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Abstract: In order to improve the parameters estimation precision, a two-stage leastsquares iterative algorithm for Box-Jenkins models
is presented, which is based on the interactive estimation theory of the hierarchical identification and the auxiliary model. The main
idea of the algorithm is to decompose a Box-Jenkins system into two subsystems so as to identify each subsystem, respectively. In our
algorithm, the dimensions of the involved covariance matrices in each subsystem turn to be small. The simulation results indicate that
the proposed algorithm is effective and has a high computational efficiency.
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1 Introduction

Actual system often has interference effect, and the
interference is often with colored noise. Under the colored
noise interference, many identification methods are used to
estimate parameters for Box-Jenkins model [1,2,3,4,5]. In
order to get unbiased estimation parameters of the model,
the recursive extended least squares algorithm (RELS)
for CARMA model was extended to Box-Jenkins model,
and then the recursive generalized extended least squares
algorithm (RGELS) was presented [6]. The structure
and parameter estimation of Box-Jenkins model were
obtained by using UD decomposition [7]. The deviation
compensation least-squares identification method and
its recursive form were pushed by using deviation
compensation principle [8,9]. The drawback of deviation
compensation least squares identification method is that
the parameters of noise model are not identified. But the
recursive extended least-squares algorithm is simple and
easily to realized, not only can identify the parameters of
the system model, but also parameter estimation of the
noise model can be obtained [10,11].

Least-squares iteration identification method use all
the data of the system in the process of every step
iterative calculation, and extract information as much

as possible from the data to improve the parameter
estimation accuracy[12,13,14].For example, Ding et al.
presented least squares based iterative algorithms for
Hammerstein nonlinear ARMAX systems[14], and for OE
and OEMA systems[15]; Han et al. gave a hierarchical
least squares based iterative identification algorithm fora
class of multivariable CARMA-like systems[16]; Zhang
et al. Proposed a hierarchical gradient based iterative
parameter estimation algorithm for multi-variable output
error Moving average systems [17]; Bao et al. developed
a least squares based iterative identification method for
multi-variable controlled ARMA systems[18]; Ding et
al. Presented a least squares based iterative algorithm
for controlled auto-regressive auto-regressive moving
average (CARARMA) systems[19]. Also, a least squares
based iterative algorithm is developed for BoxCJenkins
systems, and the precision of parameter estimation is
improved compared with recursive generalized extended
least squares algorithm[20].

However, because the dimensions of the involved
covariance matrices are big, lead to large amount of
calculation[20]. The idea of decomposition technique and
the auxiliary model identification were adopted in this
paper, and then the two-stage [21,22,23,24] least-squares
iteration identification method was proposed for Box-
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Jenkins model. The basic idea is to decompose a Box-
Jenkins system into two subsystems and to identify each
subsystem, respectively. Because the dimensions of the
involved covariance matrices in each subsystem become
small, the proposed algorithm has a high computational
efficiency[25].

2 Model description

Let us introduce some notations first. “A:=X” or “X:=A”
stands for “A is defined as X”; the symbolI stands
for an identity matrix of appropriate size (n × n); the
superscriptT denotes the matrix transpose;In represents
an n-dimensional column vector whose elements are all 1.

Consider the Box-Jenkins system, depicted in Fig.1,

y(t) =
B(z)
A(z)

u(t)+
D(z)
C(z)

v(t) (1)

Fig. 1 A system described byt he Box-Jenkins model

Where, y(t) and u(t) are the input and output
sequences of the system, respectively,v(t) is a white noise
sequence with zero mean and varianceσ2, andA(z), B(z),
C(z) and D(z) are the polynomials in the unit backward
shift operatorZ−1([Z−1y(t) = y(t −1)]), and defined by,

A(z) := 1+a1z−1+a2z−2+ · · ·+anaz−na

B(z) := b1z−1+b2z−2+ · · ·+bnbz−nb

C(z) := 1+ c1z−1+ c2z−2+ · · ·+ cncz−nc

D(z) := 1+d1z−1+d2z−2+ · · ·+dnd z−nd

Without loss of generality, assume thatu(t) = 0,y(t) =
0, v(t) = 0 for t ≤ 0 , and known orders(na,nb,nc,nd).
The objective of this paper is to apply the decomposition
technique and derive a two-stage least squares based
iterative identification algorithm for estimating the system
parameters, and decompose the original identification
system into two subsystems with smaller order problem.

Define the system parameter vectors and the
information vectors,

θ :=

[

θs
θn

]

∈ Rn

θs := [a1,a2, · · · ,ana ,b1,b2, · · · ,bnb ] ∈ Rna+nb

θn := [c1,c2, · · · ,cnc ,d1,d2, · · · ,dnd ] ∈ Rnc+nd

ϕ(t) :=

[

ϕs(t)
ϕn(t)

]

∈ Rn

ϕs(t) := [−x(t −1),−x(t −2), · · · ,−x(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T ∈ R(na+nb)

ϕn(t) := [−w(t −1),−w(t −2), · · · ,−w(t −nc),

v(t −1),v(t −2), · · · ,v(t −nd)]
T ∈ R(nc+nd)

Define the intermediate variable,

x(t) :=
A(z)
B(z)

u(t) (2)

Or

x(t) = [1−A(z)]x(t)+B(z)u(t)

= (−a1z−1−a2z−2−·· ·−anaz−na)x(t)

+(b1z−1+b2z−2+ · · ·+bnbz−nb)u(t)

= −a1x(t −1)−a2x(t −2)−·· ·

−anax(t −na)+b1u(t −1)+b2u(t −2)

+ · · ·+bnbu(t −nb)

= ϕT
s (t)θs

w(t) :=
D(z)
C(z)

v(t) (3)

Or

w(t) = [1−C(z)]w(t)+D(z)v(t)

= (−c1z−1− c2z−2−·· ·− cncz−nc)w(t)

+(1+d1z−1+d2z−2+ · · ·+dnd z−nd )v(t)

= −c1w(t −1)− c2w(t −2)−·· ·

−cncw(t −nc)+ v(t)+d1v(t −1)

+d2v(t −2)+ · · ·+dnd v(t −nd)

= ϕT
n (t)θn + v(t)

Replacing (1) with (2), (3), we have

y(t) = x(t)+w(t)

= ϕT
s (t)θs +ϕT

n (t)θn + v(t)

= ϕT (t)θ + v(t) (4)

3 Two-stage least squares based iterative
identification algorithm

The basic idea of two-stage least squares iterative
identification algorithm is decomposing the system into
two subsystems, and decomposing the parameters and
information vector respectively into two parameter sub
vectors and information sub vectors, and then using
hierarchical identification of the interactive estimation
theory and the auxiliary model to identify parameters of
each subsystem. Define two intermediate variables:

y1(t) := y(t)−ϕT
n (t)θn (5)

y2(t) := y(t)−ϕT
s (t)θs (6)
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From (5) and (6), the system in (4) can be decomposed into
two “fictitious” subsystems:

y1(t) = ϕT
s (t)θs + v(t) (7)

y2(t) = ϕT
n (t)θn + v(t) (8)

Consider the data fromt = L,L ≫ n, and define
the stacked output vectorsY (L), Y1(L) and Y2(L), the
stacked information matrices andΦs(L) and Φn(L), and
the stacked white noise vectorV (L) as:

Y (L):=









y(1)
y(2)

...
y(L)









∈RL V (L):=









v(1)
v(2)

...
v(L)









∈RL

Y1(L):=









y1(1)
y1(2)

...
y1(L)









∈RL Y2(L):=









y2(1)
y2(2)

...
y2(L)









∈RL

Φs(L):=











ϕT
s (1)

ϕT
s (2)
...

ϕT
s (L)











∈RL×(na+nb)Φn(L):=











ϕT
n (1)

ϕT
n (2)
...

ϕT
n (L)











∈RL×(nc+nd)

Note that Y (L), Φs(L) and Φn(L) contain all the
measured data{u(t),y(t) : t = 1,2, · · · ,L}, from (5) and
(6), we have

Y1(L) = Y (L)−Φn(L)θn (9)

Y2(L) = Y (L)−Φs(L)θs (10)

From (7) and (8), we have

Y1(L) = Φs(L)θs +V (L)

Y2(L) = Φn(L)θn +V (L)

Define two quadratic criterion functions:

J1(θs) :=‖ Y1(L)−Φsθs ‖
2

J2(θn) :=‖ Y2(L)−Φnθn ‖
2

For these two optimization problems, letting the partial
derivatives ofJ1(θs) andJ2(θn) with respect toθs andθn
be zero gives:

∂J1(θs)
∂θs

=−2ΦT
s (L)[Y1(L)−Φs(L)θs] = 0

∂J2(θn)
∂θn

=−2ΦT
n (L)[Y2(L)−Φn(L)θn] = 0

Assume that the information vectorsϕs(t) and ϕn(t)
are persistently exciting, that is,[ΦT

s (L)Φs(L)] and
[ΦT

n (L)Φn(L)] are non-singular. From the above two
equations, we can obtain the following least squares
estimates of the parameter vectorsθs andθn :

θ̂s = [ΦT
s (L)Φs(L)]−1ΦT

s (L)Y1(L) (11)

θ̂n = [ΦT
n (L)Φn(L)]−1ΦT

n (L)Y2(L) (12)

Substituting (9) into (11) and (10) into (12) gives

θ̂s = [ΦT
s (L)Φs(L)]

−1ΦT
s (L)[Y (L)−Φn(L)θn] (13)

θ̂n = [ΦT
n (L)Φn(L)]

−1ΦT
n (L)[Y (L)−Φs(L)θs] (14)

However, the right-hand sides of (13) and (14) contain
the unknown parameterθs andθn, andΦs(L) andΦn(L)
contain the unknown variablex(t− i), w(t− i) andv(t− i),
respectively, it is impossible to compute the estimatesθ̂s

andθ̂n. In order to solve the difficult, the approach is based
on the hierarchical identification principle. As follows: let

k = 1,2,3, · · · be an iteration variable,̂θk =

[

θ̂s,k

θ̂n,k

]

be the

iterative estimate ofθk =

[

θs,k
θn,k

]

at iterationk, and ˆxk−1(t−

i), ŵk−1(t − i) and v̂k−1(t − i) be the iterative estimate of
x(t − i),w(t − i) andv(t − i) at iterationk−1, and define

ϕ̂k(t) :=

[

ϕ̂s,k(t)
ϕ̂n,k(t)

]

∈ Rna+nb+nc+nd

ϕ̂s,k(t) := [−x̂k−1(t −1),−x̂k−1(t −2), · · · ,−x̂k−1(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T ∈ Rna+nb

ϕ̂n,k := [−ŵk−1(t −1),−ŵk−1(t −2), · · · ,−ŵk−1(t −nc),

v̂k−1(t −1), v̂k−1(t −2), · · · , v̂k−1(t −nd)]
T ∈ Rnc+nd

Replacingt with t − i in (2), we have:

x(t − i) = ϕT
s (t − i)θs

Replacingϕs(t − i) andθs with θ̂s,k(t − i) andθ̂s,k(t), the
estimate ˆxk(t − i) of x(t − i) can be computed by

x̂k(t − i) = ϕ̂T
s (t − i)θ̂s,k(t) (15)

From (3), we have

w(t − i) = y(t − i)− x(t − i)

Replacing ˆxk(t − i) with x(t − i), the estimate ˆwk(t − i) of
w(t − i) can be computed by

ŵk(t − i) = y(t − i)− x̂k(t − i)

= y(t − i)−ϕT
s,k(t − i)θ̂s,k(t) (16)

From (3), we have

v(t − i) = w(t − i)−ϕT
n (t − i)θn

Replacingw(t− i), ϕn(t− i) andθn with ŵk(t− i), ϕ̂n,k(t−
i) and θ̂n,k(t), the estimate ˆvk(t − i) of v(t − i) can be
computed by

v̂k(t − i) = ŵk(t − i)− ϕ̂T
n,k(t − i)θ̂n,k(t) (17)

Certainly,v(t − i) can be computed by

v(t − i) = y(t − i)−ϕT (t)θ

Replacingϕ(t), θ with ϕ̂k(t), θ̂k(t) the estimate ˆvk(t − i)
of v(t − i) can be computed by

v̂k(t − i) = y(t − i)− ϕ̂T
k (t − i)θ̂k(t). (18)
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To sum up, two-stage least squares based iterative
identification algorithm as follow:

θ̂s,k = [Φ̂T
s,k(L)Φ̂s,k(L)]−1Φ̂T

s,k(L)[Y (L)−

Φ̂n,k(L)θ̂n,k−1] (19)

θ̂n,k = [Φ̂T
n,k(L)Φ̂n,k(L)]−1Φ̂T

n,k(L)[Y (L)−

Φ̂s,k(L)θ̂s,k] (20)

Y (L) = [y(1),y(2), · · · ,y(L)]T (21)

Φ̂s,k(L) = [ϕ̂s,k(1), ϕ̂s,k(2), · · · , ϕ̂s,k(L)]T (22)

Φ̂n,k(L) = [ϕ̂n,k(1), ϕ̂n,k(2), · · · , ϕ̂n,k(L)]T (23)

ϕ̂s,k(t)=[−x̂k−1(t −1),−x̂k−1(t −2), · · · ,−x̂k−1(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T (24)

ϕ̂n,k=[−ŵk−1(t −1),−ŵk−1(t −2), · · · ,−ŵk−1(t −nc),

v̂k−1(t −1), v̂k−1(t −2), · · · , v̂k−1(t −nd)]
T (25)

ϕ̂k(t) = [ϕT
s,k(t),ϕ

T
n,k(t)]

T (26)

θ̂k = [θ̂ T
s,k, θ̂

T
n,k]

T (27)

x̂k(t − i) = ϕ̂T
s,k(t − i)θ̂s,k (28)

ŵk(t − i) = y(t − i)− ϕ̂T
s,k(t − i)θ̂s,k (29)

v̂k(t − i) = y(t − i)− ϕ̂T
k (t − i)θ̂k (30)

The flow chart of computing the parameter estimates
θ̂s,k andθ̂n,k is shown in Fig.2.

Fig. 2 The flow chart for computing the two-stage LSI
parameter estimates

4 The least squares based iterative
identification algorithm

To compare the algorithm, the least-squares iterative
algorithm for Box-Jenkins model was given in this section,
as follows:

θ̂k = [Φ̂T
k (L)Φ̂k(L)]−1Φ̂T

k (L)Y (L)

Y (L) = [y(1),y(2), · · · ,y(L)]T

Φ̂k(L) = [ϕ̂k(1), ϕ̂k(2), · · · , ϕ̂k(L)]T

ϕ̂k(t) =

[

ϕ̂s,k(t)
ϕ̂n,k(t)

]

ϕ̂s,k(t) = [−x̂k−1(t −1),−x̂k−1(t −2), · · · ,−x̂k−1(t −na),

u(t −1),u(t −2), · · · ,u(t −nb)]
T

ϕ̂n,k = [−ŵk−1(t −1),−ŵk−1(t −2), · · · ,−ŵk−1(t −nc),

v̂k−1(t −1), v̂k−1(t −2), · · · , v̂k−1(t −nd)]
T

θ̂k = [θ̂ T
s,k, θ̂

T
n,k]

T

x̂k(t − i) = ϕ̂T
s,k(t − i)θ̂s,k

ŵk(t − i) = y(t − i)−ϕT
s,k(t − i)θ̂s,k

v̂k(t − i) = y(t − i)− ϕ̂T
k (t − i)θ̂k

5 Example

Consider the following simulation system of Box-Jenkins
model:

y(t) = B(z)
A(z)u(t)+ D(z)

C(z) v(t)

A(z) = 1+a1z−1+a2z−2 = 1+1.6z−1+0.8z−2

B(z) = b1z−1+b2z−2 = 0.412z−1+0.309z−2

C(z) = 1+ c1z−1 = 1+0.8z−1

D(z) = 1+d1z−1 = 1−0.64z−1

θs = [a1,a2,b1,b2]
T = [1.6,0.8,0.412,0.309]T

θn = [c1,d1]
T = [0.8,−0.64]T

θ =

[

θs
θn

]

In simulation, {u(t)} is taken as an uncorrelated
persistent excitation signal sequence with zero mean and
unit variance,{v(t)} as a white noise sequence with zero
mean and varianceσ2 .

Table 1 The two-stage LSI estimates and errors (L=3000)
k a1 a2 b1 b2 c1 d1 δ (%)

1 0.91797 0.25697 0.41571 0.04388 0.73201 -0.55031 43.21152
5 1.49932 0.72201 0.41788 0.28496 0.80454 -0.63611 6.11205
10 1.59371 0.79125 0.41768 0.32386 0.80813 -0.63307 1.03478
15 1.56621 0.77580 0.41767 0.31252 0.80833 -0.63235 2.05145
20 1.57820 0.78179 0.41765 0.31749 0.80829 -0.63250 1.51456
25 1.57264 0.77918 0.41766 0.31518 0.80831 -0.63241 1.74772
26 1.57605 0.78076 0.41765 0.31660 0.80830 -0.63246 1.60218
27 1.57310 0.77939 0.41766 0.31537 0.80831 -0.63242 1.72760
True 1.60000 0.80000 0.41200 0.30900 0.80000 -0.64000 0.00000
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Fig. 3 the two-stage LSI parameter estimation errorsδ versus
k (σ2 = 0.502 andσ2 = 1.002)

Fig. 4 the parameter estimation errors versusk for the
algorithms(σ2 = 0.502)

From the simulation results in Tables 1-2 and Figs.3-4,
we can draw the following conclusions:

With the decrease of the noise mean varianceσ2 , the
accuracy of parameter estimation is gradually improved,
compare to Fig.3;

Under the same data length and noise variance, with
the increase of iteration numbers, the parameter estimation
error is smaller and smaller, and the two-stage LSI is
obviously superior to LSI from Fig.4

Table 2 The LSI estimates and errors (L=3000)

k a1 a2 b1 b2 c1 d1 δ (%)

1 1.82146 0.93284 0.41597 0.38206 0.0000 0.0000 49.84331
5 1.53821 0.68932 0.41782 0.25655 0.78749 -0.58859 6.92539
10 1.37748 0.63592 0.41822 0.19424 0.99054 -0.67091 16.88002
15 1.58786 0.89152 0.41890 0.28227 0.82818 -0.60752 4.96624
20 1.72951 0.91571 0.41825 0.34128 0.65510 -0.66347 10.81336
25 1.63762 0.80134 0.41804 0.30280 0.73493 -0.67901 4.00652
26 1.61662 0.78350 0.41804 0.29403 0.75643 -0.67845 3.04469
27 1.59680 0.76839 0.41805 0.28577 0.77707 -0.67745 2.78985
True 1.60000 0.80000 0.41200 0.30900 0.80000 -0.64000 0.00000

6 Conclusion

This paper presents a two-stage LSI algorithm for Box-
Jenkins models by using auxiliary model identification

idea and the decomposition technique. The proposed
algorithm requires less computational load than the
least squares based iterative algorithm. The simulation
results show that the proposed algorithm has fast
convergence rates and can generate highly accurate
parameter estimation.
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