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Abstract: In this paper, the inference about the parameters of a three-parameters Alpha power inverse Weibull (APIW) distribution
based on progressively type-1I censored sample is studied. The maximum likelihood estimates (MLEs) and Bayesian estimates are
obtained as point estimations for these parameters. Approximate confidence intervals (ACIs) for the unknown parameters. Moreover
Bayesian estimates are obtained for symmetric and asymmetric loss functions such as squared error, LINEX loss functions and general
entropy loss function. Gibbs within Metropolis—Hasting samplers procedure is applied for using Markov chain Monte Carlo (MCMC)
technique to obtain the Bayes estimates of the unknown parameters and the corresponding credible intervals (CRIs). Finally, a real data
set, which represents the failure of some components, is analyzed to illustrate the proposed methods and explicate the precision of the
estimators.

Keywords: Alpha power inverse Weibull distribution; progressive type II censoring data; Maximum Likelihood estimator; Bayes
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1 Introduction

Ball bearing data is one of the most frequently used data sets in literature for explain the application of life time
distribution. Manufactures study the cause of failure of ball bearing such as lubrication failure, contamination, improper
mounting, misalignment, false brinelling, corrosion, electrical damage, fatigue, over heating, excessive loads, improper
storage and handling and fit. Several of the large industrialists have recently collect their test data in mutual effort to set
up uniform and standardlized ball-bearing application formulas, which would benefit the many users of anti fraction
bearing [7]. For this reason, the progressive type II censored date was used to fix the failure quickly. In life testing and
reliability studies the experimenters not always obtain the compelete information on failure time for all experimental
units data obtain from such experiments are called censored data [8]. A progressive type-II right-censored sample was
considered here. The ordered failure times arising from a progressively type-II right-censored sample are called
progressively type-II right- censored order statistics. The method allows to save time and cost to the experimenters.
Suppose that n independent items are put on a life test with identically distributed failure times Xj,Xp,......... X
Suppose further that a censoring scheme (R, Ry, ........ ,Ry) is previously fixed such that following the first failure X;,R;
surviving items are removed from the experiment at random, and following the second failure X5, R, items are removed
from the experiment at random. This process continues untile at the time of the m " observed failure X,,, the remaining
R, surviving itemes are removed from the test. The m ordered observed failure times right censoring denoted by Xi.., »

Xoomen s - - - » X are called progressively type-II right censored order statistics of size m from a sample of size n with
progressive censoring scheme (R, Rz, .....Ry). It is clear that n = m+ Y | R; . The special case of conventional type-II
right censoring sampling also when Ry = Ry = ... = R,, = 0. So that m = n, the progressively type II right censoring

scheme reduces to the case of no censoring (ordinary order statistics). For more information about progressive censoring,
we refer the reader to [1,2]and [3]. In this paper, the three-parameter alpha power inverse Weibull (APIW) distribution
proposed by [4] is considered as a good model for the failure times of ball bearing.
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The random variable X has a modified extended exponential distribution if its probability density function (PDF) and
cumulative and cumulative distribution function (CDF) are given by

e*leﬁ

F(x,oB,A)= o " "' o 4qx a,4,B>0. M

a—1

and

Flr,oBA) = lorey g (Bt AP e P g sy g2 B> 0. 2)

[4] discussed statistical properties for the APIW. Also, they investigated the maximum likelihood estimators of the
unknown parameters and its asymptotic confidence intervals based on complete data.

Let Xiumns Xoumny ooy Xmmns 1 <m < n be a progressively type-II censored sample observed from a lifetime test
involving n units taken from a APIW(a, B,A) distribution and Ry, R», .....R,, being the censoring scheme. The joint PDF
of a progressively type-II censored sample is given by

m
f(xl:m:mXZ:m:m ----axm:m:n) = CHf (xi:m:n) [] - F(x,-:m:n)]Ri ) 3)
i=1

where C is a constant defined as

C=n(n—ri—1)-(n— ¥ (ri+1)), (sce [3] for details).

The rest of paper is organized as follows: in Section 2, MLEs of , 8 and A are obtained. Bayes estimates for the
unknown parameters and functions are also obtained in section 3 for different loss functions such as SEL, LINEX and
GEL loss functions. Finally real data set has been analyzed in Section 4.

2 Maximum-likelihood Estimation

This section discuss the procedures of obtaining the maximum likelihood estimates of the parameters @, 8 and A based on
progressively type-II censoring data. Both point and interval estimations of the parameters are derived. Suppose that X =
X s X2y ceveneees Xm:m:n @ progressively type-II censored sample drawn from alpha power inverse Weibull distribution
whose pdf and cdf are given by (1) and (2), with the censoring scheme (R} Ry, ...... ,Rp). From ( ((1), ((2) and ((3), the
likelihood function is then given by:

m m 7ﬁ
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L=C (((X)——l)m sz (B+ ) i=1 oi=1 H(ﬁ)Rl H(l —a l)R: . 4)
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The log-likelihood function £ =1In L(¢t, B, A | x)without normalized constant is obtained from L as
¢ =mlog (loga)+m logA+m logP —m log(o— 1) —
L o
(B+1) Zlogx, le ﬁ—f—log Ze A% +;R,~ log(ﬁ)
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The normal equations can be obtained by taking the first partial derivatives of the log-likelihood function with respect
to the three paramerers and equating the first derivative equal zero we get the following normal equations:
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The asymptotic variances and covariances of the MLEs, &, ﬁ and i, are given by the entries of the inverse of the Fisher
information matrix [;; = E { — [826 () /dy; dy;] }, where i, j =1,2,3 andm= (y;,y2,y3) = (o, 8,1) . Unfortunately,
the exact closed forms for the above expectations are difficult to obtain. Therefore, the observed Fisher information matrix
Lj={- [826 (m) /Oy D] }.:i, which is obtained by dropping the expectation operator E, will be used to construct
confidence intervals (CIs) for the parameters. Hence, the observed information matrix is given by

L Y L B L
dg> ~JagB ~ Jaik
T _ 2%l 221 221
I=(a,B,A)= T OB~ op? ~ IPox ©)
L) B o/ B L )
dAda AP A% / (a=a,f=B.A=A)

Therefore,the asympotice variance- coveriance matrix [V] for the MLESs is obtained by inverting the observed information

~

matrix /(a, B,A) or equivalent

R Vm) cov(o,B) cov(er,A)
Vl=I=(a,B,1)= | cov(B,&) var(B) cov(B,A) (10)
cov(o,A) cov(B,A) var(R) @pi)
It is well known that under some regularity conditions, see [6], (&, B , z)is approximately distributed as multivariate
normal with mean (&, 8, A) and coveriance matrix I~ !(&, B, A). Thus, the (I —7) 100 % approximate confidence
intervals (ACIs) for a, 3 and A can be given by

(@+Zy\/var(a)), (B+751/var(B)) and (A +Zy\/var (%)) (11)

where Z 7 is the percentile o standard normal distribution with right-tail probability %’ .

3 Bayes Estimation

The Bayesian approach deals with the parameters as random and uncertainties on the parameters are described by a joint
prior distribution, which is developed before the collected failure data. The ability of incorporating prior knowledge in the
analysis makes the Bayesian approach very helpful in the reliability analysis because one of the main challenges associated
with the reliability analysis is the limited availability of data[5]. Bayesian estimates of the unknown parameters o, § and
A against the SEL, LINEX and GEL loss functions. It is assumed here that the parameters o, 3 and A are independent
and follow the following prior distributions,

ﬂ](a) = éva >Oa
m(B) = 5.B >0, (12)
7[3()L) = %71 >07

The posterior distribution of @, 8 and A denoted by 7*(ct, 3,A |x) can be obtained by combining the likelihood function
(4) with the priors (9) and it can be written as

L(e, B, A | x) m(a) m(B) m(4)

(o, B, A | x) = )
bf_ofbfL(oc,ﬁ,l | x) m(at) m(B) m3(A) da dP dA

13)

A commonly used loss function is the SEL, which is symmetrical loss function that assigns equal losses to over
estimation and underestimation. If ¢ is the parameter to be estimated by an estimator ¢, then the square error loss function
is defined as

~9)°, (14)
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Therefore, the Bayes estimate of any function of o, and A, say g (o, 3,4) under the SEL function can be obtained
as

gABS(aaﬁaA’ |)_():Ea,ﬁ,ﬂ,‘)_((g(aaﬁaz’))a (]5)
where
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000

The LINEX loss function L(A) for a parameter ¢ is given by:

L(A):(eCA—cA—l),C7éO,A:qsfd), a7

Hence, under LINEX loss function, the Bayes estimate of a function g (¢, ,4) is

g1 (o, B | x) = —élog [E (e*“g“‘ﬁvl) | x)] e 40, (18)

Of(;fof (@B 1, (a0) 13 (B) 73 (A) L(ct, B, A | x)dodBdA

E (e—cg(a.,ﬁ,x) |,_() - — , (19)
Ofof({m (o) m(B) m3(A) L(et, B, A | x) dodBdA
Another useful a symmetric loss function is the General Entropy (GE) loss function:
Lo(9.9) < (9 / 9)* —q log(¢ /¢) 1, (20)
whose minimum occurs at ¢ = $ . The Bayes predictive estimate ijG of ¢ under GE loss is
On6 = (Edfo 7)) @ @
19 (@) m(B) 7 () L, B, A | x)dadBdA
E(lp7) 1 x) = 200 (22)
JJJmi(e) m(B) 73 (A) L, B,A | %) dodBdA
000

It is noticed that the ratio of multiple integrals in (16), (19) and (22) cannot be obtain in a explicit form. Thus,
the MCMC technique is used to generate samples from the joint posterior density function in (13). To implement the
MCMC technique, we consider the Gibbs within Metropolis—Hasting samplers procedure. From (13), the joint posterior
distribution can be written as

m m 7)(.*13
o ! Amlemfl(lna)m 2 inﬁ ye M m (B

7 (a,B,A | x)< m e =1 o=l X;
(=1 I
m ) m )Ll N
[T6=—" | TT0 - A (23)
i=1 i=1
The conditional posterior denisities of ¢, B and A can be written as
(Ina)™ et P\ a \'m g i
! A,x)oc ——— | ai=! — l—a¢ '~ 24
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It can be easily seen that the conditional posteriors of o, and A in equations (24),(25) and (26)do not present standard
forms, so Gibbs sampling is not a straightforward option, the use of the Metropolis—Hasting sampler is required for the
implementations MCMC technique. The algorithm of Metropolis—Hastings within Gibbs sampling is as follows:

(1)Start with initial guess (a(o),ﬁ(o),l(o)) .
(2)Set j = 1.
(3)Using the following M-H algorithm, generate o'/), () and A1) from 7} (Oc(j") | ﬁ(j"),),(j"),g()

, (ﬁ(j") | Oc(j),l(j"),);) and 7} (AU") | oc(j),ﬁ(j),;() with the normal proposal distributions

N (a<f*1>,var(a)) N (mf*l),mr(ﬁ)) and N (MFU,W(A)) ,
where var (&), var () and var (1) can be obtained from the main diagonal in inverse Fisher information matrix .
(4)Generate a proposal o* from N ((x(j’l),var((x)) , B* from N (B (j’l),var((x))
and 1* fromN (l(j’”,var(l)) .

(i)Evaluate the acceptance probabilities

. ﬂl*(a*‘ﬁ(jfl)’l(jfl)’,_()
Mo = min _17 7 (@ VBT AT D) |

L I 75 (B* e AU )

Np = mmn _1’ 73 (B DD 20D ) |
. n;(;t*\a(j)ﬁ(j)y)_()

M =min |1, 73 (AG D2l g0 x) |

(5) Generate a uy, uy and u3 from a Uniform (0, 1) distribution.
(1i)If u; < Mg, accept the proposal and set al) = a*, else set otl/) = i1,
(iv)If up < ng, accept the proposal and set BU) = B*, else set 1) = U1,
(WIf uz < M, ,accept the proposal and set A7) = 1*, else set 1 (/) = LU,
1.Set j=j+1.
(7)Repeat Steps (3) — (6), N times and obtain o), f0and 1) =1,2,...N.
(8)To compute the CRs of &, § and A,y | k=1,2,3, (1,2, ¥3) = (a, B, A)

as i) <y <y, then the 100(1— )% CRIs of  is

(‘I’k(zv 9/2)s Vk(N (1719/2))) .

In order to guarantee the convergence and to remove the affection of the selection of initial values, the first M simulated
varieties are discarded. Then the selected samples are y/,il) ,J=M+1,...N, for sufficiently large N.
Based on SEL function, the approximate Bayes estimates of Yy is given by

1 Ny (Jj)

- ()
Vo= = Mj:%"b : 27)

© 2019 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

86 %N = #YD. A. Ramadan, W. Magdy: Estimation of parameters of alpha power inverse Weibull distribution under progressive type-II censor

the approximate Bayes estimates for y, under LINEX loss function, from is

1 N

) D og |1 y e”"”] k=1,2,3. (28)

¥ = — log
c N—Mj:MH

the approximate Bayes estimates for y, under GE loss function, from is

1 N ‘ g
o= |—— oya| (29)
Yk [NMJ_;H( ) ]

4 Applications

In this section, the proposed estimation methods are applied to the failure data for a group of 23 the Acquisition of
resistance in guinea pigs infected with different doss of virulent tubercle bacilli [9]. The Kolmogorov Smirnov
(K-S)distance between the empirical distribution of failure data and CDF of APIW distribution is 0.093657.9 with
P —value equals 0.976227. Hence, the APIW distribution fits well to the given data. A progressive Type-II censored
sample of effective size m = 10 was randomly selected from 23 failure observations with progressive censored scheme
R=(7,6,0,0,0,0,0,0,0,0).

Table 1

Progressively Type-II failure data.

17.88 2892  33.00 4152 42.12  45.60
48.48 51.84 5196 54.12 5556  67.80
68.64 68.64 68.83 84.12 93.12 98.64
105.12 105.84 127.92 128.04 173.40

The MLEs of parameters based on Progressively Type-II failure data presented in Table 1 are obtained to be &, ﬁ
and A are displayed in Table 2. The Bayes estimates relative to both SEL, LINEX and GEL functions are computed, for
different values of the shape parameter ¢ of LINEX loss function and for different values of the shape parameter 47 of GEL
function for the parameters o, 8 and A4, and also displayed inTable 2

Table 2
Point estimates for the parameters ., and 7.
Parameters MLE SEL LINEX GEL
c=-2 c=2 h=-2 h=0.5 h=1
a 61.9061 80.8676 90.481 58.247  64.4884 64.4873 64.2942
B 2.66679 2.63195 2.63213 2.63177 2.68728 2.68717 2.68715
A 4429.67 5063.48 5782.16 3750.72  4992.99 4992.88 4988.91

The 95% ACIs and CRIs for the parameters o, and A are computed, the results are displayed in Table 3.

Table 3

95% ACIs and CRI of o, 3 and A.

Parameter MLE MCMC
a (—202.621,326.433) (59.6506,91.0517)
B (1.97782,3.35576)  (2.60769,2.65459)
A (—6048.17,14907.5)  (405.96,5683.37)

5 Conclusions

The purpose of this paper is to develope different method to estimate and construct confidence intervals for the parameters
of the Alpha power inverse Weibull distribution under progressive Type-II censored samples. The MLEs of the unknown
parameters are obtained and suggest different confidence intervals using asymptotic distributions .The Bayesian estimates

© 2019 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro. Lett. 6, No. 2, 81-87 (2019) / www.naturalspublishing.com/Journals.asp %Né =) 87

of the unknown parameters are also suggested. It is observed that the bayes estimators cannot be obtained in explicit form
so the MCMC technique was used. The theoretical results have been applied with the numerical example to illustrative
purposes. A comparison between the ACIs and the CRIs is provided for the estimated parameters through a simulated
example. It was found that the width of MCMC credible intervals is narrower than ACIs. We may judge that the Bayes
estimators obtained under MCMC method can be preferred.
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