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Abstract: In order to improve the parameters estimation precision, a two-stagsdtpeses iterative algorithm for Box-Jenkins models
is presented, which is based on the interactive estimation theory of thechieed identification and the auxiliary model. The main
idea of the algorithm is to decompose a Box-Jenkins system into two sulnsysteas to identify each subsystem, respectively. In our
algorithm, the dimensions of the involved covariance matrices in eaclystebsturn to be small. The simulation results indicate that
the proposed algorithm is effective and has a high computational efficien
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1 Introduction as possible from the data to improve the parameter
estimation accurac$p,13,14].For example, Ding et al.
Actual system often has interference effect, and thepresented least squares based iterative algorithms for
interference is often with colored noise. Under the coloredHammerstein nonlinear ARMAX systenig]], and for OE
noise interference, many identification methods are used tand OEMA systemd[5]; Han et al. gave a hierarchical
estimate parameters for Box-Jenkins modg2[3,4,5]. In least squares based iterative identification algorithrmafor
order to get unbiased estimation parameters of the modetlass of multivariable CARMA-like systemi|; Zhang
the recursive extended least squares algorithm (RELSgt al. Proposed a hierarchical gradient based iterative
for CARMA model was extended to Box-Jenkins model, parameter estimation algorithm for multi-variable output
and then the recursive generalized extended least squaresror Moving average system$7; Bao et al. developed
algorithm (RGELS) was presented][ The structure a least squares based iterative identification method for
and parameter estimation of Box-Jenkins model weremulti-variable controlled ARMA system&§]; Ding et
obtained by using UD decompositioid]| The deviation al. Presented a least squares based iterative algorithm
compensation least-squares identification method andor controlled auto-regressive auto-regressive moving
its recursive form were pushed by using deviation average (CARARMA) system&]. Also, a least squares
compensation principle8[9]. The drawback of deviation based iterative algorithm is developed for BoxCJenkins
compensation least squares identification method is thasystems, and the precision of parameter estimation is
the parameters of noise model are not identified. But thémproved compared with recursive generalized extended
recursive extended least-squares algorithm is simple anteast squares algorith2().
easily to realized, not only can identify the parameters of = However, because the dimensions of the involved
the system model, but also parameter estimation of theovariance matrices are big, lead to large amount of
noise model can be obtainetl 11]. calculationpQ]. The idea of decomposition technique and
Least-squares iteration identification method use allthe auxiliary model identification were adopted in this
the data of the system in the process of every stegpaper, and then the two-stad¥l[22,23,24] least-squares
iterative calculation, and extract information as muchiteration identification method was proposed for Box-
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Jenkins model. The basic idea is to decompose a Box- o(t) = {gs(&ﬂ er
Jenkins system into two subsystems and to identify each n
subsystem, respectively. Because the dimensions of the@s(t) := [-X(t — 1), —X(t —2),--- , —X(t —a),
inVOII\I/e?h covarianc% mlatric_:t(-,;]s inheach r?ut?]system tb(i_comle u(t—1),u(t—2),---,u(t —ny)|T € RNatm)
small, the proposed algorithm has a high computationa

prop g g P Bn(t) = [~W(t—1), —W(t—2), -, —W(t —ne),

efficiencyp5].
V(t - 1),V(t - 2)7 e 7V(t - nd)]T € R(nﬁ‘nd)
Define the intermediate variable,
A(Z)

X(t) := @u(t) @)

2 Model description

Let us introduce some notations first. “A:=X" or “X:=A” Or
stands for “A is defined as X”; the symbdl stands -
for an identity matrix of appropriate sizen & n); the X(t) = [1—A(zl)]x(t)+§(z)u(t)

superscripfT denotes the matrix transpode;represents = (—az -z T—--—an,Z ")X(t)
an n-dimensional column vector whose elements are all 1. Jr(blz—lJr boz 24 .-+ bnbz‘”b)u(t)

Consider the Box-Jenkins system, depicted in Fig.1, — —anx(t— 1) —aX(t—2)—---

B D —an,X(t —Ng) +bau(t — 1) + bou(t — 2)
VO = U+ V) o) s yal -
= s (1)6s
v(t) [ ow D(2)
Clal w(t) ;== ——=v(t) 3)
(o) C@
un) [Fo M0 AN @) Or
A2) ) w(t) = [1—C(z)Jw(t) + D(z)v(t)
Fig. 1 A system described byt he Box-Jenkins model = (—c1z 1=z 2 — - —cn Z )W(t)

Where, y(t) and u(t) are the input and output F(1+ 0z 0oz P gz MV(Y)
sequences of the system, respectiwi(l,%eis a white noise = —CqW(t—1) —cow(t —2) —--
sequence with zero mean and varianceandA(z), B(z), —CnW(t — N¢) +v(t) + dyv(t — 1)

C(2) andD(z) are the polynomials in the unit backward

AoVt — 2) 4+ d V(t —
shift operatoZ~1([Z1y(t) = y(t — 1)]), and defined by, H0V(t = 2) -+ g V(t — )

= ¢n (1)6r+ V(1)
A@2) =1+az *+az 2+ +anz ™ Replacing {) with (2), (3), we have
B(2) :=biz 1+ bz 24 4bpz ™ y(t) = x(t) +w(t)
C(2) i =1+ciz ez ?+-+cpz™ = ¢J (1)0s+ ¢ (t)Bn+ V(1)
D(2) :=1+d1z 1+ bz 24+ dy,z ™ =T (1)O+V(t) (4)

Without loss of generality, assume thgt) =0, y(t) =
0, v(t) =0 fort < 0, and known ordergny,np,nc,ng). 3 Two-stage least squares based iterative
The objective of this paper is to apply the decompositionjdentification algorithm
technique and derive a two-stage least squares based
iterative identification algorithm for estimating the 818t ~ The basic idea of two-stage least squares iterative
parameters, and decompose the original identificatiorndentification algorithm is decomposing the system into
system into two subsystems with smaller order problem. two subsystems, and decomposing the parameters and
Define the system parameter vectors and theinformation vector respectively into two parameter sub

information vectors, vectors and information sub vectors, and then using
hierarchical identification of the interactive estimation
06— 6s cR theory and the auxiliary model to identify parameters of
6y each subsystem. Define two intermediate variables:
0s:= [alaa27"' 7ana’b17b2"" ’bnb} € Rt yl(t) = y(t)_¢r-1r(t)9n (5)
6r'l = [C].;CZ;"' acncad17d2a"' adnd] S Rnc+nd YZ(t) ZY(t)_d’sT(t)es (6)
@© 2014 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 3, 1355-1360 (2014)www.naturalspublishing.com/Journals.asp

1357

N SS ¥

From (6) and 6), the system in4) can be decomposed into
two “fictitious” subsystems:

yi(t) = ¢ (t)6s+ (1) (7)

y2(t) = ¢n (t)6n +v(t) (8)
Consider the data fromt = L,L > n, and define

the stacked output vectorg(L), Yi(L) and Yz(L), the

stacked information matrices aris(L) and @,(L), and
the stacked white noise vectd(L) as:

y(;) V(;)
— y(:) L V(L):= V(:) cR
y(L v(L)
w(;) W(%)
Yi(L)i= ylf ) er H(L):= yzf ) eR
V(L) ValL)
031 070
@S(L) — ¢S :( ) eRLx(na+nb)¢,n(L):: ¢n :( ) eRL><(I'1(;+FId)
#10L) s L)

Note thatY(L), @s(L) and n( ) contain all the
measured datdu(t),y(t) :t =1,2--- L}, from (5) and
(6), we have
Yi(L) =Y(L) — @n(L)6n 9)
Ya(L) = Y(L) — ®5(L)6s (10)
From (7) and @), we have
Yi(L) = @s(L)6s+ V(L)

Y2(L) = @n(L)6n+V(L)

Define two quadratic criterion functions:
Ji(65) :=| Ya(L) — ®sbs |2
J2(6n) :=|| Ya(L) — @6y |12

For these two optimization problems, letting the partial

derivatives ofJ; (6s) andJz(6,) with respect tofs and 6,
be zero gives:

98 _ 2T (L)V1(L) - @5(L)6 = 0
9%0) _ _ 2T (L) [Ya(L) — n(L)6n] = 0

Assume that the information vectogg(t) and ¢n(t)
are persistently exciting, that isj®J (L)@s(L)] and

[@] (L)®?y(L)] are non-singular. From the above two

However, the right-hand sides df3) and (L4) contain
the unknown parameted; and 6,, and @s(L) and ®,(L)
contain the unknown variablét —i), w(t —i) andv(t —i),
respectively, it is impossible to compute the estim#les
and#@,. In order to solve the difficult, the approach is based
on the hierarchical identification principle. As followst |

k=123, --- be an iteration variablej = [gs’k} be the
n,k

iterative estimate off = {g&ﬂ atiterationk, andx;_1 (t —

n,
i),W_1(t —i) andvi_1(t —i) be the iterative estimate of
X(t—1i),w(t —i) andv(t —i) at iterationk — 1, and define

(ﬁ (t) [g:i% ﬂ € RMatMp+ne+ng

Psk(t) =[R2t = 1), ~Re-1(t = 2), -+, —Re-1(t — na),
ut—1),u(t—2),--,u(t —np)|" € Rt
Pk = [Wi1(t — 1), —W_1(t —2), -, =W 1(t —ne),
\7k,1(t — 1),\7k,1(t — 2)7 e 7\7|(,1(t — nd)]T € Rethd

Replacing witht —i in (2), we have:
X(t—1) = ¢d (t—1)6s

Replacingds(t — i) and 6s with By (t — i) and Bsk(t), the
estimatex(t — i) of x(t —i) can be computed by

R(t—i) = ¢d (t —1)Bsx(t)
From 3), we have
wt—i)=yt—i)—x(t—1i)

Replacingxg(t — i) with x(t — i), the estimatevg(t —i) of
w(t —i) can be computed by

(15)

Wit i) = y(t—i) ~R(t—i)
= y(t—i) — pdy(t—i)Bsx(t) (16)
From 3), we have
Vt—i)=w(t—i)— ¢/ (t—i)6,
Replacingw(t —i), ¢n(t —i) and6h with Ve (t —i), Pkt —

i) and B,k(t), the estimatew(t —i) of v(t —i) can be
computed by
Ut —1i) Pkt —1)Bnk(t)

=W (t—i)— a7)

equations, we can obtain the following least squares

estimates of the parameter vectégsand 6, :

Certainly,v(t —i) can be computed by

6= [ (L) @s(L)] 1] (L)Va(L) (11) Wt—i)=y(t—i)— ¢ (1)

6r = [@] (L) P (L)] ] (L)Ya(L) (12)

Substituting 9) into (11) and (L0) into (12) gives Replacingg (t), 6 with @y(t), (t) the estimatest — i)

és _ [CDST(L)¢>S(L)]*1<DST(L)[Y(L) — on(L)6] (13) of v(t —i) can be computed by

bn = (@7 (L) @n(L)] o (L)[Y (L) — @5(L)64] (14) Ut —i) = y(t =) — ¢ (t—1)k(t). (18)
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To sum up, two-stage least squares based iterativd The least squares based iterative

identification algorithm as follow:

Bk = B (L) Dsi(L)] ML (LY(L) —
Prx(L) On1] (19)
Bk = (D, (L) Pni(L)] 1T (L)Y (L) —
(ﬁsk(L)és,k} (20)
Y(L) = [y(1),y(2),---,y(L)]" (21)
Osk(L) = [Psk(1), Psk(2),---, Psk(L)]T  (22)
Poi(L) = [Prnk(1), Prk(2), - ¢ kLI (23)
Psk(t)=[Re-1(t = 1), K- 1(t =2),-- , —RK_1(t — Na),
ut—1),u(t—2),---,u(t — nb)]T (24)
Pri= W1 (t = 1), W 1(t —2),- -, =W _1(t —nc),
U1t —1),% 1(t—2),-- G 1(t—ng)]T  (25)
i) = [D (1), k()] (26)
6= 60, 67" (27)
Rt —i) = @y (t — i) bk (28)
Wik (t— i) = y(t—i) — ¢, <t—i>ésk (29)
Ui(t—i) =y(t—i)— ¢k (t—1i)6k (30)

identification algorithm

To compare the algorithm, the least-squares iterative

algorithm for Box-Jenkins model was given in this section,
as follows:

b= (B (L) D(L)] lGDT( Y (L)

Y [Y(1),(2),---,y(L)]"

Bi(L) = [Be(1), $(2), -+, P(L)]T

)
0= [gost)

Psk(t) = [Re—1(t—1), —Re1(t —2),-- -, R (t —a),
u(t—1),u(t—2),---,u(t —ny)]"
Pk = Wi 1(t = 1), Wi 1(t = 2),--- , —Wi_1(t —nc),

Vko1(t—1), %1 (t = 2), - W1 (t —ng)] T

The flow chart of computing the parameter estimates

6$k and Bn k is shown in Fig.2.

Collect fu().yt):t=12---I}
form I(L).eit) and B L)

l ke=k+l
[nitialize: k=1
*
Form®. .(L).@,.(L)ando. .().@, .(1)
Update the estimates §_ . (1) and 8, . (¢)

l

Compute X, (r—i),v.(—1).3(t~1)

Obtain é___i (r) and 6;,:.;_. (t)

End

Fig. 2 The flow chart for computing the two-stage LSI

parameter estimates

ek [eskae }
(t—1i)= s’k(t—|)6&k
V(1) = y(t 1) — ¢T, (t — ) B
Ue(t—i) = y(t—i) — ¢ (t—1)6
5 Example

Consider the following simulation system of Box-Jenkins
model:

y(t) = RAU(t) + 2F V(1)

Alz) =1+ alz ltaz2=1+1621408272
B(z) = b1z 1+ bz 2=04122"1 +0.30% 2
C(z=1+czt=1+08z1
D(z)=1+dizt=1-064z"
6s = [ag,ap, b1, by]T =[1.6,0.8,0.4120.309T
Bn = [C1,dﬂT = [0.8,—0.64}1—

— QS
- (3
In simulation, {u(t)} is taken as an uncorrelated
persistent excitation signal sequence with zero mean and

unit variance{v(t)} as a white noise sequence with zero
mean and variance? .

Table 1 The two-stage LSI estimates and errors (L=3000)

k Y ap by by cy dy (%)

1 0.91797 0.25697 0.41571 0.04388 0.73201 -0.55031 43.21152
5 1.49932 0.72201 0.41788 0.28496 0.80454 -0.63611 6.11205
10 1.59371 0.79125 0.41768 0.32386 0.80813 -0.63307 1.03478
15 1.56621 0.77580 0.41767 0.31252 0.80833 -0.63235 2.05145
20 1.57820 0.78179 0.41765 0.31749 0.80829 -0.63250 1.51456
25 1.57264 0.77918 0.41766 0.31518 0.80831 -0.63241 1.74772
26 1.57605 0.78076 0.41765 0.31660 0.80830 -0.63246 1.60218
27 1.57310 0.77939 0.41766 0.31537 0.80831 -0.63242 1.72760

True 1.60000 0.80000 0.41200 0.30900 0.80000 -0.64000 0.00000
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idea and the decomposition technique. The proposed

0351 ] algorithm requires less computational load than the
least squares based iterative algorithm. The simulation
0t . results show that the proposed algorithm has fast

convergence rates and can generate highly accurate
] parameter estimation.
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