Some Approximation Properties of Baskakov-Szász-Stancu Operators

Vishnu Narayan Mishra1,2, M. Mursaleen3,* and Preeti Sharma1

1 Department of Applied Mathematics and Humanities, Sardar Vallabhbhai National Institute of Technology, Ichchhanath Mahadev Dumas Road, Surat, Surat-395 007 (Gujarat), India
2 L.1627 Awadh Puri Colony Beniganj, Phase -III, Opposite - Industrial Training Institute (I.T.I.), Ayodhya Main Road, Faizabad-224 001, (Uttar Pradesh), India
3 Department of Mathematics, Aligarh Muslim University, Aligarh 202002, India

Received: 9 Mar. 2015, Revised: 7 May 2015, Accepted: 8 May 2015
Published online: 1 Nov 2015

Abstract: In this paper, we are dealing with a new type of Baskakov-Szász-Stancu operators \(D_n^{(\alpha, \beta)}(f,x) \) defined by (1.4). First we estimate moments of these operators and also obtain the recurrence relations for the moments. We estimate some approximation properties and asymptotic formulae for these operators. In the last section, we establish some direct results in the polynomial weighted space of continuous functions defined on the interval \([0, \infty)\).

Keywords: Baskakov-Szász type operators, Asymptotic formula, Weighted approximation.

1 Introduction

For \(f \in C([0, \infty)) \), a new type of Baskakov-Szász operators proposed by Gupta and Srivastava [6] is defined as

\[
D_n(f,x) = \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^x s_{n,k}(t) f(t) dt, \quad x \in [0, \infty)
\]

(1)

where \(p_{n,k}(x) = \binom{n+k-1}{k} \frac{x^k}{(1+x)^{n+k}} \) and

\[
s_{n,k}(t) = e^{-nt} (nt)^k \frac{k!}{k!}.
\]

In [21] Stancu introduced the following generalization of Bernstein polynomials

\[
S_n^\alpha(f,x) = \sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) p_{n,\alpha}(x), \quad 0 \leq x \leq 1,
\]

(2)

where \(p_{n,\alpha}(x) = \binom{n}{k} \prod_{i=0}^{k-1} (x + \alpha s) \prod_{i=0}^{n-k-1} (1-x + \alpha s) \) \(\prod_{i=0}^{\alpha-1} (1 + \alpha s) \). We get the classical Bernstein polynomials by putting \(\alpha = 0 \). Starting with two parameter \(\alpha, \beta \) satisfying the condition \(0 \leq \alpha \leq \beta \) in 1983, the other generalization of Stancu operators was given in [22] and studied the linear positive operators \(S_n^{\alpha, \beta} : C[0, 1] \to C[0, 1] \) defined for any \(f \in C[0, 1] \) as follows:

\[
S_n^{\alpha, \beta}(f,x) = \sum_{k=0}^{n} p_{n,k}(x) f\left(\frac{k + \alpha}{n + \beta}\right), \quad 0 \leq x \leq 1,
\]

(3)

where \(p_{n,k}(x) = \binom{n}{k} x^k (1-x)^{n-k} \) is the Bernstein basis function(cf. [2]).

Recently, Ibrahim [7] introduced Stancu-Chlodowsky polynomial and investigated convergence and approximation properties of these operators. Motivated by such type of operators we introduce Stancu type generalization of the Baskakov-Szász operators (1) as follows:

\[
D_n^{(\alpha, \beta)}(f,x) = \sum_{k=0}^{m} p_{n,k}(x) \int_0^x s_{n,k}(t) f\left(\frac{nt + \alpha}{n + \beta}\right) dt,
\]

(4)

where \(p_{n,k}(x) \) and \(s_{n,k}(t) \) defined as same in (1). The operators \(D_n^{(\alpha, \beta)}(f,x) \) in (4) are called Baskakov-Szász-Stancu operators. For \(\alpha = 0, \beta = 0 \) the operators (4) reduce to the operators (1).

* Corresponding author e-mail: mursaleenm@gmail.com
We know that
\[
\sum_{k=0}^{\infty} p_{n,k}(x) = 1, \quad \int_0^\infty p_{n,k}(x) \, dx = \frac{1}{n-1},
\]
\[
\sum_{k=0}^{\infty} s_{n,k}(t) = 1, \quad \int_0^\infty s_{n,k}(t) \, dt = \frac{1}{n}.
\]

In [16] Moghaddam and Aghili presented a numerical method for solving LNFODE (Linear Non-homogeneous Fractional Ordinary Differential Equation). The method presented is based on Bernstein polynomials approximation.

The aim of the present paper is to study some direct results in terms of the modulus of continuity of second order. We estimate moments for these operators and obtain the recurrence relation for moments. Also, we study direct theorem, Voronovskaja type asymptotic formula and weighted approximation properties for operators (4).

2 Basic Results

Lemma 1. For \(D_n(t^m; x), m = 0, 1, 2 \), we have
\[
D_n(1, x) = 1, \quad D_n(t, x) = \frac{nx+1}{n},
\]
\[
D_n(t^2, x) = \frac{1}{n^2}[n(n+1)x^2 + 4nx + 2].
\]

Lemma 2. The following equalities hold:
\[
D_n^{(\alpha, \beta)}(1, x) = 1, \quad D_n^{(\alpha, \beta)}(t, x) = \frac{nx+1+n^2}{n+\beta},
\]
\[
D_n^{(\alpha, \beta)}(t^2, x) = \frac{(n+1)x^2}{(n+\beta)^2} + \frac{4n+2\alpha nx}{(n+\beta)^2} + \frac{2+2\alpha+\alpha^2}{(n+\beta)^2}.
\]

Proof. We observe that,
\[
D_n^{(\alpha, \beta)}(1, x) = D_n(1, x) = 1.
\]
\[
D_n^{(\alpha, \beta)}(t, x) = \frac{n}{n+\beta} D_n(t, x) + \frac{\alpha}{n+\beta} D_n(1, x)
\]
\[
= \frac{n}{n+\beta} \left(\frac{nx+1}{n} \right) + \frac{\alpha}{n+\beta}
\]
\[
= \frac{nx+1+n\alpha}{n+\beta}.
\]

\[
D_n^{(\alpha, \beta)}(t^2, x) = \frac{(n+1)x^2}{(n+\beta)^2} + \frac{4n+2\alpha nx}{(n+\beta)^2} + \frac{2+2\alpha+\alpha^2}{(n+\beta)^2}.
\]

and
\[
D_n^{(\alpha, \beta)}(t^2, x) = \frac{n^2}{(n+\beta)^2} D_n(t^2, x) + \frac{2n\alpha}{(n+\beta)^2} D_n(t, x) + \frac{\alpha^2}{(n+\beta)^2} D_n(1, x)
\]
\[
= \frac{n(n+1)x^2 + 4nx + 2}{n^2} + \frac{2n\alpha}{(n+\beta)^2} \left(\frac{nx+1}{n} \right) + \frac{\alpha^2}{(n+\beta)^2} \frac{1}{n}.\]

3 Moments and recurrence relations

Lemma 3. If we define the central moments as
\[
\mu_{n,m}(x) = D_n^{(\alpha, \beta)}((t-x)^m, x),
\]
\[
= n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty s_{n,k}(t) \left(\frac{nt+\alpha}{n+\beta} - x \right)^m \, dt,
\]
\(x \in [0, \infty), m \in \mathbb{N}.
\]

Then,
\[
\mu_{n,0}(x) = 1, \quad \mu_{n,1}(x) = \frac{\alpha - \beta x + 1}{n+\beta},
\]
and for \(n > m \), we have the following recurrence relation:
\[
(n+\beta)\mu_{n,m+1}(x) = x(1+x)[\mu_{n,m}(x) + m\mu_{n,m-1}(x)]
\]
\[
+ [m+1+\alpha-\beta x] \mu_{n,m}(x)
\]
\[
- m \left(\frac{\alpha}{n+\beta} - x \right) \mu_{n,m-1}(x).
\]

Proof. Taking derivative of \(\mu_{n,m}(x) \)
\[
\mu_{n,m}'(x) = -mn \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty s_{n,k}(t) \left(\frac{nt+\alpha}{n+\beta} - x \right)^{m-1} \, dt
\]
\[
+ n \sum_{k=0}^{\infty} p_{n,k}(x) \int_0^\infty s_{n,k}(t) \left(\frac{nt+\alpha}{n+\beta} - x \right)^m \, dt
\]
\[
\mu_{n,m}'(x) = -m\mu_{n,m-1}(x) + n \sum_{k=0}^{\infty} p_{n,k}(x)
\]
\[
\int_0^\infty s_{n,k}(t) \left(\frac{nt+\alpha}{n+\beta} - x \right)^m \, dt.
\]
using \(x(1 + x)p'_{n,k}(x) = (k - nx)p_{n,k}(x)\), we get
\[
x(1 + x)\mu''_{n,m}(x) + m\mu_{n,m - 1}(x)
\]
evaluating this at \(x = \frac{n + \alpha}{n + \beta}\) and \(x = \frac{n + \alpha}{n + \beta} - \frac{1}{n + \beta}\), we get
\[
\begin{align*}
 &\sum_{k=0}^{\infty} \frac{(k - nx)p_{n,k}(x)}{n + \alpha} \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \\
 &= \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \\
 &\quad - \sum_{k=0}^{\infty} nxp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \\
 &= I - nx\mu_{n,m}(x). \\
\end{align*}
\] (6)

We can write \(I\) as
\[
I = \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \\
= \left[\sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \right] \\
+ \left(\sum_{k=0}^{\infty} nxp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \right)
= I_1 + I_2, \text{ (say)}.
\]

To estimate \(I_2\) using\(\)
\[
t = \frac{n + \beta}{n} \left[\frac{(nt + \alpha)}{n + \beta} - x \right] - \left(\frac{(nt + \alpha)}{n + \beta} - x \right)
\]
we have
\[
I_2 = \left[\sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \right] \\
= \frac{n + \beta}{n} \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m+1} \, dt \\
- \left(\frac{nt + \alpha}{n + \beta} - x \right) \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt
\]
\[
= (n + \beta) \left[\mu_{n,m+1}(x) - \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m}(x) \right].
\]

Next to estimate \(I_1\) using the equality,
\[
t s'_{n,k}(t) = [k - nt] s_{n,k}(t)
\]
\[
I_1 = \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s'_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt,
\]
again putting \(t = \frac{n + \beta}{n} \left[\frac{(nt + \alpha)}{n + \beta} - x \right] - \left(\frac{(nt + \alpha)}{n + \beta} - x \right)\), we get
\[
I_1 = \frac{n + \beta}{n} \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s'_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m+1} \, dt \\
- \left(\frac{nt + \alpha}{n + \beta} - x \right) \sum_{k=0}^{\infty} kp_{n,k}(x) \int_{0}^{\infty} s'_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt.
\]
Now integrating by parts, we get
\[
I_1 = \frac{n + \beta}{n} \left[-(m + 1) \sum_{k=0}^{\infty} np_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \\
+ \frac{mn}{n + \beta} \sum_{k=0}^{\infty} np_{n,k}(x) \int_{0}^{\infty} s_{n,k}(t) \left(\frac{nt + \alpha}{n + \beta} - x \right)^{m} \, dt \right]
\]
\[
= \left(-(m + 1) \mu_{n,m}(x) + m \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m-1}(x) \right).
\]

Put the values of \(I_1\) and \(I_2\) in \(I\), we get
\[
I = \left[-(m + 1) \mu_{n,m}(x) + m \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m-1}(x) \right] \\
+ (n + \beta) \left(\mu_{n,m+1}(x) - \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m}(x) \right).
\]
Now, put value of \(I\) in (6), we get
\[
x(1 + x)\mu''_{n,m}(x) + m\mu_{n,m-1}(x)
\]
\[
= -(m + 1) \mu_{n,m}(x) + m \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m-1}(x) \\
+ (n + \beta) \left(\mu_{n,m+1}(x) - \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m}(x) \right).
\]

Hence,
\[
\left(n + \beta \right) \mu_{n,m+1}(x) = x(1 + x)\mu''_{n,m}(x) + m\mu_{n,m-1}(x)
\]
\[
+ (m + 1) \mu_{n,m}(x) - m \left(\frac{nt + \alpha}{n + \beta} - x \right) \mu_{n,m-1}(x),
\]
which is the required result.

Remark. For \(\alpha = 0 = \beta\) the relation (5) reduces to
\[
n\mu_{n,m+1}(x) = x(1 + x)\mu''_{n,m}(x) + m\mu_{n,m-1}(x)
\]
\[
+ (m + 1) \mu_{n,m}(x) + m\mu_{n,m-1}(x).
\]

Lemma 4. For \(n \in \mathbb{N}\), we have
\[
\mathbb{D}_n(\alpha \beta)(t - x)^2, x \leq \left(\frac{1 + \beta^2}{n + \beta} \right) \left[\phi^2(x) + \frac{1}{n + \beta} \right],
\]
where \(\phi(x) = \sqrt{x(1 + x)}, x \in [0, \infty).\)
Proof. Using lemma 3 and $\alpha \leq \beta$, we have
\[
\mathcal{P}_n^{(\alpha,\beta)}((t-x)^2,x)
= \frac{(n+\beta^2)^2}{(n+\beta)^2}x^2 + \frac{x(2n-2\beta-2\alpha\beta)}{(n+\beta)^2} + \frac{2+2\alpha+\alpha^2}{(n+\beta)^2}
\]
\[
\leq \frac{(n+\beta^2)^2}{(n+\beta)^2}x^2 + \frac{(2n+2\beta^2)x^2 + 1}{(n+\beta)^2}
\]
Thus,
\[
\mathcal{P}_n^{(\alpha,\beta)}((t-x)^2,x) \leq \frac{(1+\beta^2)}{(n+\beta)} \left[\phi^2(x) + \frac{1}{n+\beta} \right],
\]
which is required.

4 Direct result and asymptotic formula

Let the space $C_0^\infty(0,\infty)$ of all continuous and bounded functions be endowed with the norm $\|f\| = \sup \{|f(x)| : x \in [0,\infty)\}$. Further let us consider the following K-functional:
\[
K_2(f, \delta) = \inf_{\|g\| \leq \delta} \{\|f-g\| + \|g''\|\},
\]
where $\delta > 0$ and $W^2 = \{g \in C_0^\infty(0,\infty) : g', g'' \in C_0^\infty(0,\infty)\}$. By the method as given [4], there exists an absolute constant $C > 0$ such that
\[
K_2(f, \delta) \leq C \omega_2(f, \sqrt{\delta}),
\]
where
\[
\omega_2(f, \sqrt{\delta}) = \sup_{0 < h \leq \sqrt{\delta}} \sup_{x \in [0,\infty)} |f(x+2h) - 2f(x+h) + f(x)|.
\]
is the second order modulus of smoothness of $f \in C_0^\infty(0,\infty)$. Also we set
\[
\omega(f, \sqrt{\delta}) = \sup_{0 < h \leq \sqrt{\delta}} \sup_{x \in [0,\infty)} |f(x+h) - f(x)|.
\]

We denote the usual modulus of continuity of $f \in C_0^\infty(0,\infty)$. In what follows we shall use the notations
\[
\phi(x) = \sqrt{x+1}, \quad \text{where} \ x \in [0,\infty).
\]

Now, we give local approximation theorems for the operators $\mathcal{P}_n^{(\alpha,\beta)}$.

Theorem 1. Let $f \in C_0^\infty(0,\infty)$. Then, we have following inequality,
\[
\|\mathcal{P}_n^{(\alpha,\beta)}(f,x) - f(x)\| \leq \omega_2 \left(f, \frac{1+\alpha-\beta x}{n+\beta} \right)
+ C\omega_2 \left(f, \sqrt{\frac{1+\beta^2}{n+\beta}} \left[\phi^2(x) + \frac{1}{n+\beta} \right] \right),
\]
where C is a positive constant.

Proof. Let us define the auxiliary operator $\mathcal{L}_n^{(\alpha,\beta)}$ by
\[
\mathcal{L}_n^{(\alpha,\beta)}(f,x) = \mathcal{P}_n^{(\alpha,\beta)}(f,x) + f \left(\frac{x + 1 + \alpha - \beta x}{n+\beta} \right),
\]
for every $x \in [0,\infty)$. The operator $\mathcal{L}_n^{(\alpha,\beta)}$ are linear and preserve the linearity properties:
\[
\mathcal{L}_n^{(\alpha,\beta)}(t-x,x) = 0, \quad t \in [0,\infty).
\]

Let $g \in W^2$ and $x,t \in [0,\infty)$. By Taylor’s expansion
\[
g(t) = g(x) + g'(x)(t-x) + \int_x^t (t-u)g''(u)du, \quad t \in [0,\infty).
\]
Applying $\mathcal{L}_n^{(\alpha,\beta)}$ on above and using (12), we get
\[
\mathcal{L}_n^{(\alpha,\beta)}(g,x) = g(x) + \mathcal{L}_n^{(\alpha,\beta)} \left(\int_x^t (t-u)g''(u)du,x \right).
\]
Hence by Lemma (2) one has
\[
\|\mathcal{L}_n^{(\alpha,\beta)}(g,x) - g(x)\| \leq \mathcal{L}_n^{(\alpha,\beta)} \left(\int_x^t |t-u| |g''(u)|du,x \right)
\]
\[
\leq \mathcal{L}_n^{(\alpha,\beta)} \left((t-x)^2,x \right) \|g''\|
+ \left| \int_x^{(x+1+\alpha-\beta x)/(n+\beta)} \left(\frac{x + 1 + \alpha - \beta x}{n+\beta} - u \right) |g''(u)|du \right|
\]
\[
\leq \left(\frac{1+\beta^2}{n+\beta} \right) \left(\phi^2(x) + \frac{1}{n+\beta} \right) \|g''\|
+ \left(\frac{1+\beta^2}{n+\beta} \right) \left(\phi^2(x) + \frac{1}{n+\beta} \right) \|g''\|.
\]
Since
\[
\|\mathcal{P}_n^{(\alpha,\beta)}(f,x)\| \leq \sum_{k=0}^{n} \int_0^\infty \rho_{\alpha,k}(t) \left| \left(\frac{x+1}{n+\beta} \right)^k \right| dt \leq \|f\|,
\]

\[
(13)
\]
Taking infimum overall $g \in W^2$, we get

$$\| \mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x) \| \leq K \left(f, \left(\frac{1 + \beta^2}{n + \beta} \right) \left(\phi^2(x) + \frac{1}{n + \beta} \right) \right) + \omega_2 \left(f, \frac{|1 + \alpha - \beta x|}{n + \beta} \right).$$

By (8), we get

$$\| \mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x) \| \leq C \omega_2 \left(f, \phi^2(x) + \frac{1}{n + \beta} \right) + \omega_2 \left(f, \frac{|1 + \alpha - \beta x|}{n + \beta} \right),$$

which proves the theorem.

5 Weighted approximation

Let $B_{x^2}[0, \infty) = \{ f : \text{ for every } x \in [0, \infty), \ \| f(x) \| \leq M_f (1 + x^2) \}$, where M_f is a constant depending on f. By $C_{x^2}[0, \infty)$, we denote subspace of all continuous functions belonging to $B_{x^2}[0, \infty)$. Also, let $C_{x^2}[a, b]$ be the subspace of all $f \in C_{x^2}[0, \infty)$ for which $\lim_{x \to \infty} \frac{f(x)}{1 + x^2}$ is finite. The norm on $C_{x^2}[0, \infty)$ is $\| f \|_{x^2} = \sup_{x \in [0, \infty)} \frac{|f(x)|}{1 + x^2}$.

Now, we discuss the weighted approximation theorem, when the approximation formula holds true on the interval $[0, \infty)$. Several other researchers have studied in this direction and obtained different approximation properties of many operators via summability methods also, we mention some of them as [1], [9]–[15], [17]–[19] etc.

Theorem 2. For each $f \in C_{x^2}[0, \infty)$, we have

$$\lim_{n \to \infty} \| \mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x) \|_{x^2} = 0.$$
The first term of the above inequality tends to zero from Theorem 2 of [20]. By Lemma 4 for any fixed $x_0 > 0$ it is easily seen that $\sup_{x \geq x_0} \frac{|\phi_1^{(1+r^2)}(x)|}{(1+s)^{1+s}}$ tends to zero as $n \to \infty$. We can choose $x_0 > 0$ so large that the last part of the above inequality can be made small enough. Thus the proof is completed.

6 Voronovskaja type theorem

In this section we establish a Voronovskaja type asymptotic formula for the operators $\mathcal{D}_n^{(\alpha, \beta)}$.

Lemma 5. For every $x \in [0, \infty)$, we have
\[
\lim_{n \to \infty} n \mathcal{D}_n^{(\alpha, \beta)}(t-x, x) = (1 + \alpha - \beta) x, \tag{18}
\]
\[
\lim_{n \to \infty} n \mathcal{D}_n^{(\alpha, \beta)}((t-x)^2, x) = x(2+x). \tag{19}
\]

Theorem 4. If any $f \in C^2_c([0, \infty))$ such that f'', $f''' \in C^2([0, \infty))$ and $x \in [0, \infty)$ then, we have
\[
\lim_{n \to \infty} n [\mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x)] = (1 + \alpha - \beta) f'(x) + \frac{x(2+x)}{2} f''(x),
\]
for every $x \geq 0$.

Proof. Let $f, f', f'' \in C^2_c([0, \infty))$ and $x \in [0, \infty)$. By Taylor’s expansion we can write
\[
f(t) = f(x) + f'(x)(t-x) + \frac{1}{2!} f''(x)(t-x)^2 + r(t, x)(t-x)^2,
\]
where $r(t, x)$ is Peano form of the remainder, $r(\cdot, x) \in C^2_c([0, \infty))$ and $\lim_{t \to x} r(t, x) = 0$. Applying $\mathcal{D}_n^{(\alpha, \beta)}$ to above, we obtain
\[
n [\mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x)] = f'(x)n \mathcal{D}_n^{(\alpha, \beta)}(t-x, x)
\]
\[
+ \frac{n}{2!} f''(x) n \mathcal{D}_n^{(\alpha, \beta)}((t-x)^2, x)
\]
\[
+ n \mathcal{D}_n^{(\alpha, \beta)}(r(t, x)(t-x)^2, x).
\]

By Cauchy-Schwarz inequality, we have
\[
\mathcal{D}_n^{(\alpha, \beta)}(r(t, x)(t-x)^2, x) \leq \frac{\mathcal{D}_n^{(\alpha, \beta)}((r(t, x))^2, x)}{\mathcal{D}_n^{(\alpha, \beta)}((t-x)^4, x)}. \tag{21}
\]
We observe that $r^2(x, x) = 0$ and $r^2(\cdot, x) \in C^2([0, \infty))$. Then, we have
\[
\lim_{n \to \infty} n \mathcal{D}_n^{(\alpha, \beta)}((r(t, x))^2, x) = r^2(x, x) = 0, \tag{22}
\]
uniformly with respect to $x \in [0, A]$, where $A > 0$. Now from (21) and (22) and Lemma 5, we obtain
\[
\lim_{n \to \infty} n \mathcal{D}_n^{(\alpha, \beta)}(r(t, x)(t-x)^2, x) = 0.
\]

Hence,
\[
\lim_{n \to \infty} n [\mathcal{D}_n^{(\alpha, \beta)}(f, x) - f(x)]
\]
\[
= \lim_{n \to \infty} \left(f'(x)n \mathcal{D}_n^{(\alpha, \beta)}(t-x, x) + \frac{n}{2} f''(x) n \mathcal{D}_n^{(\alpha, \beta)}((t-x)^2, x)
\]
\[
+ n \mathcal{D}_n^{(\alpha, \beta)}(r(t, x)(t-x)^2, x) \right)
\]
\[
= (1 + \alpha - \beta) x f'(x) + x(2+x)/2 f''(x),
\]
which completes the proof.

7 Better estimation

It is well known that the operators preserve constant as well as linear functions. To make the convergence faster, King [8] proposed an approach to modify the classical Bernstein polynomials, so that this sequence preserves two test functions e_0 and e_1. After this several researchers have studied that many approximating operators L, possess these properties i.e. $L(e_i, x) = e_i(x)$ where $e_i(x) = x^i (i = 0, 1)$, for examples Bernstein, Baskakov and Baskakov-Durrmeyer-Stancu operators.

In 2012 [3] Braica et al. find some properties of a King-type operator and gave an approximation theorem and a Voronovskaja type theorem for this operator.

As the operators $\mathcal{D}_n^{(\alpha, \beta)}$ introduced in (4) preserve only the constant functions so further modification of said operators is proposed to be made so that the modified operators preserve the constant as well as linear functions, for this purpose the modification of $\mathcal{D}_n^{(\alpha, \beta)}$ as follows:
\[
\mathcal{D}_n^{(\alpha, \beta)}(f, x) = n \sum_{k=0}^{\infty} P_{n,k}(r_n(x)) \int_0^{r_n(x)} s_{n,k}(t) f\left(\frac{nt + \alpha}{n + \beta}\right) dt,
\]
where $r_n(x) = \frac{(n+\beta)x-(\alpha+1)}{n}$ and $x \in I_n = \left[\frac{\alpha+1}{n+\beta}, \infty\right)$.

Lemma 6. For each $x \in I_n$, we have
\[
\mathcal{D}_n^{(\alpha, \beta)}(1, x) = 1,
\]
\[
\mathcal{D}_n^{(\alpha, \beta)}(t, x) = x,
\]
\[
\mathcal{D}_n^{(\alpha, \beta)}(t^2, x) = \left(\frac{n+1}{n+2}\right)x^2 + \left(\frac{2[n-(\alpha+1)]}{n(n+\beta)}\right)x
\]
\[
+ \left\{\frac{(n+1)(\alpha+1)^2}{n(n+\beta)^2} - \frac{(4+2\alpha)(\alpha+1)}{(n+\beta)^2} + \frac{2+2\alpha + \alpha^2}{(n+\beta)^2}\right\}.
\]
we have \(\beta \sqrt{\frac{\pi}{2}} \). By Taylor’s expansion we get

\[
D_n(t) = \beta \sqrt{\frac{\pi}{2}}.
\]

Obviously, we have

\[
\left| D_n(t) \right| \leq (t-x)^2 \| g'' \|,
\]

\[
\left| D_n^{(\alpha,\beta)}(g,x) - g(x) \right| \leq D_n^{(\alpha,\beta)}((t-x)^2,x) \| g'' \| = \overline{n}_{2,2} \| g'' \|.
\]

Taking infimum overall \(g \in C^2(I_n) \), we obtain

\[
\left| D_n^{(\alpha,\beta)}(f,x) - f(x) \right| \leq K_2(f,\overline{n}_{2,2}).
\]

By (8), we have

\[
\left| D_n^{(\alpha,\beta)}(f,x) - f(x) \right| \leq C \omega_2 \left(f, \sqrt{\overline{n}_{2,2}} \right),
\]

which proves the theorem.

Theorem 6. For any \(f \in C^2(I_n) \) such that \(f', f'' \in C^2(I_n) \), we have

\[
\lim_{n \to \infty} \left| D_n^{(\alpha,\beta)}(f,x) - f(x) \right| = \frac{(x+2)/2}{f''(x)}
\]

for every \(x \in I_n \).

Proof: The proof of above Theorem is in similar manner as Theorem 4.

Acknowledgement

The authors would like to express their deep gratitude to the anonymous learned referee(s) and the editor for their valuable suggestions and constructive comments, which resulted in the subsequent improvement of this research article. Special thanks are due to Prof. M. Abdel-Aty, Editor in chief of “Applied Mathematics & Information Sciences” for kind cooperation, smooth behaviour during communication and for their efforts to send the reports of the manuscript timely. The authors are also grateful to all the editorial board members and reviewers of esteemed
References

as PhD students. He is a member of many professional societies such as Indian Mathematical Society (IMS), International Academy of Physical Sciences (IAPS), International Association of Engineers (IAENG), Gujarat Mathematical Society, International Society for Research and Development (ISRD), and Indian Academicians and Researchers Association (IARA). Citations of his research contributions can be found in many books and monographs, PhD thesis, and scientific journal articles, much too numerous to be recorded here.

M. Mursaleen is full Professor at Department of Mathematics at Aligarh Muslim University, India. His research interests are in the areas of pure and applied mathematics including Approximation Theory, Summability Theory, Fixed Point Theory, Operator Theory etc. He has published more than 200 research articles in reputed international journals. He is member of several scientific committees, advisory boards as well as member of editorial board of a number of scientific journals. He has visited a number of foreign universities/ institutions as a visiting scientist/ visiting professor. Recently, he has been awarded the Outstanding Researcher of the Year 2014 of Aligarh Muslim University.

Preeti Sharma is a Ph.D student at Sardar Vallabhbhai National Institute of Technology, Surat. She received the M.Sc. degree in Mathematics & Computing from Indian Institute of Technology Guwahati, in 2012. Her research interests are in the areas of Approximation Theory and Operator Theory.