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Abstract: In this study, we derive new analytic continuation formulas. Results concerning analytic continuation of hypergeometric
functions are very important because these functions frequently arise in mathematics, physics, and engineering. Their series definitions
typically converge only in restricted regions like (|z| < 1), but many applications require values outside these domains. That is where
analytic continuation formulas become useful. This work aims at establishing several analytical continuation relations for confluent
hypergeometric functions of one and two variables.
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1 Introductory background

J. D. Rozies and W. R. Johnson [1] proved an analytic
continuation of the Lauricella function when one of its
variables, say, is greater than unity, and the other two are
less than unity. The proven formula was used to solve the
problem of electron-nuclear scattering. The analytical
continuations given in [2,3] for the Appell F2 series were
used to calculate the Lauricella FA function, and K. K.
Sud et al. [4] developed a method for estimating the radial
matrix elements of radiative transitions. In this method,
the integrals are expressed through a matrix
generalization of the gamma function. Using the
recurrence relations satisfied by the matrix gamma
function, the number of basis integrals required for
various electron scattering processes is reduced to a
minimum. The elements of such a matrix gamma function
of size is the Lauricella FA function. This circumstance
led them to a detailed study of the analytical properties of
the Lauricella function. A. R. Sud and K. K. Sud [5]
obtained two analytical continuation relations for the
function FA using its integral Barnes representation. One
analytical continuation leads to a set of one-term
transformation relations, and in the second, FA is
expressed through eight Lauricella series FB . Analytical
continuations are given for the series FB, which allows

one to obtain a new analytical continuation of the series
FA. This result is useful for calculating the value of the
function at |x|+ |y|+ |z| = 2, which arises in the analysis
of electron scattering on a nucleus S. I. Bezrodnykh [6].
The Appell function (i.e., the generalized hypergeometric
function of two complex variables) and the corresponding
system of partial differential equations are considered in
the logarithmic case, when the parameters are related
specially. Formulas for the analytical continuation beyond
the unit circle, in which is defined by a double
hypergeometric series, are constructed. The continuation
formulas are derived using representations in the form of
Barnes contour integrals. The resulting formulas allow
one to effectively calculate the Appell function over the
entire range of its variables. The results of this work find
several applications, including the problem of the
parameters of the Schwarz–Christoffel integral. Closely
related to general linear transformations are the formulas
for the analytical continuation of hypergeometric series.
When deriving many classical properties of the Gauss
function, only the joint use of transformations allows the
necessary calculations to be carried out most simply and
naturally. In the case of a series of many variables, the
corresponding formulas play an equally important
auxiliary role. Of course, the formulas for analytical
continuation also have an exceptionally important

∗ Corresponding author e-mail: mgbinsaad@yahoo.com
© 2026 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.18576/sjm/130101


2 M.G. Bin-Saad, A. Hasanov: Analytic Continuation of Confluent Hypergeometric Functions

independent value. Recent advances in the analytic
continuation of hypergeometric functions have expanded
both their theoretical foundations and computational
applicability. New continuation techniques for Appell,
Lauricella, and Horn-type functions have been developed
[7,8,9,10], including studies on the domains of analytic
continuation for ratios of generalized hypergeometric
functions 3F2 [11], together with improved high-precision
numerical methods [12]. These tools also play an
important role in modern evaluations of Feynman
integrals [13].

The data from the literature necessary for a general
assessment of the role of formulas for analytical
continuation are available in the works [14,15] for the
case of functions from one variable, for example:

2F1(α,β ;γ;x) =
Γ (γ)Γ (β −α)

Γ (β )Γ (γ −α)
(−x)−α

×2F1

(
α, 1− γ +α; 1−β +α;

1
x

)
+

Γ (γ)Γ (α −β )

Γ (α)Γ (γ −β )
(−x)−β

2F1

(
β , 1− γ +β ; 1−α +β ;

1
x

)
,

(1.1)
where

γ ̸= 0,−1,−2, . . . , α −β ̸= 0,±1,±2, . . . , |arg(−x)|< π,

2F1 [α,β ;γ;x] =
∞

∑
n=0

(α)n(β )n

(γ)n

xn

n!
, (1.2)

and [14,16,17,18] the case of functions of several
variables. In the books [17,19,20,21] and also in the
articles [22,23], there are numerous references to original
works related to applications of analytic continuation
formulas to problems of atomic, nuclear physics, and
applied mathematics. There are articles [24], which
consider analytic continuation formulas for the
hypergeometric functions in three variables of second
order. Let us recall the definition of the Pochhammer
symbol (λ )n and the Gamma function Γ (z) , defined by
the formula [14,15]:

Γ (z) =

{ ∫
∞

0 tz−1e−tdt, ℜ(z)> 0,
Γ (z+1)

z (ℜ(z)< 0; x ̸=−1,12,−3, · · · .
(1.3)

Throughout this paper we define the Pochhammer symbol
(γ)n by the formula

(γ)n =
Γ (γ +n)

Γ (γ)
=

{
1 (n = 0),
γ(γ +1)...(γ +n−1) (n ∈ N).

(1.4)
The following relations will be utilized in the subsequent
sections [15]:

(α)−n =
(−1)n

(1−α)n
, n= 0,1,2, · · · , (α)m+n =(α)m(α+m)n,

(1.5)

and

(α)m−n =
(−1)n(α)m

(1−m−α)n
(0 ≥ n ≥ m). (1.6)

For the present work, we recall the following necessary
definitions. The confluent function 1F1 is defined as (see
e.g., [4,14,16]):

1F1 [α;γ;z] =
∞

∑
n=0

(α)n

(γ)n

xn

n!
. (1.7)

The two-variable confluent function Φ1 and Φ2 defined by
the series:

Φ1 (a,b;c;x,y) =
∞

∑
m,n=0

(a)m+n(b)m

(c)m+n

xnyn

m!n!
, (1.8)

Φ2 (a,b;c;x,y) =
∞

∑
m,n=0

(a)m(b)n

(c)m+n

xnyn

m!n!
, (|x|< ∞, |y|< ∞),

(1.9)

Φ3 (a;c;x,y) =
∞

∑
m,n=0

(a)m(b)n

(c)m+n

xnyn

m!n!
, (|x|< ∞, |y|< ∞).

(1.10)

Ψ1 (a,b;c1,c2;x,y) =
∞

∑
m,n=0

(a)m+n(b)m

(c1)m(c2)n

xnyn

m!n!
, (1.11)

Γ1 (a,b1,b2;c;x,y) =
∞

∑
m,n=0

(a)m(b1)n−m(b2)m−n
xnyn

m!n!
,

(1.12)

H1 (a,b,d;c;x,y) =
∞

∑
m,n=0

(a)m−n(b)m(d)n

(c)m

xnyn

m!n!
, (1.13)

H11 (a,b,d;c;x,y) =
∞

∑
m,n=0

(a)m−n(b)n(d)n

(c)m

xnyn

m!n!
. (1.14)

The Kampe’ de Feriet function

F p:q;k
l:m;n

 (ap) : (bq);(ck);
x,y

(αl) : (βm);(γn);


=

∞

∑
r,s=0

∏
p
j=1(a j)r+s ∏

q
j=1(b j)r ∏

k
j=1(b j)s

∏
l
j=1(α j)r+s ∏

m
j=1(β j)r ∏

n
j=1(γ j)s

xr

r!
ys

s!
. (1.15)

2 Analytical continuation relations

First, in this section, we prove an analytic continuation
for the confluent function 1F1 defined by (2.1).

Theorem 2.1. Suppose that the parameters satisfy
{c, c − a} /∈ {−1,−2, . . .} and |arg(−x)| < π . Then the
following analytic continuation formula holds:

1F1 [a;c;x] =
Γ (a)

Γ (c−a)
(−x)−a

2F0

[
a,1− c+a;−1

x

]
.

(2.1)
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Proof. To prove formula (2.1), we use the Mellin-Barnes
integral representation of the function 1F1:

Γ (a)
Γ (c) 1F1 [a;c;x] =

1
2πi

∫ +∞i

−∞i

γ(a+ s)
γ(c+ s)

Γ (−s)(−x)sds.

(2.2)
The path of integration has such bends that it separates the
poles of the integrand at the points s = 0,1,2, · · · from the
poles at the points s =−a−m, m = 0,1,2, · · · . Such a path
of integration can always be found under the condition a ̸=
0,−1,−2, · · · . The function Γ (a+ s) has simple poles at
the points s = −a−m, m = 0,1,2, · · · . Therefore, we use
the Cauchy formula on residues:

1
2πi

∫
L

ϕ(ξ )

ξ − z
dξ =

∞

∑
k=0

Resαk ϕ(αk), z ∈ D. (2.3)

It is straightforward to obtain the equality:

Γ (a+ s) =
π

Γ (1−a− s)sinπ(a+ s)

=
(−1)m

Γ (1−a− s)
π(a+ s+m)

sinπ(a+ s+m)

1
s− (a−m)

. (2.4)

Substituting (2.4) into the integral representation (2.2) and
taking into account (2.3), we have

Γ (a)
Γ (c) 1F1(a;c;x)

∞

∑
m=0

Ress=−a−m
(−1)mΓ (−s)(−x)s

Γ (1−a− s)Γ (c+ s)
π(c+ s+m)

sinπ(c+ s+m)
.

(1)
Using

Ress=−a−m Γ (a+ s) =
(−1)m

m!

and

−s|s=−a−m = a+m, c+ s|s=−a−m = c−a−m,

the residue evaluates to

Ress=−a−m=
(−1)m

m!
Γ (a+m)

Γ (c−a−m)
(−x)−a−m.

Thus, the residue sum becomes

1F1(a;c;x) =
Γ (c)
Γ (a)

∞

∑
m=0

(−1)m Γ (a+m)

m!Γ (c−a−m)
(−x)−a−m.

Taking into account the relations (1.4) and the first
relation in (1.5), we infer the relation (2.1). □

We now proceed to establish the analytic continuation of
the confluent function given in (1.8) as follows:

Theorem 2.2. If {c,c− a} ̸= 0,−1,−2, · · · , |arg(−y)| <
π, |y| > 1, |x| < |y| are satisfied, then the confluent
function Φ1 admits the following analytic continuation
relation:

Φ1(a,b;c;x,y)

=
Γ (c)

Γ (c−a)
(−y)−a F1:1;1

0:0;0

[
a : b;1− c+a;

− : −;−; − x
y
,

1
y

]
.

(2.5)
Proof. Writing the definition of Φ1 in the form:

Φ1(a,b;c;x,y) =
∞

∑
m=0

(a)m(b)m

(c)m

xm

m! 1F1 [a+m;c+m;y] ,

(2.6)
and then substituting (2.1) into (2.6), simplifying the
resulting expression, and finally applying the definition
(1.15), we arrive at the desired formula (2.5). □

Remark 2.1. By setting x = 0 in equality (2.5) and then
replacing y with x in the resulting expression, formula
(2.5) reduces to (2.1).

Theorem 2.3. If the conditions |arg(−x)| < π ,
|arg(−y)|< π and {c,c−a} ̸= 0,−1,−2, · · · ,

|arg(−x)|< π

and |arg(−y)|< π

are satisfied, then the confluent function Φ1 admits the
following analytic continuation relation:

Φ1(a,b;c;x,y) =
Γ (c)

Γ (c−a)
(1− x)−b(−y)−a

×
∞

∑
m,n=0

(c−a)m(b)m(a)n(1− c+a)n−m

m!n!(
x

1− x

)m(
−1

y

)n

. (2.7)

Proof. The Humbert’s confluent hypergeometric
function Φ1 can be represented in the Mellin–Barnes
integral form as (see Erdélyi et al. ([14], Vol. 1, 5.4):

Γ (a)Γ (b)Γ (c−a)
Γ (c)

Φ1(a,b;c;x,y) =
1

(2πi)2

∫ ∫ +∞i

−∞i

∫ +∞i

−∞i

Γ (a+ s+ t)Γ (b+ s)Γ (−s)Γ (−t)
Γ (c+ s+ t)

(−x)s(−y)t dsdt.

We can write the above integral in the form:

Γ (a)Γ (c−a)
Γ (c)

Φ1(a,b;c;x,y)

=
1

2πi

∫ +∞i

−∞i

Γ (a+ t)
Γ (c+ t)

F(a+ t,b;c+ t;x)Γ (−t)(−y)t dt.

Thus, using Boltz’s formula [14], we obtain

Γ (a)Γ (c−a)
Γ (c)

Φ1(a,b;c;x,y)= (1−x)−b 1
2πi

∫ +∞i

−∞i

Γ (a+ t)
Γ (c+ t)
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Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


4 M.G. Bin-Saad, A. Hasanov: Analytic Continuation of Confluent Hypergeometric Functions

F
(

c−a,b;c+ t;
x

x−1

)
Γ (−t)(−y)tdt (2.8).

The function Γ (a+ t) has the following simple poles
t = −a− n, n = 0,1,2, . . . . We transform Γ (a+ t) the
function to the form:

Γ (a+ t) =
(−1)n

Γ (1−a− t)
· π(a+ t +n)

sinπ(a+ t +n)
· 1

t − (−a−n)
.

Taking into account this equality and (2.3), we calculate
the residue.

Γ (a)
Γ (c)

Φ1(a,b;c;x,y) = (1− x)−b

×
∞

∑
n=0

Res
t→−a−n

[
(−1)n

Γ (1−a− t)Γ (c+ s2)
· π(a+ t +n)

sinπ(a+ t +n)

·F
(

c−a,b;c+ t;
x

x−1

)
Γ (−t)(−y)t .

Expanding the Gaussian function in a series, we get

Γ (a)
Γ (c)

Φ1(a,b;c;x,y) = (1− x)−b

×
∞

∑
m,n=0

(
x

x−1

)m (c−a)m(b)m

m!

× Res
t→−a−n

[
(−1)n

Γ (1−a− t)Γ (c+ t +m)
· π(a+ t +n)

sinπ(a+ t +n)

·Γ (−t)(−y)t] ,
and also using the first identity in (1.5) and the identity in
(1.6), we obtain formula (2.7). □

Remark 2.2. By setting x = 0 in equality (2.7) and then
replacing y with x in the resulting expression, formula
(2.7) reduces to (2.1).

Theorem 2.4. If the conditions c ̸= 0,−1,−2, · · · and
{a − b,c − a − b} ̸= 0,±1,±2, · · · , then the confluent
function Φ1 admits the following analytic continuation
relations:

Φ1(a,b;c;x,y)

=
Γ (c)Γ (c−a−b)
Γ (c−a)Γ (c−b)

Ψ1(a,b;1+a+b− c,c−b;1− x,y)

+
Γ (c)Γ (a+b− c)

Γ (a)Γ (b)
(1− x)c−a−b

Ψ1(c−b,c−a;1−a−b+ c,c−b;1− x,y), (2.9)

|arg(1− x)|< π,

Φ1(a,b;c;x,y)

=
Γ (c)Γ (b−a)
Γ (b)Γ (c−a)

(−x)−a
Φ1

(
a,1− c+a;1−b+a;

1
x
,

y
x

)
+

Γ (c)Γ (a−b)
Γ (a)Γ (c−b)

(−x)−b
Γ1

(
b,a−b,1− c+b;−1

x
,−y

)
,

(2.10)

|arg(−x)|< π,

Φ1(a,b;c;x,y)

=
Γ (c)Γ (b−a)
Γ (b)Γ (c−a)

(1− x)−a

F2:0;0
1:m;n

 a,c−b : −;−;
1

1−x ,
y

1−x
1−b+a : −;c−b;


+

Γ (c)Γ (a−b)
Γ (a)Γ (c−b)

(1− x)−b

H11

(
a−b,b,c−a;c−b;y,− 1

1− x

)
, (2.11)

|arg(1− x)|< π,

Φ1(a,b;c;x,y)

=
Γ (c)Γ (c−a−b)
Γ (c−a)Γ (c−b)

x−a

Ψ1

(
a,a+1− c;a+b+1− c,c−b;1− 1

x
,

y
x

)
+

Γ (c)Γ (a+b− c)
Γ (a)Γ (b)

xa−c(1− x)c−a−b

H2

(
1−a,c−a,a;c+1−a−b;1− 1

x
,−y

)
, (2.12)

|arg(x)| < π, where the confluent hypergeometric
functions Ψ1,Γ1,H2 and H11 are defined by (1.11)–(1.14).
Proof. It is easily seen that

Φ1(α,β ;γ;x,y) =
∞

∑
n=0

(α)n

(γ)n n!
yn

2F1(α +n,β ;γ +n;x).

By applying the analytic continuation formulas (1)–(4) of
the Gauss hypergeometric function 2F1 given in [7, pp.
108–109] to the above expansion of Φ1, we obtain the
relations (2.9)–(2.12). □

Next, we derive several analytic continuation formulas for
the function Φ2 defined in equation (1.9).

Theorem 2.5.,If the conditions |arg(−x)| < π ,
|arg(−y)| < π and {c,c − b1 − b2} ̸= 0,−1,−2, · · · , are
satisfied, then the confluent function Φ2 admits the
following analytic continuation relation:

Φ2(b1,b2;c;x,y)

=
Γ (c)

Γ (c−b1 −b2)
(−x)−b1(−y)−b2

F1:1;1
0:0;0

1− c+b1 +b2 : b1;b2;
− 1

x , −
1
y

− : −;−;

 . (2.13)
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Proof. We start from the Mellin–Barnes integral
representation of Φ2:

Γ (b1)Γ (b2)

Γ (c)
Φ2(b1,b2;c;x,y)

=
1

(2πi)2

∫ +i∞

−i∞

∫ +i∞

−i∞

Γ (b1 + s)Γ (b2 + t)
Γ (c+ s+ t)

Γ (−s)Γ (−t)(−x)s(−y)t dsdt. (2.14)

The integration contours are chosen to separate the poles
at s, t = 0,1,2, . . . from those at s = −b1 −m, t = −b2 −
n (m,n = 0,1,2, . . . ). Such contours exist, provided that
b1 ̸= 0,−1,−2, . . . and b2 ̸= 0,−1,−2, . . . . Near the poles
s =−b1 −m and t =−b2 −n, we can write

Γ (b1 + s) =
(−1)m

Γ (1−b1 − s)
π(b1 + s+m)

sinπ(b1 + s+m)

1
s+b1 +m

,

(2.15)

Γ (b2 + t) =
(−1)n

Γ (1−b2 − t)
π(b2 + t +n)

sinπ(b2 + t +n)
1

t +b2 +n
.

(2.16)

Substituting (2.15) and (2.16) into the integral (2.14) and
applying the Cauchy residue theorem (2.3), we obtain

Γ (b1)Γ (b2)

Γ (c)
Φ2(b1,b2;c;x,y) =

∞

∑
m,n=0

Ress=−b1−m
t=−b2−n

(−1)m+nΓ (−s)Γ (−t)(−x)s(−y)t

Γ (c+ s+ t)Γ (1−b1 − s)Γ (1−b2 − t)

π(b1 + s+m)π(b2 + t +n)
sinπ(b1 + s+m) sinπ(b2 + t +n)

. (2.17)

After simplification of the residues using standard
Gamma-function identities, we arrive at

Φ2(b1,b2;c;x,y) =
Γ (c)

Γ (c−b1 −b2)
(−x)−b1(−y)−b2

∞

∑
m,n=0

(1− c+b1 +b2)m+n(b1)m(b2)n

m!n!
(−x)−m(−y)−n.

(2.18)
By applying (1.15), we immediately arrive at the desired
formula (2.13). □

Theorem 2.6. If {c,c − b1,c − b2} ̸= 0,−1,−2, · · · are
satisfied, then the confluent function Φ2 admits the
following analytic continuation relation:

Φ2(b1,b2;c;x,y) = Γ (c)
Γ (c−b1)

(−x)−b1

×
∞

∑
m,n=0

(b1)m(b2)n(1− c+b1)m−n

m!n!

(
−1

x

)m

(−y)n,

(2.19)

Φ2(b1,b2;c;x,y) = Γ (c)
Γ (c−b2)

(−y)−b2

×
∞

∑
m,n=0

(b1)m(b2)n(1− c+b2)n−m

m!n!
(−x)m

(
−1

y

)n

.

(2.20)

Proof. We start from the series representation of Φ2 given
in (1.9):

Φ2(β1,β2;γ;x,y) =
∞

∑
n=0

(β2)n

(γ)n n!
yn

1F1(β1;γ +n;x).

Applying the Kummer transformation (2.1) for the
confluent hypergeometric function 1F1:

1F1(a;c;z) = ez
1F1(c−a;c;−z),

we rewrite each term in the series as

1F1(β1;γ +n;x) = ex
1F1(γ +n−β1;γ +n;−x).

Expanding 1F1(γ +n−β1;γ +n;−x) in its standard series,
we obtain

1F1(γ +n−β1;γ +n;−x) =
∞

∑
m=0

(γ +n−β1)m

(γ +n)m

(−x)m

m!
.

Substituting this expansion back into the series for Φ2 and
reordering the sums, we get

Φ2(b1,b2;c;x,y) =
Γ (c)

Γ (c−b1)
(−x)−b1

∞

∑
m,n=0

(b1)m(b2)n(1− c+b1)m−n

m!n!

(
−1

x

)m

(−y)n,

which proves (2.19).
Similarly, by expanding first with respect to x and applying
the Kummer transformation to 1F1(β2;γ +m;y), we obtain
(2.20):

Φ2(b1,b2;c;x,y) =
Γ (c)

Γ (c−b2)
(−y)−b2

∞

∑
m,n=0

(b1)m(b2)n(1− c+b2)n−m

m!n!
(−x)m

(
−1

y

)n

.

This completes the derivation of the analytic continuation
formulas (2.19) and (2.20). □

Finally, we present an analytic continuation relation for
the confluent function Phi3

Theorem 2.7. If {c,c − b} ̸= 0,−1,−2, · · · and
|arg(−x)| < π are satisfied, then the confluent function
Φ3 admits the following analytic continuation relation:

Φ3(b,c;x,y) =
Γ (c)

Γ (c−b)

(
−1

x

)b

∞

∑
m,n=0

(b)m (1− c+b)m−n

m!n!

(
−1

x

)m

(−y)n, (2.21)
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Proof. The proof of formula (2.21) is similar to that in the
case of Theorem 2.5. □

3 Applications

This section illustrates the usefulness of analytic
continuation formulas in extending special functions
beyond their original domains of convergence. We first
apply analytic continuation to derive an expansion valid
for large |y|, providing asymptotic behavior where the
original series fails. We then demonstrate the use of the
continuation formula for Φ2 in quantum mechanics and
for Φ3 in electromagnetic field expansions. These
examples show how analytic continuation enables
effective analysis and computation in physical
applications.

3.1 Analytic continuation for large-|y|
expansion

A concrete application of the analytic continuation identity
(2.5) is to derive an expansion valid for large |y|. Start from
the defining double series for Φ1 (see (1.8)), with a = b =
1, c = 2, we get

Φ1(1,1;2;x,y) =
∞

∑
m=0

∞

∑
n=0

xmyn

(m+n+1)n!
, (3.1)

(|x|< 1andℜ(y)< 0).

Insert the identity

1
m+n+1

=
∫ 1

0
tm+n dt

into (3.1) and interchange sum and integral to get:

Φ1(1,1;2;x,y)

=
∫ 1

0

∞

∑
m=0

∞

∑
n=0

(xt)m (yt)n

n!
dt =

∞

∑
k=0

xk
∫ 1

0
tkety dt. (3.2).

Next, we use (3.2) to derive an expansion for large |y| (with
ℜ(y)< 0). Define

Jk(y) :=
∫ 1

0
tkety dt.

A convenient closed form for Jk is obtained by the
substitution u =−yt:

Jk(y) = (−y)−k−1
γ(k+1,−y),

where γ(k + 1,−y) =
∫ −y

0
uke−u du is the lower

incomplete gamma function. For −y → +∞ (i.e. |y| → ∞

in the left half-plane) we have
γ(k+1,−y)→ Γ (k+1) = k!. Thus termwise,

Jk(y)∼ (−y)−k−1 k!
(
as |y| → ∞, ℜ(y)< 0

)
.

Therefore the large-|y| asymptotic expansion is

Φ1(1,1;2;x,y)

=
∞

∑
k=0

xkJk(y)∼
∞

∑
k=0

xk (−y)−k−1k!=(−y)−1
∞

∑
k=0

k!
(

x
−y

)k

.

Write it compactly as

Φ1(1,1;2;x,y) ∼ (−y)−1
∞

∑
k=0

k!
(
−x

y

)k

, (3.3)

( |y| → ∞, ℜ(y)< 0 ).

Matching this with the analytic-continuation formula
(2.1), we find that

Φ1(1,1;2;x,y) = (−y)−1 F1:1;1
0:0;0

 1 : 1;0;
−x
y
,

1
y

− : −;−;

 .

3.2 Analytic Continuation of Φ2 in Quantum
Mechanics

Consider a two-dimensional separable potential

V (x,y) = xb1−1yb2−1e−ax−by, x,y > 0,

and let us compute the Born approximation of the
scattering amplitude:

A(kx,ky) =
∫

∞

0

∫
∞

0
V (x,y)ei(kxx+kyy) dxdy.

Using the definitions of the Pochhammer symbols and the
Mellin-type integral, we can write the amplitude as

A(kx,ky) =
∫

∞

0

∫
∞

0
xb1−1yb2−1e−ax−byei(kxx+kyy)dxdy.

Introduce the substitutions x 7→ −1/X and y 7→ Y to bring
the integrand in the form suitable for the Humbert function
Φ2:

A(kx,ky)∼ Φ2

(
b1,b2;c;−ikx/a,−iky/b

)
,

where c = b1 +b2.

From (2.19), we have

Φ2(b1,b2;c;x,y) =
Γ (c)

Γ (c−b1)
(−x)−b1

© 2026 NSP
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∞

∑
m,n=0

(b1)m(b2)n(1− c+b1)m−n

m!n!

(
−1

x

)m

(−y)n.

Substitute x =−ikx/a and y =−iky/b:

Φ2

(
b1,b2;c;−ikx/a,−iky/b

)
=

Γ (c)
Γ (c−b1)

(
ikx

a

)−b1

∞

∑
m,n=0

(b1)m(b2)n(1− c+b1)m−n

m!n!

(
ia
kx

)m(
iky

b

)n

.

Now, we analyze the high-momentum behavior.

For large kx (high momentum transfer in the
x-direction), the leading term in the series corresponds to
m = n = 0:

Φ2 ∼
Γ (c)

Γ (c−b1)

(
ikx

a

)−b1

(−y)0 =
Γ (c)

Γ (c−b1)

(
ikx

a

)−b1

.

Hence, the amplitude decays asymptotically as

A(kx,ky)∼ k−b1
x , kx → ∞.

Finally, we conclude that the analytic continuation
formula (2.19) allows us to express Φ2 in a form that
converges for large |x|, corresponding to high momentum.
This provides an explicit asymptotic expression for the
scattering amplitude in the Born approximation.
Therefore, analytic continuation of Φ2 gives a practical
tool for analyzing the global behavior of quantum
mechanical amplitudes beyond the convergence domain
of the original series. □

3.3 Analytic continuation and PDE System of
Φ3

The Humbert function Φ3(b,c;x,y) is given by the double
series

Φ3(b,c;x,y) =
∞

∑
m=0

∞

∑
n=0

(b)m

(c)m+n

xm

m!
yn

n!
,

where (α)k = Γ (α + k)/Γ (α) is the Pochhammer
symbol. It is a solution to the following system of
confluent partial differential equations

x
∂ 2u
∂x2 +(c− x)

∂u
∂x

− x
∂u
∂y

−bu = 0

y
∂ 2u
∂y2 +(c− y)

∂u
∂y

− y
∂u
∂x

−bu = 0.

Our goal is to show that the expression on the right-hand
side of analytic continuation (2.21) is also a solution to this
system, valid in a different region (specifically, for large
|x|).

Use

(c)m+n = (c)n (c+n)m, (3.4)

so

Φ3(b,c;x,y) =
∞

∑
n=0

yn

n!(c)n

∞

∑
m=0

(b)m

(c+n)m

xm

m!

=
∞

∑
n=0

yn

n!(c)n
1F1

(
b; c+n; x

)
. (3.5)

If in (2.1), we let a = b, c 7→ c+n and eiπb = (−1)−b,
we obtain

1F1
(
b;c+n;x

)
=

Γ (c+n)
Γ (c+n−b)

eiπb x−b

∞

∑
m=0

(b)m (1− c+b−n)m

m!
x−m. (3.6)

Using (c)n = Γ (c + n)/Γ (c), we have Γ (c + n)/(c)n =
Γ (c). Thus, substituting the first (the x−b) term of (3.6)
into (3.5) gives

Φ3(b,c;x,y) =
∞

∑
n=0

yn

n!(c)n

Γ (c+n)
Γ (c+n−b)

eiπb x−b

×
∞

∑
m=0

(b)m (1− c+b−n)m

m!
x−m

= eiπb
Γ (c)x−b

×
∞

∑
m=0

∞

∑
n=0

(b)m (1− c+b−n)m

m!n!
yn

Γ (c+n−b)
x−m. (3.7)

So, we need to massage the factor

(1− c+b−n)m

Γ (c+n−b)

into the desired Pochhammer form (1− c+ b)m−n times
an overall constant. Set z = c− b. We use the elementary
gamma identity

Γ (1− z−n) = (−1)n Γ (1− z)
(z)n

, n ∈ Z≥0,

which follows from Γ (w + n) = (w)nΓ (w) and the
reflection of the sine factor

sin(π(w+n)) = (−1)n sin(πw).

Put z = c−b; then

Γ (1− c+b−n) = (−1)n Γ (1− c+b)
(c−b)n

. (3.8)
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Also Γ (c+ n− b) = (c− b)n Γ (c− b). Using these two
identities, we compute

Γ (1− c+b−n+m)

Γ (1− c+b−n)
· Γ (c)

Γ (c+n−b)

= (−1)n Γ (c)
Γ (c−b)

· Γ (1− c+b+m−n)
Γ (1− c+b)

,

i.e.

(1− c+b−n)m

Γ (c+n−b)
= (−1)n 1

Γ (c−b)
·Γ (c)· (1− c+b)m−n

Γ (c)
.

Cancelling the Γ (c) factor already present in (3.7)
yields the simple identity

Γ (c)
(1− c+b−n)m

Γ (c+n−b)
= (−1)n Γ (c)

Γ (c−b)
(1− c+b)m−n.

(3.9)
Using (3.9) in (3.7) we get

Φ3(b,c;x,y) = eiπb x−b Γ (c)
Γ (c−b)

∞

∑
m=0

∞

∑
n=0

(b)m (1− c+b)m−n

m!n!
(−1)n x−m yn.

Now combine eiπb x−b and the factor x−m together, and
move the (−1)-powers into grouped factors:

eiπb x−b x−m (−1)nyn =

(
−1

x

)b(
−1

x

)m

(−y)n,

because eiπb = (−1)b (the branch convention for (−1)b

is the same as for (−1/x)b). So the double sum becomes
exactly the right-hand side of (2.21):

Φ3(b,c;x,y) =
Γ (c)

Γ (c−b)

(
−1

x

)b

∞

∑
m=0

∞

∑
n=0

(b)m (1− c+b)m−n

m!n!

(
−1

x

)m

(−y)n,

which is the formula (2.21). This demonstrates that the
right-hand side of the analytic continuation (2.21) also
represents a solution of the PDE system for the function
Φ3, but it is valid in a different region–specifically, for
large |x|.

4 Numerical validation of analytic
continuation formulas

In this section, we present numerical validations of the
analytic continuation formulas derived in Section 2. By
means of explicit numerical evaluations and graphical
visualizations, we demonstrate the accuracy and
effectiveness of the proposed continuation relations for
two-variable confluent hypergeometric functions. The
examples illustrate how the analytic continuation extends
the domain of computation beyond the region of
convergence of the defining series and provide concrete
support for the theoretical results. To produce the figures
and analysis presented in this section, we first evaluated
the theoretical expression of the transform on a suitably
chosen domain for the variables involved. Then, using a
discrete grid, we computed the corresponding numerical
approximation of the same transform. The comparison
between the results allowed us to visualize their
agreement and validate the theoretical identity.

The computations were carried out using the Python
software environment. In particular, we employed its
standard numerical instruments, including the NumPy
library for array-based numerical evaluation and the
Matplotlib package for generating the final graphical
representation. These tools enabled high-resolution
sampling and precise visualization of the behavior of the
transform under the chosen parameter settings.

Example 1(Numerical illustration of the analytic
continuation for Φ1 in (2.9)). To illustrate the
effectiveness of the analytic continuation relation given in
Theorem 2.3, we numerically compared the original
double-series definition of the confluent hypergeometric
function Φ1(a,b;c;x,y) with its analytic continuation
representation. In this experiment, we selected the
parameters:

a = 1.3, b = 0.7, c = 2.5, y = 2.0,

which satisfy the conditions of Theorem 2.3, namely that
neither c nor c − a is a nonpositive integer and that
|arg(−y)|< π .

Both the original series (1.8) and the analytic
continuation series (2.7) were truncated at m,n ≤ 12 to
ensure numerical stability while retaining sufficient
accuracy. The two representations were evaluated for
x ∈ [−1,2], allowing us to examine their behaviour both
inside and outside the classical convergence region
|x| < 1. The real parts of the truncated series and the
analytic continuation values were then plotted on the
same graph. For |x| < 1, the two curves show excellent
agreement, confirming that the analytic continuation
reproduces the correct functional values in the region
where the original series converges. For x > 1, the
truncated original series becomes unreliable or divergent,
whereas the analytic continuation formula remains
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well-defined and numerically stable. This clearly
demonstrates the ability of Theorem 2.3 to extend the
domain of Φ1 beyond its usual disk of convergence.

The resulting plot, displayed in Figure 1, visually
confirms the accuracy and practical value of the analytic
continuation formula for computing Φ1 outside its
classical region of convergence.

Example 2(Numerical validation of the analytic
continuation (2.9)). In this example, we present a
numerical illustration of the analytic continuation
relations for the two-variable confluent hypergeometric
function Φ1(a,b;c;x,y) established in equation (2.9),
Theorem 2.4. Parameter values satisfying the conditions
of the theorem are selected, and numerical evaluations of
the truncated double-series representation of Φ1 are
compared with its analytic continuation formulas. Since
the defining series converges only in restricted regions of
the (x,y)-plane, analytic continuation plays a crucial role
in extending the domain of validity of the function. All
computations were carried out using the Python
software environment, and the resulting numerical data
were visualized through two-dimensional plots.

Remark.Figure 2(a) shows a contour plot of the logarithm
of the absolute difference between the truncated series
representation of Φ1 and its first analytic continuation
formula expressed in terms of the function Ψ1. The small
discrepancies observed over a wide region confirm the
numerical consistency of the continuation relation within
the overlapping domain of analyticity.

Figure 2(b) illustrates the corresponding contour plot
for the second analytic continuation formula, which
involves a transformation of the variables
(x,y) 7→ (1/x, y/x). This figure demonstrates that the
continuation provides stable and accurate values in
regions where the original series representation becomes
ineffective.

Finally, Figure 2(c) depicts the magnitude of the
analytically continued function obtained from the first
continuation formula. This plot offers a global view of the
behavior of Φ1 in the (x,y)-plane and highlights the
smoothness of the continuation across regions beyond the
radius of convergence of the defining series.

Example 3(Numerical illustration of the analytic
continuation for Φ2 in (2.19)). In this example, we
numerically investigate the analytic continuation formula
for the two-variable confluent hypergeometric function
Φ2(b1,b2;c;x,y) established in Theorem 2.6. Parameter
values are chosen such that the conditions
{c,c − b1,c − b2} ̸= 0,−1,−2, . . . are satisfied. The
original double-series representation of Φ2 is compared

Fig. 1: Comparison of the truncated series for
Φ1(a,b;c;x,y) and the truncated analytic continuation
from Theorem 2.3 for a = 1.3, b = 0.7, c = 2.5, y = 2.0.
The dashed curve shows the continuation (Theorem 2.3).

with its analytic continuation formula given by

Φ2(b1,b2;c;x,y) =
Γ (c)

Γ (c−b1)
(−x)−b1

∞

∑
m,n=0

(b1)m(b2)n(1− c+b1)m−n

m!n!

(
−1

x

)m

(−y)n, (4.1)

which is valid for |arg(−x)|< π .

Remark.The numerical evaluation of both the original
series definition

Φ2(b1,b2;c;x,y) =
∞

∑
m,n=0

(b1)m(b2)n

(c)m+n

xmyn

m!n!
, (4.2)

and its analytic continuation (4.1) was carried out using
the Python programming environment. The series were
truncated to sufficiently large orders to ensure numerical
stability, and all computations were performed with
arbitrary-precision arithmetic.

Figure 3 presents a two-dimensional contour plot of
the logarithm of the absolute difference between the
truncated original series and the analytic continuation
formula. The uniformly small discrepancies observed in
wide regions of the (x,y)-plane confirm the numerical
validity of the continuation relation.

Figure 4 illustrates the magnitude of the analytically
continued function Φ2 obtained from (4.1). This
visualization provides a global picture of the behavior of
Φ2 beyond the domain where the defining series
converges efficiently and highlights the smooth extension
achieved through analytic continuation.

These results demonstrate that the continuation
formula in Theorem 2.6 provides a reliable computational
tool for evaluating Φ2 in regions inaccessible to its
classical series representation, thereby enhancing its
applicability in analytical and applied problems.
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(a) AbsDiff A contourfloatfigfloatfig

(b) AbsDiff B contour

(c) ContA magnitude

Fig. 2: Comparison of the three computed figures. Each
subfigure shows different aspects of the computations: (a)
absolute difference for Method A, (b) absolute difference
for Method B, and (c) magnitude of ContA.

5 Conclusion

In this paper, we have established several analytic
continuation formulas for confluent hypergeometric
functions of one and two variables. These formulas
extend the domain of hypergeometric functions beyond
their classical series convergence regions, which is
important for applications in mathematics, physics, and
engineering. The key findings include explicit
continuation relations for single- and double-variable

Fig. 3: Contour plot of the logarithm of the absolute
difference between the truncated double-series
representation of Φ2(b1,b2;c;x,y) and its analytic
continuation given by Theorem 2.6. The uniformly
small discrepancy confirms the numerical validity of the
continuation formula over a wide region of the (x,y)-
plane.

Fig. 4: Magnitude of the analytically continued function
Φ2(b1,b2;c;x,y) obtained from Theorem 2.6. The plot
illustrates the smooth extension of Φ2 beyond the effective
convergence region of its defining series.

confluent hypergeometric functions, detailed expansions
for large-|y|, and practical applications to quantum
mechanics via Φ2 and to partial differential systems for
Φ3. These results provide both theoretical insight into the
structure of hypergeometric functions and practical tools
for evaluating them in regions where the classical series
diverge, thereby broadening their applicability in
mathematical modeling, computational physics, and
engineering analyses.

For future work, we plan to extend these methods to
multivariable hypergeometric functions, develop efficient
numerical evaluation techniques, explore further
applications in physics and engineering, and investigate
the monodromy and structural properties of the continued
functions.
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Overall, this work lays a foundation for further
exploration of analytic continuation in generalized
hypergeometric systems and demonstrates its importance
for both theoretical studies and practical computations in
the field.
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