$
$\{\mathfrak{y},\mathfrak{z}\}$	$\{\mathfrak{y},\mathfrak{z}\}$	φ	$\{\mathfrak{y},\mathfrak{z}\}$	φ
φ	φ	φ	φ	ϕ
U	IJ	IJ	IJ	IJ

Theorem 7. $(\mathscr{P}(\mathfrak{U}), \subseteq)$ is a sublattice of $(\mathscr{P}(\mathfrak{U}), \subseteq_n)$.

Proof. Suppose that $\underline{\operatorname{apt}}_{\Omega_p}(X)$ and $\underline{\operatorname{apt}}_{\Omega_p}(Y)$ are subsets of $(\mathscr{P}(\mathfrak{U}),\subset)$. Obviously, $\underline{\operatorname{apt}}_{\Omega_p}(X) \wedge \underline{\operatorname{apt}}_{\Omega_p}(Y) = \underline{\operatorname{apt}}_{\Omega_p}(X \wedge Y)$ which implies that $\underline{\operatorname{apt}}_{\Omega_p}(X) \wedge \underline{\operatorname{apt}}_{\Omega_p}(Y) \in (\mathscr{P}(\mathfrak{U}),\subset)$. Now, we prove that each of $(\mathscr{P}(\mathfrak{U}),\subset)$ and $(\mathscr{P}(\mathfrak{U}),\subset_p)$ is dually order isomorphic. This means that there is a lattice isomorphism \cong_f , where f is an order isomorphism.

The proof of Theorem 8 similar to Theorem 7. Hence, the proof is omitted.

Theorem 8. $(\mathscr{P}(\mathfrak{U}), \overset{\sim}{\subset})$ is a sublattice of $(\mathscr{P}(\mathfrak{U}), \underset{\sim}{\subset}_p)$.

From Theorems 7 and 8, Proposition 7 is given.

Proposition 7. Let (\mathfrak{U}, Ω_p) be a preapproximation space. Then, $(\mathscr{P}(\mathfrak{U}), \subseteq) \cong (\mathscr{P}(\mathfrak{U}), \stackrel{\sim}{\subset})$.

Proof. We prove that $f: \overline{\operatorname{apt}}_{\Omega_p}(X) \longrightarrow \underline{\operatorname{apt}}_{\Omega_p}(X')$, where X' is the complement of X in $\mathscr{P}(\mathfrak{U})$, is a dual order isomorphism. Firstly, It is clear that f is onto, so we prove that f is embedding. Consider $X \subset Y$ s.t. $\overline{\operatorname{apt}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apt}}_{\Omega_p}(Y)$ and so $\operatorname{cl}(X) \subseteq \operatorname{cl}(Y)$. This means that $M \cap X \neq \emptyset$ and so $M \cap Y \neq \emptyset$, $\forall M \in \tau$. Now, assume that $\underline{\operatorname{apt}}_{\Omega_p}(Y') \not\subseteq \underline{\operatorname{apt}}_{\Omega_p}(X')$. Then, \exists an open set $N \in \tau$ s.t.

 $N\subseteq X'$ (take $N=\operatorname{int}(X')$). So, $N\subseteq X'$, but $N\not\subseteq \operatorname{\underline{apt}}_{\Omega_p}(X')$ which is equivalent to $M\cap X\neq \phi$ and so $N\cap Y\neq \phi$. This means that $N\not\subseteq \operatorname{\underline{apt}}_{\Omega_p}(Y')$, which gives a contradiction. Hence, $\operatorname{\underline{apt}}_{\Omega_p}(Y')\subseteq \operatorname{\underline{apt}}_{\Omega_p}(X')$ and so $Y'\subseteq X'$. Secondly, assume that $\operatorname{\underline{apt}}_{\Omega_p}(Y')\subseteq \operatorname{\underline{apt}}_{\Omega_p}(X')$, which means that $\operatorname{int}(Y')\subseteq \operatorname{int}(X')$. Suppose that $\operatorname{\overline{apt}}_{\Omega_p}(X)\not\subseteq \operatorname{\overline{apt}}_{\Omega_p}(Y)$, which means that $\exists\ M\in \tau$ s.t. $M\cap X\neq \phi$ and $M\cap Y=\phi$, but this implies that $M\subseteq Y'$ and $M\subseteq \operatorname{\underline{apt}}_{\Omega_p}(Y')\subseteq \operatorname{\underline{apt}}_{\Omega_p}(X')$. Then, $M\subseteq X'$, this equivalent to $M\cap X=\phi$, which give a contradiction with our assumption. Therefore, $\operatorname{\overline{apt}}_{\Omega_p}(X)\subseteq \operatorname{\overline{apt}}_{\Omega_p}(Y)$ and so $X\subset Y$.

By Proposition 7, $(\mathscr{P}(\mathfrak{U}), \subset)$ and $(\mathscr{P}(\mathfrak{U}), \widetilde{\subset})$ are called dually isomorphic.

Example 5. (Continued for Example 3)

The lattices $(\mathscr{P}(\mathfrak{U}), \subset)$ are dual order isomorphic. Also, the interior of any set is equal to its preinterior and also the closure of any subset is the preclosure. Then, the lattices $(\mathscr{P}(\mathfrak{U}), \subset)$ and $(\mathscr{P}(\mathfrak{U}), \subset_p)$ are coincide. Similarly, $(\mathscr{P}(\mathfrak{U}), \subset)$ and $(\mathscr{P}(\mathfrak{U}), \subset_p)$ are the same. It is noted that $X \subset Y$ if $\overline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}(Y)$ is the same with $X \subset_p Y$ if $\overline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}(Y)$. Also, $X \subset Y$ if $\underline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \underline{\operatorname{apr}}_{\Omega_p}(Y)$ is the same with $X \subset_p Y$ if $\underline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \underline{\operatorname{apr}}_{\Omega_p}(Y)$. This can be shown in Figures 3 and 4. The lattices are equal.

Corollary 1. If $\operatorname{int}(A) = \operatorname{pint}(A)$ and $\operatorname{cl}(A) = \operatorname{pcl}(A)$, for any $A \subseteq \mathfrak{U}$ in any preapproximation space, then the lattices $(\mathscr{P}(\mathfrak{U}), \subseteq)$ and $(\mathscr{P}(\mathfrak{U}), \subseteq_p)$ are the same and also the lattices $(\mathscr{P}(\mathfrak{U}), \cong)$ and $(\mathscr{P}(\mathfrak{U}), \cong_p)$.

Corollary 2. The lattices $(\mathcal{P}(\mathfrak{U}), \subseteq)$, $(\mathcal{P}(\mathfrak{U}), \cong)$, $(\mathcal{P}(\mathfrak{U}), \subseteq_p)$ and $(\mathcal{P}(\mathfrak{U}), \cong_p)$ are distributive. But, it is not Boolean lattices.

Proposition 8. (i) Every ideal in $(\mathscr{P}(\mathfrak{U}), \subseteq)$ is an ideal in $(\mathscr{P}(\mathfrak{U}), \subseteq)$.

(ii) Every filter in $(\mathscr{P}(\mathfrak{U}), \widetilde{\subset}_p)$ is a filter in $(\mathscr{P}(\mathfrak{U}), \subseteq)$.

Proof. (i) Let \mathscr{I}_0 be an ideal in $(\mathscr{P}(\mathfrak{U}), \subset)$. If $X \in \mathscr{I}_0$, $Y \leq X$ in $(\mathscr{P}(\mathfrak{U}), \subseteq)$, then we prove that $Y \in \mathscr{I}_0$, since $Y \leq X$ in $(\mathscr{P}(\mathfrak{U}), \subseteq)$, i.e. $Y \subseteq X$. Then, $\underbrace{\mathfrak{apr}}_{\Omega_p}(Y) \subseteq \underbrace{\mathfrak{apr}}_{\Omega_p}(X)$. Thus, $Y \subset X \in I_0$, but \mathscr{I}_0 is an ideal in $(\mathscr{P}(\mathfrak{U}), \subset)$. Therefore, \mathscr{I}_0 is an ideal $(\mathscr{P}(\mathfrak{U}), \subseteq)$.

(ii) Let \mathscr{F}_0 be a filter in $(\mathscr{P}(\mathfrak{U}), \overset{\sim}{\subset})$. If $x \in \mathscr{F}_0$ and $Y \geq X$ in $(\mathscr{P}(\mathfrak{U}), \subseteq)$, then $Y \supseteq X$. We prove that $Y \in \mathscr{F}_0$. Since $X \subseteq Y$, $\overline{\operatorname{apt}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apt}}_{\Omega_p}(Y)$, $X \in \mathscr{F}_0$ and \mathscr{F}_0 is a filter, then $Y \in \mathscr{F}_0$. Therefore, \mathscr{F}_0 is a filter in $(P(\mathfrak{U}), \subseteq)$.

3.3 The matroid representation of a Boolean lattice

Definition 13. The interior operator on a lattice $(\mathcal{L}, \wedge, \vee)$ is $\operatorname{int}_{\mathcal{L}}(\mathfrak{x}) = \vee \{\mathfrak{a} \in \mathcal{L} : \mathfrak{a} < \mathfrak{x}\}$. The following for any $\mathfrak{x}, \mathfrak{y} \in \mathcal{L}$ hold

- $(i)\ \mathrm{int}_{\mathscr{L}}(\mathfrak{x}\wedge\mathfrak{y})=\mathrm{int}_{\mathscr{L}}(\mathfrak{x})\wedge\mathrm{int}_{\mathscr{L}}(\mathfrak{y}).$
- (ii) int $\varphi(\mathfrak{x}) \leq \mathfrak{x}$.
- $(iii)\ \mathrm{int}_{\mathscr{L}}(\mathfrak{x})=\mathrm{int}_{\mathscr{L}}\ (\mathrm{int}_{\mathscr{L}}(\mathfrak{x})).$

Definition 14. The closure operator in $(\mathcal{L}, \wedge, \vee)$ is $\mathfrak{cl}_{\mathscr{L}}(\mathfrak{x}) = (\mathfrak{int}_{\mathscr{L}}(\mathfrak{x}^c))^c$ where \mathfrak{x}^c is a complement of x w.r.to \mathscr{L} . Thus, $\mathfrak{cl}_{\mathscr{L}}(\mathfrak{x}) = (\mathfrak{int}_{\mathscr{L}}(\mathfrak{x}^c))^c = (\vee \{\mathfrak{a} \in L | \mathfrak{a} < \mathfrak{x}^c \})^c = \wedge \{\mathfrak{a} \in \mathscr{L} | \mathfrak{a} > \mathfrak{x} \}.$

Example 6. Let $\mathcal{L} = M_3 = 1 \oplus \overline{3} \oplus 1$ be shown in Figure 7. Then, $\inf_{\mathcal{L}}(\mathfrak{a}) = \vee \{0\} = \{0\}$, $\inf_{\mathcal{L}}(\mathfrak{b}) = \{0\}$, $\inf_{\mathcal{L}}(\mathfrak{c}) = \{0\}$, $\operatorname{cl}_{\mathcal{L}}(\mathfrak{a}) = \wedge \{1\} = \{1\}$, $\operatorname{cl}_{\mathcal{L}}(\mathfrak{b}) = \operatorname{cl}_{\mathcal{L}}(\mathfrak{c}) = \{1\}$, $\inf_{\mathcal{L}}(0) = \operatorname{cl}_{\mathcal{L}}(0) = \{0\}$ and $\inf_{\mathcal{L}}\{1\} = \operatorname{cl}_{\mathcal{L}}\{1\} = \{1\}$.

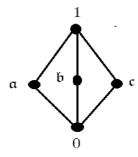


Fig. 7: Interior and closure operators on a lattice.

Definition 15. The lower and upper preapproximation of $\mathfrak{a} \in \mathcal{L}$ is

$$\frac{\mathfrak{apr}_{\Omega_p}(\mathfrak{a})=\mathfrak{int}_{\mathscr{L}}(\mathfrak{a})=\vee\{\mathfrak{a}\in\mathscr{L}|\mathfrak{a}<\mathfrak{x}\ \},}{\overline{\mathfrak{apr}}_{\Omega_p}(\mathfrak{a})=\mathfrak{cl}_{\mathscr{L}}(\mathfrak{a})=\wedge\{\mathfrak{a}\in\mathscr{L}|\mathfrak{a}>\mathfrak{x}\}),\ respectively.}$$

 $\begin{array}{lll} \textit{Example 7.} & \text{In Figure 8, let } \mathfrak{U} = \{1,2,3\} \text{ and } \mathscr{L} = \{\mathscr{P}(\mathfrak{U}), \subseteq) \text{ be the house diagram lattice. Then,} \\ & \underline{\operatorname{apt}}_{\Omega_p}(\{1\}) = \phi, \ \overline{\operatorname{apt}}_{\Omega_p}(\{1\}) = \{1\}, \ \underline{\operatorname{apt}}_{\Omega_p}(\{2\}) = \phi, \\ & \overline{\operatorname{apt}}_{\Omega_p}(\{2\}) = \{2\}, \underline{\operatorname{apt}}_{\Omega_p}(\{3\}) = \phi, \ \overline{\operatorname{apt}}_{\Omega_p}(\{3\}) = \{3\}, \\ & \underline{\operatorname{apt}}_{\Omega_p}(\{1,2\}) = \{1,2\}, \quad \overline{\operatorname{apt}}_{\Omega_p}(\{1,2\}) = \mathfrak{U}, \\ & \underline{\operatorname{apt}}_{\Omega_p}(\{1,3\}) = \{1,3\}, \quad \overline{\operatorname{apt}}_{\Omega_p}(\{1,3\}) = \mathfrak{U}, \\ & \underline{\operatorname{apt}}_{\Omega_p}(\{2,3\}) = \{2,3\}, \quad \overline{\operatorname{apt}}_{\Omega_p}(\{2,3\}) = \mathfrak{U}, \\ & \underline{\operatorname{apt}}_{\Omega_p}(\{\phi\}) = \phi \text{ and } \underline{\operatorname{apt}}_{\Omega_p}(\mathfrak{U}) = \overline{\operatorname{apt}}_{\Omega_p}(\mathfrak{U}) = \mathfrak{U}. \end{array}$

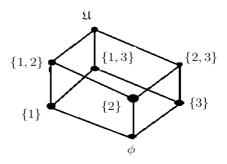


Fig. 8: A house diagram lattice.

Definition 16. $\mathfrak{a} \in \mathcal{L}$ is called to be preexact if $\underline{\mathfrak{apr}}_{\Omega_p}(\mathfrak{a}) = \overline{\mathfrak{apr}}_{\Omega_p}(\mathfrak{a})$. Otherwise, it is called prerough.

Example 8. In a lattice in Figure 8 and Example 4, ϕ and \mathfrak{U} are preexact elements. Other elements are prerough.

Remark 9. From Definition 12,

- (i) if $\underline{\mathfrak{apr}}_{\Omega}(X) = \underline{\mathfrak{apr}}_{\Omega}(Y)$, then each set in $\mathcal L$ is preopen. (ii) if $\overline{\mathfrak{apr}}_{\Omega}(X) = \overline{\mathfrak{apr}}_{\Omega}(Y)$, then each set in $\mathcal L$ is preclosed.
- (ii) if $\underset{\Omega}{\operatorname{apt}}_{\Omega}(X) = \underset{\Omega}{\operatorname{apt}}_{\Omega}(Y)$ and $\underset{\Omega}{\overline{\operatorname{apt}}}_{\Omega}(X) = \underset{\Omega}{\overline{\operatorname{apt}}}_{\Omega}(Y)$, then each set in $\mathscr L$ is both preopen and preclosed. Moreover, all elements of lattices are preexact.

Lemma 4. Let \mathcal{L} be a complete Boolean lattice. Then, for any $\mathfrak{x}, \mathfrak{y} \in \mathcal{L}$

- (i) $\underline{\mathfrak{apr}}_{\Omega_p}(0) = \overline{\mathfrak{apr}}_{\Omega_p}(0) = 0$ and $\underline{\mathfrak{apr}}_{\Omega_p}(1) = \overline{\mathfrak{apr}}_{\Omega_p}(1) = 1$.
- $(ii) \ \ \underline{\mathfrak{apr}}_{\Omega_p}(\mathfrak{x}) \leq \mathfrak{x} \leq \overline{\mathfrak{apr}}_{\Omega_p}(\mathfrak{x}).$
- (iii) If $\mathfrak{x} \leq \mathfrak{y}$, then $\underline{\mathfrak{apr}}_{\Omega_n}(\mathfrak{x}) \leq \underline{\mathfrak{apr}}_{\Omega_n}(\mathfrak{y})$.

Proof. (i) Since 0 is the least element in \mathscr{L} , then the $\underline{\mathfrak{apr}}_{\Omega_p}(0)=0$. Also, since $\overline{\mathfrak{apr}}_{\Omega_p}(0)=\wedge\{\mathfrak{a}\in\mathscr{L}:\mathfrak{a}>0\}=0$, then $\overline{\mathfrak{apr}}_{\Omega_p}(0)=0$. The second part of (i) have the same manner.

- (ii) Let $\alpha \in \underbrace{\mathfrak{apr}_{\Omega_p}}(\mathfrak{x})$. Then, $\alpha \in \vee \{\mathfrak{a} \in \mathscr{L} : \mathfrak{a} < \mathfrak{x}\}$. Thus, $\exists \ \mathfrak{a}_0 \in \mathscr{L} \ \text{s.t.} \ \alpha \leq \mathfrak{a}_0$, but $\mathfrak{a}_0 < x$ and so $\alpha \leq \mathfrak{x}$. Hence, $\underbrace{\mathfrak{apr}_{\Omega_p}}(\mathfrak{x}) \leq \mathfrak{x}$. Also, since $\overline{\mathfrak{apr}_{\Omega_p}}(\mathfrak{x}) = \wedge \{\mathfrak{a} \in \mathscr{L} : \mathfrak{a} > \mathfrak{x}\}$, then $\mathfrak{x} < \mathfrak{a}$, $\forall \ \mathfrak{a} \in \mathscr{L}$. Therefore, $\mathfrak{x} \leq \wedge \{\mathfrak{a} \in \mathscr{L} : \mathfrak{a} > \mathfrak{x}\} = \overline{\mathfrak{apr}_{\Omega_p}}(\mathfrak{x})$. Hence, $\mathfrak{x} \leq \overline{\mathfrak{apr}_{\Omega_p}}(\mathfrak{x})$.
- (iii) Let $\mathfrak{x} \leq \mathfrak{y}$. Then, $\underline{\operatorname{apr}}_{\Omega_p}(\mathfrak{x}) = \bigvee \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} < \mathfrak{x} \}$, but $\mathfrak{x} < \mathfrak{y}$. Then, $\wedge \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} < \mathfrak{x} \} \leq \wedge \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} < \mathfrak{y} \}$. Therefore, $\underline{\operatorname{apr}}_{\Omega_p}(\mathfrak{x}) \leq \underline{\operatorname{apr}}_{\Omega_p}(\mathfrak{y})$. Also, $\overline{\operatorname{apr}}_{\Omega_p}(\mathfrak{y}) = \wedge \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} > \mathfrak{y} \}$, but $\mathfrak{x} < \mathfrak{y}$, and so $\wedge \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} > \mathfrak{y} \} \geq \wedge \{ \mathfrak{a} \in \mathscr{L} : \mathfrak{a} > \mathfrak{y} \}$. Hence, $\overline{\operatorname{apr}}_{\Omega_p}(\mathfrak{y}) \geq \overline{\operatorname{apr}}_{\Omega_p}(\mathfrak{x})$. By Proposition 7, it is noted that the $\underline{\operatorname{apr}}_{\Omega_p}$ and $\overline{\operatorname{apr}}_{\Omega_p}$ are order preserving, $\forall A \subseteq \mathscr{L}$, since $\underline{\operatorname{apr}}_{\Omega_p}(A) = \{ \underline{\operatorname{apr}}_{\Omega_p}(\mathfrak{x}) : \mathfrak{x} \in A \}$ and $\overline{\operatorname{apr}}_{\Omega_p}(A) = \{ \overline{\operatorname{apr}}_{\Omega_p}(\mathfrak{x}) : \mathfrak{x} \in A \}$.

Proposition 9. Let \mathcal{B} be a complete Boolean lattice. Then, (i) $\forall \overline{\mathfrak{apr}}_{\Omega_p}(\mathcal{S}) = \overline{\mathfrak{apr}}_{\Omega_p}(\forall \mathcal{S}), \ \forall \, \mathcal{S} \subseteq \mathcal{B},$

$$(ii) \ \wedge \underline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}) = \underline{\mathfrak{apr}}_{\Omega_p}(\wedge \mathscr{S}) \ \forall \ \mathscr{S} \subseteq \mathscr{B}.$$

 $\begin{array}{lll} \textit{Proof.} & \text{(i)} & \text{Firstly, let } \mathscr{S} \subseteq \mathscr{B}. \text{ A function } \overline{\mathfrak{apr}}_{\Omega_p} : \mathscr{B} \to \mathscr{B} \text{ is in order preserving, since } \mathscr{S} \leq \vee \mathscr{S}. \text{ Thus, } \\ \overline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}) \subseteq \overline{\mathfrak{apr}}_{\Omega_p} \ (\vee \mathscr{S}), \text{ and so } \vee \overline{\mathfrak{apr}}_{\Omega_p} \ (\mathscr{S}) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(\vee \mathscr{S}). \\ \text{On the other hand, } \overline{\mathfrak{apr}}_{\Omega_p}(\vee \mathscr{S}) = \wedge \{\alpha \in \mathscr{B} : \alpha > \nu\}\} = \wedge \{\alpha \in \mathscr{B} : \alpha > \nu\}\} = \vee \{\Lambda \{\alpha \in \mathscr{B} : \alpha > \nu\}\} = \vee \{\overline{\mathfrak{apr}}_{\Omega_p}(x) : x \in \mathscr{S}\} = \vee \overline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \text{Therefore, } \overline{\mathfrak{apr}}_{\Omega_p}(\vee \mathscr{S}) = \vee \overline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \text{(ii)} & \text{Let } \mathscr{S} \subseteq \mathscr{B} \text{ and a map } \underline{\mathfrak{apr}}_{\Omega_p} : \mathscr{B} \to \mathscr{B} \text{ be preserving. Since } \wedge \mathscr{S} \leq \mathscr{S}, \ \forall \ \mathscr{S} \subseteq \mathscr{B}, \ \text{then } \underline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \text{On the other hand, } \underline{\mathfrak{apr}}_{\Omega_p}(\wedge \mathscr{S}) \leq \underline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \text{On the other hand, } \underline{\mathfrak{apr}}_{\Omega_p} \ (\wedge \mathscr{S}) = \vee \{\alpha \in \mathscr{B} : \alpha < \wedge \mathscr{S}\} \\ \geq \vee \{\bigcap_{x \in \mathscr{S}} \{\alpha \in \mathscr{B} : \alpha < x\}\} = \bigwedge_{x \in \mathscr{S}} \{\vee \{\alpha \in \mathscr{B} : \alpha < x\}\} \\ = \wedge \{\underline{\mathfrak{apr}}_{\Omega_p}(x), x \in \mathscr{S}\} = \wedge \underline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \text{Therefore, } \underline{\mathfrak{apr}}_{\Omega_p}(\mathscr{S}). \\ \end{array}$

Definition 17. Let a,b be two elements in \mathcal{L} . Define (i) $a \leq b$ if $\underline{\mathfrak{apr}}_{\Omega}(a) \subseteq \underline{\mathfrak{apr}}_{\Omega}(b)$ and $\leq b$ is called rough bottom order.

- (ii) $a \preceq b$ if if $\overline{\mathfrak{apr}}_{\Omega}(a) \subseteq \overline{\mathfrak{apr}}_{\Omega}(b)$ and \preceq is called rough top order.
- $\begin{array}{ll} (iii) \ a = b \ if \ \underset{\Omega}{\operatorname{apt}}_{\Omega}(a) \subseteq \underset{\Gamma}{\operatorname{apt}}_{\Omega}(b) \ and \ \overline{\operatorname{apt}}_{\Omega}(a) \subseteq \overline{\operatorname{apt}}_{\Omega}(b), \\ and = is \ called \ rough \ order. \end{array}$
- (iv) $a \preccurlyeq_p b$ if $\underline{\mathfrak{apr}}_{\Omega_p}(a) \subseteq \underline{\mathfrak{apr}}_{\Omega_p}(b)$ and \preccurlyeq_p is called prerough bottom order.
- (v) $a \curlyeqprec_p b$ if $\overline{\mathfrak{apr}}_{\Omega_p}(a) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(b)$ and \curlyeqprec_p is called prerough top order.
- (vi) $a =_p b$ if $\underbrace{\mathfrak{apr}}_{\Omega_p}(a) \subseteq \underbrace{\mathfrak{apr}}_{\Omega_p}(b)$ and $\overline{\mathfrak{apr}}_{\Omega_p}(a) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(b)$, and $=_p$ is called prerough order.

Proposition 10. *Let* (B,\subseteq) *be a complete Boolean lattice. Then, the following hold*

- (i) Each of $(\mathcal{P}(B), \wedge)$ and $(\mathcal{P}(B), \vee)$ is a complete lattice.
- (ii) A relation \simeq (resp. $\overline{\sim}$) of a map $\underline{\mathfrak{apr}}_{\Omega}$ (resp. $\overline{\mathfrak{apr}}_{\Omega}$): $B \to B$ is a congruence on (B, \wedge) (resp. (B, \vee)).

Proof. (i) Follows by Proposition 9 (i) and (ii).

(ii) It is seen that \simeq is an equivalence on B. If $a,b,c,d \in B$ and assume that $a \simeq b$ and $c \simeq d$, then $\underset{\Omega}{\operatorname{apt}}_{\Omega}(a \wedge c) = \underset{\Omega}{\operatorname{apt}}_{\Omega}(a) \wedge \underset{\Omega}{\operatorname{apt}}_{\Omega}(c) = \underset{\Omega}{\operatorname{apt}}_{\Omega}(b) \wedge \underset{\Omega}{\operatorname{apt}}_{\Omega}(d) = \underset{\Omega}{\operatorname{apt}}_{\Omega}(b \wedge d)$. Thus, \simeq is a congruence on (B, \wedge) . $\overline{\sim}$ has a similar proof.

Remark 10. The proofs of Propositions 9, 10 and 7 are true on topological lattices which are generated by preinterior or preclosure operators \mathcal{L} .

Definition 18. Let 0 be the least in \mathcal{L} . \mathfrak{a} is an atom in \mathcal{L} if $0 < \mathfrak{a}$ and the class of atoms is named $\mathscr{A}(\mathcal{L})$. \mathcal{L} is called atomic if $\forall \ \mathfrak{x} \in \mathcal{L}$ is a spermium of all atoms. The pair $(\mathscr{P}(\mathfrak{U}), \subseteq)$ is a complete atomic Boolean lattice in which each atom can be approached to an element of \mathfrak{U} . The map $\varphi: \mathfrak{U} \to \mathscr{P}(\mathfrak{U})$ with $\mathfrak{x} \to [\mathfrak{x}]_{\approx}$ is called rough equality and also has $\varphi: \mathscr{A}(B) \to B$, where $B = (\mathscr{P}(\mathfrak{U}), \subseteq)$.

Example 9. Let $B = \{0, \mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}, \mathfrak{e}, \mathfrak{f}, 1\}$ with an ordered relation \leq in Figure 9. The atom set is $\{\mathfrak{a}, \mathfrak{b}, \mathfrak{c}\}$. Let φ : $\mathscr{A}(B) \to B$ be $\varphi(\mathfrak{a}) = \mathfrak{d}$, $\varphi(\mathfrak{b}) = \mathfrak{b}$ and $\varphi(\mathfrak{c}) = \mathfrak{f}$. The approximations are in Table 3. The duality order isomorphic sets (B, \subseteq) and (B, \prec) are in Figure 10.

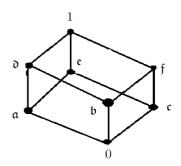


Fig. 9: Complete atomic Boolean lattice.

Table 3: Atoms of a complete atomic Boolean lattice for \mathcal{B}

х	$\underline{\mathfrak{apr}}_{Q}(x)$	$\overline{\mathfrak{apr}}_{\Omega}(x)$
0	0	0
a	0	a
\mathfrak{b}	в	$\mathfrak{a} \vee \mathfrak{b} \vee \mathfrak{c} = 1$
c	0	c
ð	$\mathfrak{a}\vee\mathfrak{b}=\mathfrak{d}$	$\mathfrak{a} \vee \mathfrak{b} \vee \mathfrak{c} = 1$
e	0	$\mathfrak{a} \vee \mathfrak{c} = \mathfrak{e}$
f	$\mathfrak{b}\vee\mathfrak{c}=\mathfrak{f}$	$\mathfrak{a} \vee \mathfrak{b} \vee \mathfrak{c} = 1$
1	$\mathfrak{a} \vee \mathfrak{b} \vee \mathfrak{c} = 1$	$\mathfrak{a} \vee \mathfrak{b} \vee \mathfrak{c} = 1$

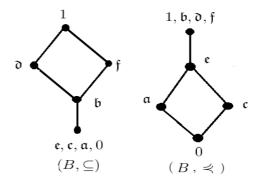


Fig. 10: Duality order isomorphic sets.

Remark 11. If our approach is used to determine lower and the upper approximations, then the results are given in

Table 4. The duality order isomorphisms (B, \subseteq) *and* (B, \preceq) *illustrate in Figure 11.*

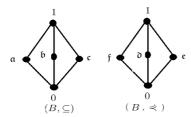


Fig. 11: Duality order isomorphic sets by another approach.

Table 4: Duality order isomorphic sets by another approach

X	$\operatorname{\mathfrak{apr}}_{\Omega}(x)$	$\overline{\mathfrak{apr}}_{\Omega}(x)$
0	0	0
a	0	a
b	0	в
с	0	c
ð	д	1
e	e	1
f	f	1
1	1	1

In the following, the representation of closure is given for matroids that is induced by complete Boolean lattices using the fact in Remark 12.

Remark 12. In [29], researchers proved that a lattice is a Boolean lattice if it is the open and closed set lattice of matroids. A lattice is a Boolean lattice if it is only closed set lattice of matroids.

Lemma 5. Let Ω_p is either reflexive or transitive. Then, $\overline{\operatorname{apr}}_{\Omega_p}^{n+1}(X) = \overline{\operatorname{apr}}_{\Omega_p}^n(X)$ and $\underline{\operatorname{apr}}_{\Omega_p}^{n+1}(X) = \underline{\operatorname{apr}}_{\Omega_p}^n(X)$, $\forall X \in \mathscr{P}(\mathfrak{U})$.

Proof. Firstly, using Proposition 5, we prove that $\overline{\operatorname{apr}}_{\Omega_p}^{n+1}(X) = \overline{\operatorname{apr}}_{\Omega_p}^n(X), \ \forall \ X \in \mathscr{P}(\mathfrak{U}). \ \text{Since} \ \Omega_p \ \text{is}$ reflexive, then by Proposition 4(ii), $X \subseteq \overline{\operatorname{apr}}_{\Omega_p}(X). \ \text{By}$ Proposition 4(i), $X \subseteq \overline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^2(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^2(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^n(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^n(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^n(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^n(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^k(X).$ Choose at least $k \leq n$ s.t. $X \subseteq \overline{\operatorname{apr}}_{\Omega_p}(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^k(X) \subseteq \overline{\operatorname{apr}}_{\Omega_p}^{k+1}(X),$ Therefore, $|\overline{\operatorname{apr}}_{\Omega_p}^k(X)| \subseteq \overline{\operatorname{apr}}_{\Omega_p}^{k+1}(X),$ and so

on. By induction for $k \leq n$, $\overline{\mathfrak{apr}}_{\Omega_p}^{n+1}(X) = \overline{\mathfrak{apr}}_{\Omega_p}^n(X)$. Secondly, Since Ω_p is transitive and by Proposition 4(ii), then it is sufficient to show that $\overline{\mathfrak{apr}}_{\Omega_p}^{n+1}(X) = \overline{\mathfrak{apr}}_{\Omega_p}^n(X), \forall$ $X \in \mathscr{P}(\mathfrak{U}).$ Since $\overline{\mathfrak{apr}}_{\Omega_n}$ $(\overline{\mathfrak{apr}}_{\Omega_n}(X)) =$ $\overline{\mathfrak{apr}}_{\Omega_p}^2(X) \subseteq \overline{\mathfrak{apr}}_{\Omega_p}(X)$. By Proposition 4(i), $\cdots \subseteq$ $\overline{\operatorname{\mathfrak{apr}}}_{\Omega_p}^{n'}(X)\subseteq\overline{\operatorname{\mathfrak{apr}}}_{\Omega_p}^{n-1}(X)\subseteq\cdots\subseteq\overline{\operatorname{\mathfrak{apr}}}_{\Omega_p}^3(X)\subseteq\overline{\operatorname{\mathfrak{apr}}}_{\Omega_p}^2(X)\subseteq$ $\overline{\mathfrak{apr}}_{\Omega_n}^1(X)$. Since $|\mathfrak{U}|=n$, then \exists a $k\in\mathbb{N}$ s.t. $\overline{\mathfrak{apr}}_{\Omega_n}^{k+1}(X)=$ $\overline{\mathfrak{apr}}_{\Omega_p}^k(X)$. Choose at least $k \leq n$ s.t. $\overline{\mathfrak{apr}}_{\Omega_p}^{k+1}(X) =$ $\overline{\mathfrak{apr}}_{\Omega_p}^k(X)\subseteq \overline{\mathfrak{apr}}_{\Omega_p}(X)\subseteq \cdots\subseteq \overline{\mathfrak{apr}}_{\Omega_p}^3(X)\subseteq \overline{\mathfrak{apr}}_{\Omega_p}^2(X)\subseteq$ $\overline{\mathfrak{apr}}_{\Omega_n}^1(X)$. If $\overline{\mathfrak{apr}}_{\Omega_n}(X) = \mathfrak{U}$, then $\overline{\mathfrak{apr}}_{\Omega_n}^2(X) =$ $\overline{\mathfrak{apr}}_{\Omega_n}(X) = \mathfrak{U}$. Take $k = 1 \leq |\mathfrak{U}| = n$. Otherwise, if $\overline{\mathfrak{apr}}_{\Omega_n}(X) \neq \mathfrak{U}$, then $|\overline{\mathfrak{apr}}_{\Omega_n}(X)| \leq |\mathfrak{U}| = n$ and also $k-1 \leq |\overline{\mathfrak{apr}}_{\Omega_p}(X)|$. Therefore, $k-1 \leq |\overline{\mathfrak{apr}}_{\Omega_p}(X)| <$ $|\mathfrak{U}| = n$, that is $k \leq n$ and so $\exists k \in \mathbb{N}$ with $k \leq n$ s.t. $\overline{\mathfrak{apr}}_{\Omega_p}^{k+1}(X) = \overline{\mathfrak{apr}}_{\Omega_p}^k(X)$. By a successive of the iteration, $\overline{\mathfrak{apr}}_{\Omega_p}^{k+2}(X) = \overline{\mathfrak{apr}}_{\Omega_p}^{k+1}(X), \ \overline{\mathfrak{apr}}_{\Omega_p}^{k+3}(X) = \overline{\mathfrak{apr}}_{\Omega_p}^{k+2}(X) \ \text{and so}$ on. By induction for $k \le n$, $\overline{\mathfrak{apr}}_{\Omega_n}^{n+1}(X) = \overline{\mathfrak{apr}}_{\Omega_n}^n(X)$.

It is directly deduce Corollary 3 from a successive of iteration $\overline{\mathfrak{apr}}_{\Omega_n}$.

Corollary 3. Let Ω_p is either reflexive or transitive. Then, $\forall m \geq n \text{ and } X \subseteq \mathfrak{U}, \ \overline{\mathfrak{apr}}_{\Omega_p}^m(X) = \overline{\mathfrak{apr}}_{\Omega_p}^n(X) \text{ and } \underline{\mathfrak{apr}}_{\Omega_p}^m(X) = \underline{\mathfrak{apr}}_{\Omega_p}^n(X).$

Proposition 11. If (\mathfrak{U}, Ω_p) and $k \in \mathbb{N}$, $k \geq 1$, then $P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p}) \subseteq {\overline{\mathfrak{apr}}_{\Omega_p}^k(X) : X \in \mathscr{P}(\mathfrak{U})}$ and $P\mathscr{D}(\underline{\mathfrak{apr}}_{\Omega_p}) \subseteq {\underline{\mathfrak{apr}}_{\Omega_p}^k(X) : X \in \mathscr{P}(\mathfrak{U})}$.

Proof. By a definition of $P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$, if $\forall A \in P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$, then $\overline{\mathfrak{apr}}_{\Omega_p}(A) = A$. By Lemma 1, $A = \overline{\mathfrak{apr}}_{\Omega_p}^k(A) \in \{\overline{\mathfrak{apr}}_{\Omega_p}^k(X) : X \in \mathscr{P}(\mathfrak{U})\}$ and so $P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p}) \subseteq \{\overline{\mathfrak{apr}}_{\Omega_p}^k(X) : X \in \mathscr{P}(\mathfrak{U})\}$. Using the duality, the second part is hold.

Theorem 13. Let Ω_p is either reflexive or transitive. Then, $P\mathscr{D}(\overline{\operatorname{apr}}_{\Omega_p}) = {\overline{\operatorname{apr}}_{\Omega_p}^n(X) : X \in \mathscr{P}(\mathfrak{U})}$ and $P\mathscr{D}(\underline{\operatorname{apr}}_{\Omega_p}) = {\underline{\operatorname{apr}}_{\Omega_p}^n(X) : X \in \mathscr{P}(\mathfrak{U})}$

Proof. For Ω_p is reflexive and $X \in \mathscr{P}(\mathfrak{U})$, take $A = \overline{\mathfrak{apr}}_{\Omega_p}^n(X)$, by Lemma 5, $\overline{\mathfrak{apr}}_{\Omega_p}(A) = A$. Thus, $\overline{\mathfrak{apr}}_{\Omega_p}^n(X) = A \in P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$. This gives $\{\overline{\mathfrak{apr}}_{\Omega_p}^n(X) : X \in \mathscr{P}(\mathfrak{U})\} \subseteq P\mathscr{D}(\overline{\mathfrak{apr}}_{\Omega_p})$. The other side is cleared by Proposition 11. Also, for Ω_p is transitive, the proof is straightforward from Lemma 5 and Proposition 11.

Proposition 12. Let Ω_p is reflexive and $P\mathcal{D}$ $(\underline{\mathfrak{apr}}_{\Omega_p})$ is lattice matroidal closed sets of \mathcal{M} , then $\underline{\mathfrak{apr}}_{\Omega_p}^n = \mathfrak{cl}_{\mathcal{M}}$.

Proof. By Theorem 13, we have $\overline{\operatorname{apr}}_{\Omega_p}^n(X) \in P\mathscr{D}(\overline{\operatorname{apr}}_{\Omega_p})$. So, $\overline{\operatorname{apr}}_{\Omega_p}^n(X)$ is a closed set of \mathscr{M} and so $\overline{\operatorname{apr}}_{\Omega_p}^n(X)$

 $\begin{array}{l} \bigcap \mathfrak{cl}_{\mathscr{M}}(X) \text{ is a closed set of } \mathscr{M}. \text{ Therefore, } \overline{\operatorname{apr}_{\Omega_p}^n}(X) \\ \bigcap \mathfrak{cl}_{\mathscr{M}}(X) \in P\mathscr{D}(\overline{\operatorname{apr}_{\Omega_p}}). \text{ By Theorem 13, } \exists \ A \subseteq \mathfrak{U} \text{ s.t.} \\ \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X) = \overline{\operatorname{apr}_{\Omega_p}^n}(A). \text{ From Propositions 2} \\ \text{and 5, } X \subseteq \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X). \text{ Also, } X \subseteq \overline{\operatorname{apr}_{\Omega_p}^n}(A). \\ \text{Thus, by Proposition 5 and Corollary 3, } \overline{\operatorname{apr}_{\Omega_p}^n}(X) \\ \subseteq \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X), \text{ that is, } \overline{\operatorname{apr}_{\Omega_p}^n}(A) = \overline{\operatorname{apr}_{\Omega_p}^n}(A) = \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X). \text{ Therefore, } \overline{\operatorname{apr}_{\Omega_p}^n}(X) \subseteq \mathfrak{cl}_{\mathscr{M}}(X). \text{ On the other hand, by Proposition 2, } \mathfrak{cl}_{\mathscr{M}}(X) \subseteq \mathfrak{cl}_{\mathscr{M}}(X). \text{ On the other hand, by Proposition 2, } \mathfrak{cl}_{\mathscr{M}}(X) \subseteq \mathfrak{cl}_{\mathscr{M}}(\overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X)). \text{ Since } \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X) \text{ is a closed set of } \\ \mathscr{M}, \text{ then } \mathfrak{cl}_{\mathscr{M}}(X) \subseteq \overline{\operatorname{apr}_{\Omega_p}^n}(X) \cap \mathfrak{cl}_{\mathscr{M}}(X) \text{ and so } \mathfrak{cl}_{\mathscr{M}}(X) \subseteq \overline{\operatorname{apr}_{\Omega_p}^n}(X). \text{ This is } \\ \operatorname{true, } \forall X \in \mathscr{P}(\mathfrak{U}) \text{ and so } \underline{\operatorname{apr}_{\Omega_p}^n} = \mathfrak{cl}_{\mathscr{M}}. \end{array}$

4 Conclusions

The mathematical sciences of topology [50], lattice [26], and rough sets [51,8] are concerned with all issues directly or indirectly linked to preapproximations. As a result, lattice theory, rough sets, and topological spaces became the most significant mathematica disciplines. In rough set theory, the aim of study is to extend the lower preapproximation of a nonempty set to itself and to intend the upper preapproximation to the set itself. This means that the boundary region will be empty. There are a modification for Li's study in [29] and proved that a lattice is Boolean if it is only closed set lattice of matroids. So, the value of k that satisfies $\overline{\operatorname{apr}}_{\Omega}^k \in P\mathscr{D}(\overline{\operatorname{apr}}_{\Omega_p})$ is determined and $\underline{\operatorname{apr}}_{\Omega}^k \in P\mathscr{D}(\overline{\operatorname{apr}}_{\Omega_p})$. We prove that $\underline{\operatorname{apr}}_{\Omega}^n$ is the closure of a matroid \mathscr{M} .

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments that improved this paper.

Conflict of interest

The authors declare that there is no conflict regarding the publication of this paper.

References

- [1] H. Whitney, On the abstract properties of linear dependence, *American Journal of Mathematics*, **57(3)**, 509–533, (1935).
- [2] J.E.Bonin, J.G.Oxley and B. Servatius. *Matroid Theory* (*Contemporary Mathematics*), American Mathematical Society, (1996).
- [3] H.Lai. *Matroid Theory*, Higher Education Press, Beijing, (2001).

- [4] X.Li and S.Liu, Matroidal approaches to rough set theory via closure operators, *International Journal of Approximate Reasoning*, **53**, 513–527, (2012).
- [5] J.G.Oxley. *Matroid Theory*, Oxford University Press, New York, (1992).
- [6] S.Wang and W.Zhu, Matroidal structure of coveringbased rough sets through the upper approximation number, *International Journal of Granular Computing, Rough Sets* and Intelligent Systems, 2, 141–148, (2011).
- [7] W.Zhu and S.Wang, Matroidal approaches to generalized rough sets based on relations, *International Journal of Machine Learning and Cybernetics*, **2**, 273–279, (2011).
- [8] Z.Pawlak. *Rough sets*, Theoretical Aspects of Reasoning About Data, Kluwer Acadmic Publishers Dordrecht, (1991).
- [9] M.Atef and A.A. El Atik, Some extensions of covering-based multigranulation fuzzy rough sets from new perspectives, *Soft Computing*, 25, 6633–6651, (2021).
- [10] G.L.Liu and W.Zhu, The algebraic structures of generalized rough set theory, *Information Sciences*, **178**, 4105–4113, (2008).
- [11] L.Vigneron and A.Wasilewska. Rough sets congruences and diagrams, R. Slowinski. 16th European Conference on Operational Research (EURO XVI), Session on Rough Sets, Brussels, Belgium, 1,(1998).
- [12] L.Vigneron and A.Wasilewska. Rough Sets based Proofs Visualisation, Dave, R. N. & Sudkamp, T. 18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS 99, invited session on Granular Computing and Rough Sets, 1999, New York, USA, IEEE, 805–808, (1999).
- [13] A.Wasilewska and L.Vigneron. *Rough diagrams*, T.Y. Lin. 6th International Workshop on Rough Sets, Data Mining & Granular Computing (RSDMGrC 98) at the 4th Joint Conference on Information Sciences, 1998, Research Triangle Park, NC, 4,(1998).
- [14] A. Wasilewska and L. Vigneron. Rough algebras & automated deduction, L. Polkowski & A. Skowron. Rough Sets in Knowledge Discovery, Springer Verlag, 261–275, (1998).
- [15] M.K.El-Bably and A.A.El Atik, Soft β-rough sets and their application to determine COVID-19, *Turkish Journal of Mathematics*, **45**, 1133–1148, (2021).
- [16] K.Hu, Y.Sui, Y.Lu, J.Wang and C.Shi. Concept approximation in concept lattice, Knowledge Discovery and Data Mining, Proceedings of the 5th Pacific-Asia Conference, PAKDD 2001, Lecture Notes in Computer Science, 2035, 167–173, (2001).
- [17] A.M.Kozae, A.A.El Atik and S.Haroun, More results on rough sets via neighborhoods of graphs with finite path, *Journal of Physics: Conference Series*, **1897(1)**, 012049, (2021)
- [18] M.Novotny and Z.Pawlak. Algebraic structures of rough sets, In W. Ziarko, editor, Rough Sets, Fuzzy Sets and Knowledge Discovery, workshops in computing, Springer Verlag, 242–247, (1994).
- [19] P.Pagliani and M.Chakraborty. A geometry of approximation, Springer, (2008).
- [20] A.Skowron and J.Stepaniuk, Tolerance approximation spaces, *Fundam. Inform.*, **27**, 245–253, (1996).
- [21] R.Slowinski and D.Vanderpooten, A generalized definition of rough approximations based on similarit, *IEEE Trans. Knowledge Data Eng.*, 12, 331–336, (2000).

- [22] Y.Y.Yao. Concept lattices in rough set theory, IEEE Annual Meeting of the Fuzzy Information, in Processing NAFIPS 04. IEEE, 796–801, (2004).
- [23] Y.Y.Yao and Y.Chen. Rough set approximations in formal concept analysis, Transactions on rough sets V. Springer, Berlin, Heidelberg, 285–305, (2006).
- [24] M.E.Abd El-Monsef. Studies on some pretopological concepts. Ph.D. thesis, Tanta University, Egypt, (1980).
- [25] Z.Yu and D.Wang, Accuracy of approximation operators during covering evolutions, *International Journal of Approximate Reasoning*, **117**, 1–14, (2020).
- [26] G.Birkhoff. Lattice theory, Third Edition, American Mathematical Society Colloquium Publications, Providence, Rhode Island, (1967).
- [27] B.A.Davey and H.A.Priestely. *Introduction to lattice and order*, Cambridge University Press, Cambridge, (1990).
- [28] G.Gediga and I.Düntsch. *Modal-style operators in qualitative data analysis*, in Proc. of the 2002 IEEE International Conference on Data Mining, 155–162, (2002).
- [29] X.Li, H.Yi and S.Liu, Rough sets and matroids from a lattice-theoretic viewpoint, *Information Sciences*, 342,37–52, (2016).
- [30] Y.Y.Yao. A comparative study of formal concept analysis and rough set theory in data analysis, International Conference on Rough Sets and Current Trends in Computing RSCTC 2004: Rough Sets and Current Trends in Computing,59–68. Springer-Verlag Berlin Heidelberg, (2004).
- [31] A.A.El Atik and A.S.Wahba, Topological approaches of graphs and their applications by neighborhood systems and rough sets, *Journal of Intelligent & Fuzzy Systems*, **39**(5), 6979–6992, (2020).
- [32] A.A.El Atik and A.A.Nasef, Some topological structures of fractals and their related graphs, *Filomat*, **34**(1), 1–24, (2020).
- [33] A. A. El Atik and H. Z. Hassan, Some nano topological structures via ideals and graphs, *Journal of the Egyptian Mathematical Society*, **28**(41), 1–21, (2020).
- [34] A.A.El Atik, A.W.Aboutahoun and A. Elsaid, Correct proof of the main result in (The number of spanning trees of a class of self-similar fractal models by Ma and Yao), *Information Processing Letters*, 170, 106117, (2021).
- [35] A.M.Kozae, A.A.El Atik, A.Elrokh and M.Atef, New types of graphs induced by topological spaces, *Journal of Intelligent & Fuzzy Systems*, 36(6), 5125–5134, (2019).
- [36] M.M.El-Sharkasy and S.M.Badr, Topological spaces via phenotype-genotype spaces, *International Journal of Biomathematics*, **9(4)**, 1650054, (2016).
- [37] M.M.El-Sharkasy and S.M.Badr, Modeling DNA and RNA mutation using mset and topology, *International Journal of Biomathematics*, 11(4), 1850058, (2018).
- [38] M.M.El-Sharkasy and M.Shokry, Separation axioms under crossover operator and its generalized, *International Journal* of *Biomathematics*, 9(4), 1650059, (2016).
- [39] S.I.Nada, A.A.El Atik and M. Atef, New types of topological structures via graphs, *Mathematical Methods in the Applied Sciences*, **41**, 5801–5810, (2018).
- [40] A.S.Nawar and A.A.El Atik, A model of a human heart via graph nano topological spaces, *International Journal of Biomathematics*, 12(1), 1950006, (2019).
- [41] M.Shokry and R.E.Aly, Topological properties on graph VS medical application in Human Heart, *International Journal of Applied Mathematics*, 15, 1103–1109, (2013).

- [42] A.A.El Atik, On some types of faint continuity, *Thai Journal of Mathematics*, **9(1)**, 83–93, (2011).
- [43] A.A.El Atik, Approximation of self similar fractals by α topological spaces, *Journal of Computational and Theoretical Nanoscience*, **13(11)**, 8776–8780, (2016).
- [44] A.A.El Atik, A.Nawar and M.Atef, Rough approximation models via graphs based on neighborhood Systems, *Granular Computing*, **6**, 1025–1035, (2021).
- [45] A.A.El Atik, I.K.Halfa and A.Azzam, Modelling pollution of radiation via topological minimal structures, *Transactions of A. Razmadze Mathematical Institute*, **175(1)**, 33–41, (2021).
- [46] M.Atef, A.A. El Atik and A.Nawar, Fuzzy topological structures via fuzzy graphs and their applications, *Soft Computing*, **25**,6013–6027, (2021).
- [47] A.S.Mashhour, I.A.Hasanein and S.N.El-Deeb, A note on semi-continuity and precontinuity, *Indian J. Pure Appl. Math.*, **13(10)**, 1119–1123, (1982).
- [48] Z.Wang, Q.Feng and H.Wang, The lattice and matroid representations of definable sets in generalized rough sets based on relations, *Information Sciences*, **485**, 505–520, (2019).
- [49] W.Zhu, Generalized rough sets based on relations, *Information Sciences*, **177**, 4997–5011, (2007).
- [50] C.Adams and R.Franzosa. *Introduction to topology pure and applied*, Pearson Education, Inc., Prentice Hall, (2008).
- [51] Z.Pawlak, Rough sets, International Journal of Information and Computer Sciences, II, 341–356, (1982).