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Abstract: Skin cancer, an aggressive cancer with a global frequency, presents an evolving public health challenge
requiring novel diagnostic approaches. The traditional method for diagnosing skin cancer involves a thorough examination
of tissue samples obtained from skin lesions. Healthcare professionals must perform the complex task of identifying
specific early symptoms to make an accurate diagnosis. Early detection of skin cancer is particularly challenging because
of the tendency for misdiagnosis due to similarities with other dermatological conditions and variations in specialist
expertise. Researchers have used machine learning algorithms to improve the performance of numerous medical
applications in recent years to improve the dependability, productivity, efficiency, predictability, and precision of medical
diagnostics. Current research presents a Multistage Deep Learning model for Skin Cancer Classifier (AMDS), a
framework designed to improve the early detection of melanoma and non-melanoma skin lesions. The AMDS consists of
several crucial phases, beginning with precise preprocessing techniques to remove extraneous components surrounding
skin lesions. Given the inherent imbalances within most skin cancer datasets, the subsequent stage employs Generative
Adversarial Networks (GANs) to generate synthetic images for enhancing dataset diversity and equip the classifier to
handle a broad spectrum of skin lesions. In the subsequent stage, an attention-based U-Net model is introduced that is
capable of generating masks for regions of interest while removing background noise. The process ended with the
classification stage which uses distinct forms of the cutting-edge EfficientNet, ResNet, and DenseNet architectures,
carefully trained using the segmented images, to find the best model for skin lesion classification. The proposed deep
learning models are systematically evaluated by utilizing the International Skin Imaging Collaboration dataset (ISIC), a
dermatology benchmark. The experimental results demonstrate that the proposed framework using a modified
EfficientNetV2S with attention mechanism outperforms other tested architectures as well as most recent research. Notably,
it achieves a 0.96 accuracy rate, 0.91 F1- score, 0.90 recall rate, and 0.93 precision rate on the test benchmarking datasets.
These results highlight the importance of the proposed multistage framework as a potential transformative instrument for
early skin cancer detection.

Keywords: Skin Cancer, Deep learning, Generative Adversarial Networks, Image Segmentation, Convolutional Neural
Network.

1 Introduction

Skin cancer is classified into Melanoma and Nonmelanoma which are considered among the 10 most common cancer
types. It is contributing to 7.2% of new cases across the world that are suffering from cancer [1]. Despite the low
percentage of melanoma compared to nonmelanoma, it causes most skin cancer deaths. Early identification of skin
cancer is crucial for increasing a patient’s chances of being cured. For the last five years, the survivability rate had
declined from 99% in cases of local disease to 63% in situations of regional disease and 20% in cases of disease
disseminated across the body [2].

In the context of clinical lesion assessment, when relying just on visual inspection by the human eye, the detection rate
for melanoma is approximately 54%, which can be considered low. However, when carried out by skilled dermoscopy
practitioners, the use of dermoscopy—a non-invasive method that entails the microscopic examination of pigmented
skin lesions—increases the diagnostic efficacy to a notable 79%. However, it is essential to acknowledge that the
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effectiveness of dermoscopy relies heavily on human judgment. The inherent possibility of human error resulting from
the participation of either unskilled or inadequately educated examiners may significantly influence the outcome [3].
Researchers have used machine learning algorithms to improve the performance of numerous medical applications in
recent years [4, 5, 6]. Machine learning approaches are distinguished by their capability to analyze large amounts of
data to uncover interesting correlations, give insight, and detect patterns. For many diseases, machine learning improved
the dependability, efficiency, predictability, and precision of medical diagnostics. In [7], the authors use wearable
technology and machine learning to control hypovolemia disorders. By applying machine learning on
electroencephalogram (EEG), a record of brain activity, Parkinson’s disease can be diagnosed [8]. the convolutional
neural network (CNN) is used to detect brain tumors using magnetic resonance imaging (MRI) [9, 10]. CNNs have also
been utilized to develop mammogram-based breast cancer detection systems [11, 12]. Regarding skin cancer,
Researchers have used CNNs to classify and extract the lesion boundary from this type of cancer [13, 14]. CNN can
implicitly extract the ABCDE rule, which is commonly used to identify skin cancers. These features represent the
asymmetry of two halves of skin lesion, smoothness of the border, color contrast, and lesion diameter size [15]. One of
the most critical challenges in machine learning is an unbalanced dataset, which causes the model to be biased toward
the dominant class. Over-sampling, under-sampling, data augmentation, and class weights modification on the loss
function are all used to address this issue [16, 17, 18]. The generative adversarial network (GAN) is a potential solution
for over-sampling since it generates synthetic pictures for classes with fewer samples and ensures the model
generalization [19]. The current research endeavors to put forth a comprehensive framework aimed at the
implementation of a sophisticated skin cancer classification system. This system is cleverly made up of a powerful
combination of Generative Adversarial Network (GAN), attention U-Net, EfficientNet, ResNet, and DenseNet
networks. All of these networks were carefully put together to deal with the complexity of the problem and improve the
ability to find and classify melanoma and non-melanoma skin lesions [20, 21, 22, 23]. Noteworthy enhancements in
image quality have been harnessed through judiciously applied techniques encompassing hair removal, median filtering,
and image normalization. One of the notable aspects of this complicated framework involves the utilization of the GAN
model, which is effectively used to generate synthetic images of skin cancer. This strategy serves an additional goal by
addressing the issue of dataset imbalance while augmenting it with a diverse range of malignant skin representations.
The main contributions can be summarized as follows:

e  Preprocessing of skin cancer images to improve image content and quality.
e Balancing dataset based on GAN and augmentation techniques.
e Proposing AMDS, a highly accurate skin cancer classification system composed of different stages.

Experimental results demonstrated that the proposed framework had achieved high accuracy, recall, and precision
compared with recent published results as will be shown next. This paper is organized as follows. Section 2 presents the
recent studies that utilize machine learning for skin cancer classification. Section 3 illustrates the techniques used to
implement AMDS from preprocessing to classification and also it presents the used evaluation criteria. This is followed
by Section 4 to show the results of the proposed framework. After that, Section 5 compares AMDS’ best results with
the recent studies. Finally, Section 6 presents the conclusions and future work.

2 Literature Review

Researchers have used deep learning for skin cancer classification. In [24], the authors utilized 1000 images from the
ISIC dataset to categorize melanoma. They used ensemble learning by merging Random Forest (RF) and Support
Vector Machine (SVM) classifiers. To eliminate noise, a median filter was utilized, followed by mean shift
segmentation to extract ROI. For feature extraction, moments invariant features, grey Level Co-Occurrence Matrix
(GLCM), and Gray Level Run Length Matrix (GLRLM) were used. The accuracy, recall, and specificity of GLCM
coupled with their classifier were 0.8931, 0.8856, and 0.8781 respectively.

The HAM10000 dataset, which comprises 10015 images obtained from Australian and Austrian patients, was used in
[25]. This dataset contains 6705 non-melanoma, 1113 malignant, and 2197 unknown lesions images. A noise reduction
technique based on thresholds was utilized. To make the classification task easier for the classifier, low-contrast and
color- illumination images were excluded from the dataset. For classification, the authors proposed four stacked CNN
layers followed by a fully connected layer. On the test dataset, their approach achieved 0.9657 on precision, 0.9366 on
recall, 0.9509 on F1-score, and 0.9143 on accuracy.

In [26], the authors of this study used the ISIC 2019 [27] and ISIC 2020 [28] datasets for skin cancer classification,
totaling 24,225 images. To balance the dataset, the malignant class has been over-sampled. On the combined dataset,
pre- trained Inception V3 achieved 0.869, 0.8747, 0.8614, 0.8766, and 0.87 on the accuracy, precision, sensitivity,
specificity, and area under the receiver operating characteristic curve (AUC).

© 2024 NSP
Natural Sciences Publishing Cor.



Inf. Sci. Lett. 13, No. 4, 791-807 (2024) / http://www.naturalspublishing.com/Journals.asp

L I8 M
el %

P Y
[ | W L"
AUQW\?MSUOH e

‘“% UU—WT’_TJT .| Normal

Wﬂ
,:ﬂ‘ﬁm‘—‘ﬂ

.| @eepg

ISIC (2016, $ "

2017, 2018, . . * n
2019, 2020) ’ b i EfficientNetv2 fion I Denes layer
. Augmentation Attention layer y | Malignant

¢4 e | remova | Classifier

Fig. 1: Generalized block diagram of AMDS

Inception-V3 has been used for skin cancer classification achieving 0.8861, 0.86, and 0.8742 on non-melanoma
accuracy, malignant accuracy, and F1l-score using a balanced dataset from the ISIC archive [29]. In [30], the authors
have proposed a two-staged classification method. This first stage has been implemented using R-CNN which is
responsible for the segmentation stage to generate a bounding box around the skin lesion using the ISIC 2017 dataset
[31]. The second stage used the ResNet152 model for classification achieving 0.925, 0.820, and 0.904 on specificity,
sensitivity, and accuracy. ISIC 2019 dataset has been used to train AlexNet and GoogLeNet to classify skin cancer.
GoogLeNet has outperformed AlexNet achieving an accuracy of 0.902 [32].

Inception Block Skin Network (InSiNet) and U-Net were trained using ISIC 2018 [33, 34], ISIC 2019, and ISIC 2020
datasets. Morphological techniques, as well as a Gaussian blur filter followed by the Otsu algorithm [35], were utilized
in hair removal to reduce noisy regions. U-Net has achieved a dice coefficient of 0.9367, while InSiNet has achieved
average accuracy, sensitivity, and specificity of 0.9234, 0.9361, and 0.913 [36].

Darkflow You Only Look Once (YOLO) network was used as a feature extractor integrated with GLCM, Gabor, and
Color Level Co-occurrence Matrix (CLCM) features [37]. The concatenated features were then passed to a fully
connected layer achieving an accuracy of 0.94, a precision of 0.85, a recall of 0.88, and an AUC of 0.95. They have
used ISIC 2016 dataset [38] with an augmentation technique to perform oversampling.

In [39], the authors have used a dataset from ISIC archive. A hair removal algorithm is used to eliminate noise followed
by Morphological Active Contours without Edges (MorphACWE) for lesion segmentation. After extracting the skin
lesion, low-level features have been extracted to represent the texture, color, and lesion border. Ensemble learning using
majority voting between K-nearest neighbors (kNN), SVM, and CNN has been implemented achieving an accuracy of
0.884.

GAN has been used to increase the size of the ISIC archive dataset in [40]. CNN was proposed to perform skin cancer
classification with and without the proposed GAN preprocessing. The performance metrics have improved by applying
oversampling using GAN achieving an accuracy of 0.71, sensitivity of 0.68, specificity of 0.74, and F1-score of 0.7.

Tailored deep neural network architecture has been proposed in [41]. The authors have implemented data balancing
associated with data augmentation including random rotations, shifts, illumination correction, and contrast enhancement
in order to enhance image quality and the generalization ability of their proposed model. They have designed several
designs, the best model has achieved a recall of 0.928, a precision of 0.785, and an accuracy of 0.837. Table 1 shows a
summary of recent related works for skin cancer classification.

3 Materials and Methods

This section presents the techniques used for implementing the multistage framework for skin cancer classification. As
shown in Fig. 1, AMDS is implemented using four main stages, the first stage consists of a median filter to remove the
noise from the image and a hair removal algorithm. After that, the GAN network was used to balance the dataset by
generating malignant images. This stage is followed by the U-Net to extract ROI from the images. Finally, the classifier
stage is implemented to classify the pre-processed image into two main classes.

Table 1: A summary of recent scholarly publications pertaining to the classification of skin cancer

Source Model/Algorithm | Findings Challenges/Shortcoming
[24] Ensemble model | Accuracy: 0.8931 Classical machine learning could suffer
between SVM and | Recall: 0.8856 from translation
RF Specificity: 0.8781 variance which highly impacts the
performance
[25] CNN Accuracy: 0.9143 low-contrast and color-illumination
Recall: 0.9366 images were excluded
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Precision: 0.9657 which consequently ease the task on the

F1-score: 0.9509 CNN. Although the model could be
subjected to the eliminated samples on
deployment.

[26] Inception-V3 Accuracy: 0.869 The research has not used any

Sensitivity: 0.8614 segmentation algorithm in order to aid

Precision: 0.8747 the model to concentrate on the tumor

Specificity: 0.8766 features which could negatively impact

AUC: 0.87 the performance.

[29] Inception-V3 non-melanoma accuracy: The research has not used any

0.8861 segmentation algorithm in order to aid

Malignant accuracy: 0.86 the model to concentrate on the tumor

F1-score: 0.8742 features which could negatively impact
the performance.

[30] ResNet152 Accuracy: 0.904 The research has not used all the

Sensitivity: 0.82 available ISIC dataset which
Specificity: 0.925 could impact the performance and the
generalization
ability of their model.
[32] GooglLeNet Accuracy: 0.9202 The research has not provided
performance metrics such as precession,
recall, or throughput.
[36] Inception blocks Accuracy: 0.9234 The research has not provided any
Sensitivity: 0.9361 complexity metrics
Specificity: 0.913 such as throughput.

[37] YOLO network Accuracy: 0.94 The research has not used all the
Precision: 0.85 available ISIC dataset which
Recall: 0.88 could impact the performance and the
AUC: 0.95 generalization ability of their model.

[39] KNN, SVM, and | Accuracy: 0.884 The research has not provided

CNN performance metrics such as precession,
recall, or throughput.
[40] GAN and CNN Accuracy: 0.71 The research has achieved low
Sensitivity: 0.68 performance  compared to  other
Specificity: 0.74 approaches.
F1-score: 0.7 The research has not
provided any complexity metrics.
[41] CNN Accuracy: 0.837 The research has not
Recall: 0.928 provided any complexity metrics.
Precision: 0.785
Table 2: Dataset distribution of non-melanoma and malignant
Dataset non-melanoma | Malignant
ISIC 2016 727 173
ISIC 2017 1626 374
ISIC 2018 8061 1983
ISIC 2019 16619 8712
ISIC 2020 32542 584
OSSR N |
& STNNNK
B &
- |
= : k
(a) Image with hair (b) Image after hair removal
Fig. 2: Comparison between the image before and after hair removal
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3.1 Dataset

This section describes the datasets that have been used in this study which are a wide range of freely available
online datasets such as the ISIC 2016, 2017, 2018, 2019, and 2020. The ISIC 2016 dataset, also known as the
2016 ISIC-ISBI challenge, contains 900 training images. This dataset is categorized into two classes which are
melanoma with 173 images and non-melanoma with 727 images. The 2017 ISBI Challenge on Skin Lesion
Analysis towards Melanoma Detection, is also known as the ISIC 2017 dataset. This dataset includes training data
(2000 images), validation data (150 images), and a blind held-out test dataset (600 images). The training dataset is
divided into three classes, 374, 254, and 1372 dermoscopic images for melanoma, seborrheic keratosis, and nevus
respectively. The ISIC 2018 dataset, also known as the HAM10000 ("Human Against Machine with 10,000
training images”) dataset, was divided into two parts: a training dataset of 10015 images and a test dataset of 1512
images. This dataset was driven from a retrospective sample of patients who had undergone skin cancer screening
at multiple institutions using a variety of dermatoscopy techniques on all anatomic sites (except mucosa and
nails). AKIEC, BCC, non-melanoma Keratosis (BKL), Dermatofibroma (DF), Melanocytic nevus (NV),
Melanoma (MEL), and Vascular lesion comprise the training dataset (VASC). Each of these groups contains a
different number of images. The MEL has 1113 people, the NV has 6705 people, the BCC has 514 people, and the
AKIEC has 327 people, there are 1099 in the BKL, 115 in the DF, and 142 in the VASC. ISIC 2019 is made up of
eight well-known classes and one for outlier images. MEL, NV, BCC, AKIEC, BKL, DF, VASC, and SCC are the
classes involved. ISIC 2019 has 25,331 images, with AKIEC having 867, BKL having 2624, BCC having 3323,
DF having 239, NV having 12,875, MEL having 4522, SCC having 628, and VASC having 253. Finally, ISIC
2020 came from the Hospital Clinic de Barcelona, the Medical University of Vienna, the Memorial Sloan
Kettering Cancer Center, the Melanoma Institute Australia, the University of Queensland, and the University of
Athens Medical School. More than 2,000 patients are included in the dataset generating 33,126 dermoscopic
training images of unique non-melanoma and malignant skin lesions forms. Table 2 shows the different dataset
distributions over non-melanoma and malignant classes.

3.2 Preprocessing

Various preprocessing techniques have been employed on the dataset in order to improve the quality of the
images. Initially, the images were resized to a dimension of 128x128 using bilinear interpolation. This was done
in order to accelerate the training process and decrease the computing cost. Subsequently, the images received a
median filter application, wherein the pixel values were substituted with the median value derived from the
surrounding pixels to remove the presence of outlier noise, including salt, Gaussian, and pepper noises [42].

The presence of hair in nearby areas of the lesions may potentially limit the visualization of colored lesions.
Consequently, the image received a hair removal algorithm, which involved the initial conversion of the colored
image to grayscale format. Subsequently, the morphological black-hat transformation was applied to the grayscale
image, followed by the application of the inpainting algorithm to the original image. The mask utilized for the
inpainting algorithm was created from the grayscale image [43]. Figure 2 illustrates the impact of the hair removal
algorithm on a representative image sample. Image augmentation has also been utilized to enhance the
generalization potential of deep learning models, resulting in improved performance [44]. Rotation
transformations using randomly generated angles have been employed, including random picture flipping,
encompassing both horizontal and vertical flipping.

Balancing the dataset is significant in data preprocessing if the dataset is heavily unbalanced, like in this case
study. GAN is used to generate synthetic images of malignant cases which are the minority class to balance the
dataset. GAN is made up of two primary networks: the generator, which generates a realistic image based on
random inputs, and the discriminator, which judges the realistic probability of the input image. The training of
generator and discriminant networks takes place concurrently as shown in Fig. 3. The discriminant network
distinguishes whether the incoming image is fake or not. The generator network, on the other hand, attempts to
produce more real images to mislead the discriminator network. The reliability of a trained GAN is determined by
its ability to mislead the discriminator network with newly generated images from the generator network. The
generator proposed in this study has four transposed convolutional layers with 128, 256, 512, and 512 as the
number of filters respectively, that utilize the Leaky Rectified Linear Unit (LReLU) as the activation function.
Leaky Rectified Linear Unit (LReLU) has been employed as a strategy to mitigate the issues of disappearing
gradients and the occurrence of dying Rectified Linear Unit (ReLU) problems, as referenced in [45]. Subsequent
to these layers, there is a single convolutional layer that employs the sigmoid activation function. In contrast, the
discriminant network is comprised of five convolutional layers with 64, 128, 128, 256, and 512 as the number of
filters respectively, utilizing the Leaky Rectified Linear Unit (LReLU) as an activation function. This is then
followed by a dense layer for classification, employing the sigmoid function as its activation function.
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Fig. 3: GAN block diagram

Image segmentation can be implemented using several techniques such as thresholding, region growing, Markov
random field models, and clustering using k-means [46]. The previously mentioned techniques can be sensitive to noise
and intensity inhomogeneities which cannot generalize well on different patterns for the same object. CNN, on the other
hand, utilizes weight sharing, memory savings, independence from local changes in the image, and performance
improvement as data size increases [47]. As a consequence, the U-Net architecture, which consists of stacked layers of
CNN, has been applied to image segmentation since it achieves high performance in a variety of biomedical
applications [48, 49]. The U-Net architecture is composed of two main components: an encoder and a decoder. The
encoder architecture is tasked with capturing important patterns found in the input images, while the decoder
architecture is responsible for reconstructing the input from the encoder into a binary mask. This binary mask is then
used to segment the original images through a multiplication operation. The fundamental component of the suggested
encoder architecture consists of a convolutional layer, which is subsequently followed by a batch normalizing layer.
The block completed a cascading process 18 times, wherein the number of filters in the convolution layer was
incrementally increased every six blocks, ranging from 64 to 256 filters. The decoder architecture presented in this
study comprises an upsampling layer followed by a convolution layer. A two-dimensional attention block has been
incorporated between the up-sampling and matching encoding layers. After the upsampling layer, a sequence of six
convolution layers has been incorporated, followed by a subsequent batch normalizing layer. The process of upsampling
involved the repetition of the upsampling layer, along with the six convolution layers, until the original input
dimensions were achieved. The ReLU activation function was employed for all layers except the output layer. In order
to obtain a binary output mask, the sigmoid activation function was utilized. The attention mechanism was initially
proposed as a means to enhance the efficiency of the encoder-decoder model in the context of machine translation [50].
The proposed model incorporates the attention mechanism to enhance the performance of the network since the
structure of the machine translation encoder-decoder closely resembles the U-Net design at the highest level. Figure 4
illustrates the U-Net architecture.
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Fig. 4: The U-Net architecture [20]
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33 Classification

The proposed classifiers are based on different versions of pre-trained EfficientNet, ResNet, and DenseNet networks
[21, 22, 23]. ResNet has introduced the skip layer which is contributing to increasing network depth without suffering
from vanishing gradient issues. Two different networks from ResNet architecture have been used as classifiers which
are ResNet101v2 and ResNet152v2 having depth of 205 and 307 respectively. DenseNet architecture has introduced the
principle of concatenating the feature maps of all previous layers allowing access to the features of all preceding levels.
This principle allows the network to gain knowledge more effectively. Two different networks from DenseNet
architecture have been used as classifiers which are DenseNet169 and DenseNet201 having depths of 338 and 402
respectively. EfficientNet depends on the principle of compound model scaling. It scales the width, depth, and
resolution of the network with a certain fixed set of scaling coefficients using AutoML [51]. Two different networks
from EfficientNet architecture have been used as classifiers which are EfficientNetV2B2 and EfficientNetV2S.
EfficientNet architecture has been modified by adding an attention layer instead of receiving the output on global
average pooling or flattening layer. The attention layer has been used to summarize the output of the EfficientNet giving
large weights to the significant output filters.

34 Evaluation

Evaluation metrics are employed in the machine learning pipeline to evaluate each machine learning algorithm’s ability
to model the provided data using accuracy and complexity. Accuracy metrics measure the ability of each model to
classify data samples correctly. After model training, this model must be tested on unseen data to ensure its
generalization ability. A confusion matrix is generated by the trained model on the test dataset which consists of true
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). TP was defined as the number of
malignant samples that were correctly classified, while FP was defined as the number of normal samples that were
incorrectly classified as malignant. TN was defined as the number of normal samples that were correctly classified,
finally, the FN was defined as the number of malignant samples that were incorrectly classified as normal. The accuracy
(AC), precision (P), recall (R), and Fl-score (F) of each class were calculated from TP, FP, TN, and FN. The AC is
defined as the ratio between correctly classified samples to the domain of all samples. The precision for a given class is
defined as the ratio between the correctly classified samples of that class to the domain of the predicted samples for that
class. Recall for a given class is defined as the ratio between the correctly classified samples of that class to the domain
of actual samples for that class. Fl-score is defined as the harmonic mean of P and R. Table 3 shows the mathematical
equations of AC, P, R, Fl-score. Another type of accuracy evaluation metric is AUC which gives us the accumulated
performance over all the possible classification thresholds which makes it scale and threshold invariant since it is not a
function of threshold.

Table 3: Mathematical equations of evaluation metrics

Metric Equation
TP+ IN
Accuracy
TP+ IN + FP + FN
N
Precision of normal class :
IN +FN
Precision of malignant class P
TP + FP
Recall of normal class N
IN + FP
TP
Recall of malignant class
TP + EN
2xPxR
Fl-score I
P+R

4 Results

The proposed GAN was trained and tested on a total number of 2,538 malignant images from ISIC 2016, ISIC 2019,
and ISIC 2020 using binary cross entropy as a loss function along with adaptive moment estimation (Adam) optimizer
with a learning rate of 0.001. Adam provides faster convergence and a smaller number of hyperparameters to tune
compared to other optimizers [52]. The input images have been subjected to a median filter, hair removal algorithm, and
augmentation using rotation transformations. The proposed GAN comprises 7,252,867 and 3,027,009 with respect to
the number of parameters on the generator and discriminator respectively. Fig. 5 shows the images generated by the
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proposed GAN and Fig. 6 shows the generator loss and discriminator loss across epochs achieving 0.677127 and
0.845434 on discriminator and generator losses respectively.

U-Net has also been evaluated using binary cross-entropy loss in addition to the dice coefficient. Fig. 7 shows the
descent of training and validation loss across the number of epochs. The proposed U-Net has achieved 0.967 and 0.033
on dice coefficient and loss respectively. The proposed U-Net has been trained and tested on 5,494 images from ISIC
2016, ISIC 2017, and ISIC 2018 with a total number of parameters of 5,904,291. This dataset has been split to form the
training dataset and test dataset with ratios of 0.9 and 0.1 respectively. Fig. 8 shows examples of generated masks by U-
Net compared to their ground truth binary masks on the dataset.

Table 4 shows the details of each proposed model architecture. ISIC 2020, ISIC 2019, and ISIC 2016 datasets have
been used to train the proposed classifiers using the concept of transfer learning [53] since these models are pre-trained
on ImageNet [54]. The dataset has been split into training, validation, and test datasets with ratios of 0.8, 0.1, and 0.1
respectively. Two trials have been conducted for each proposed model to solve the unbalanced dataset problem. First,
the non-melanoma class images are under-sampled to be the same size as the malignant class. The second approach is to
perform over-sampling using the artificial images generated by the proposed GAN. Finally, each trial is subjected to
post-training dynamic range quantization which converts weights to 8-bit precision to compress model size and
decrease the inference time to fit a real-time system on edge devices [55]. Tables 8,5,6 and 7 show the results of the
proposed classifiers trials with respect to the size of the model file in megabytes (MB), inference time in milliseconds
(ms), AUC, the precision of non-melanoma (Norm) and malignant (Mal), recall of Norm and Mal, F1-score of Norm
and Mal, and accuracy of train, validation and test data. EfficientNetV2S and EfficientNetV2B2 represent the models
that are subjected to under-sampling, the same models with postfix GAN are the same architecture but the proposed
GAN has been used to perform over-sampling to overcome the unbalanced dataset issue. Post-training dynamic range
quantization has been expressed using postfix QUANT to reduce model size. This reduction is accompanied by a
compression ratio, making the models more suitable for real-time edge device deployment. The models with postfix
Attention are the same architecture but an attention layer has been used instead of a flattened layer.

Fig. 5: Generated malignant images by the proposed GAN

|=—— Generator loss |
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20 1 [
|
I

loss
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number of epochs

Fig. 6: GAN generator loss and discriminator loss across epochs
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Table 4: Details of each model architecture

Name Parameters  |[Layers IAttention  |Global averageDense count
count pooling

EfficientNetV2S [20.333 M 513 0 1 1

EfficientNetV2S [20.334 M 513 1 0 2

Attention

EfficientNetV2B2 8.772 M 349 0 1 1
EfficientNetV2S [8.772M 513 1 0 2
ResNet101V2 42.630 M 377 0 1 1
Resnet152v2 58.335 M 564 0 1 1
DenseNet169 12.646 M 595 0 1 1
DenseNet201 18.325 M 707 0 1 1
IU-Net 5.904 M 143 0 0 0
GAN generator  3.553 M 20 0 0 0
GAN 1.291 M 11 0 0 1
discriminator

Table 5: Results of the proposed models with respect to trained data

Model AUC | P(Norm) | R(Norm) |F(Norm) | P(Mal) | R(Mal) |F(Mal)| AC
EfficientNetV2S 0.939 0.978 0.958 0.968 0.854 0919 | 0.885| 0.95
[EfficientNetV2S
. 0.939 0.972 0.986 0.979 0.944 0.892 | 0.917 | 0.966

IAttention
[EfficientNetV2S

0.931 0.97 0.958 0.966 0.85 0.903 | 0.875 | 0.947
QUANT
[EfficientNetV2S

0.939 0.98 0.953 0.966 0.839 0.926 0.88 | 0.947
GAN
[EfficientNetV2S

0.947 0.981 0.964 0.972 0.873 0.93 0.9 0.957
GAN QUANT
[EfficientNetV2B2 0.94 0.974 0.977 0.976 0.915 0.904 | 0.909 | 0.962
[EfficientNetV2B2

. 0.944 0.985 0.942 0.963 0.812 0.946 | 0.874 | 0.943

|Attention
[EfficientNetV2B2

0.936 0.971 0.984 0.977 0.936 0.888 | 0.912 | 0.964
QUANT
[EfficientNetV2B2

0.923 0.962 0.992 0.977 0.966 0.854 | 0.906 | 0.963
GAN
[EfficientNetV2B2

0.921 0.96 0.99 0.975 0.962 0.851 | 0.903 | 0.96
GAN QUANT
ResNet101v2 0.927 0.982 0.916 0.9484 | 0.7481 | 0.9381 [0.8324| 0.921
ResNet101v2

0.92 0.977 0.921 0.948 0.76 0.92 0.83 0.92
GAN
ResNet152v2 0914 0.97 0.936 0.953 0.788 | 0.8932 [0.8375| 0.9275
ResNet152v2

0.65 0.856 0.819 0.837 0.42 0.486 0.45 | 0.749
GAN
IDenseNet201 0.907 0.96 0.9667 0.963 0.87 0.847 | 0.859 | 0.942
IDenseNet201

0.871 0.958 0.887 0.922 0.667 0.855 | 0.749 | 0.88
GAN
DenseNet169 0.81 0.907 0.9994 0.948 0.963 0.627 | 0.759 | 0.915
IDenseNet169
GAN 0.8 0.904 0.993 0.95 0.96 0.607 | 0.744 | 0.916
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Fig. 7: Comparison between U-Net training loss and validation loss

5 Discussion

The results of EfficientNet outperform all previous CNN architectures on most benchmarking datasets. EfficientNetV2S
Attention has outperformed other models on malignant F1-score and accuracy achieving 0.9168 and 0.965 respectively.
Using GAN on preprocessing has improved the recall of the normal class in addition to the precision of the malignant
but it has a negative impact on the precision of the normal class and recall of the malignant class. Quantization has
reduced the EfficientNetV2S model size from 76.9 to 21 MB with a compression ratio of 3.66 and the
EfficientNetV2B2 model size from 33.1 to 9.3 MB with a compression ratio of 3.55. Although the positive impact of
quantization on model size and inference time, it has a relatively small negative effect on the other performance metrics.
The proposed framework has outperformed state-of-the-art studies on the recall of normal and malignant classes and
accuracy. EfficientNetV2S Attention has achieved an improvement ratio of 2.7 over the best-achieved accuracy by the
state-of-the-art studies. The EfficientNetV2S model Attention might have been subjected to extensive hyperparameter
tuning in order to maximize its learning rates, regularization approaches, and other crucial configurations. Optimizing
these parameters has the potential to enhance the performance of the model. In addition, the attention processes enable
the model to selectively concentrate on particular regions of interest within the input data, specifically in the context of
skin lesion images. This technique enhances the model’s ability to effectively collect important features relevant to the
classification task. Fig. 9 shows the Receiver operating characteristic curves (ROC) of the best five models on AUC,
EfficientNetV2B2 has achieved the highest AUC with a value of 0.96. Table 9 shows the proposed framework results
compared to state-of-the-art models.

6 Conclusions

In this study, a framework for the classification of skin lesion images is proposed, combining several techniques,
beginning with image preprocessing, including the implementation of a median filter, followed by the execution of a
hair removal algorithm, segmentation of ROI, and ending with the generation of melanoma lesions images in the
training set to solve the unbalanced dataset problem. Finally, transfer learning was applied to six different pre-trained
CNNs from the EfficientNet, ResNet, and DenseNet families. These techniques enabled CNN to outperform in the
evaluation metrics. In contrast to prior research, the findings showed an enhancement in the accuracy of classification.
The selection of EfficientNetV2S attention model as a classifier is based on its superior performance in terms of
malignancy F1-score and accuracy, surpassing other models. AMDS has not only achieved low latency but also has
outperformed state-of-the-art studies in recall, accuracy, and F1-score. This finding is of tremendous significance since
it can aid in the early detection of skin cancer, which is critical for increasing patient survival rates and providing a
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foundation for future research into skin lesion classification.

(a) (b) (c) (d)
Fig. 8: Group (a) represents the original image, Group (b) represents the ground truth, Group (c) represents the
predicted mask, Group (d) represents the ROI output of U-Net
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Fig. 9: ROC curves of the best five models
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Table 6: Results of the proposed models with respect to validation data

Model AUC P(Norm) R(Norm) F(Norm) P(Mal) R(Mal) F(Mal) AC
EfficientNetV [0.936 0.9761 0.9614 0.9687 0.862 0.911 0.885 0.95
2S
EfficientNetV (0.942 0.973 0.987 0.98 0.948 0.897 0.922 0.968
2S
|Attention
EfficientNetV [0.938 0.97 0.963 0.97 0.86 0.91 0.89 0.95
2S
QUANT
EfficientNetV [0.89 0.947 0.99 0.968 0.956 0.79 0.86 0.948
2S
GAN
EfficientNetV 0.93 0.977 0.964 0.97 0.866 0.91 0.89 0.953
2S
GAN QUANT
EfficientNetV 0.93 0.973 0.9788 0.976 0.918 0.898 0.9 0.961
2B2
EfficientNetV (0.946 0.985 0.947 0.965 0.82 0.945 0.88 0.946
2B2
|Attention
EfficientNetV (0.934 0.971 0.979 0.975 0.92 0.89 0.9 0.96
2B2
QUANT
EfficientNetV [0.91 0.956 0.989 0.973 0.955 0.831 0.88 0.956
2B2
GAN
EfficientNetV [0.906 0.954 0.99 0.972 0.956 0.82 0.884 0.95
2B2
GAN QUANT
ResNet101v2 [0.922 0.977 0.923 0.95 0.76 0.92 0.83 0.923
ResNet101v2 (0.919 0.974 0.929 0.95 0.77 0.9 0.83 0.92
GAN
ResNet152v2 [0.916 0.97 0.94 0.955 0.798 0.891 0.84 0.93
ResNet152v2 |0.658 0.861 0.81 0.85 0.41 0.5 0.45 0.746
GAN
DenseNet201 |0.907 0.95 0.97 0.96 0.88 0.841 0.86 0.943
DenseNet201 [0.88 0.963 0.89 0.926 0.68 0.87 0.76 0.88
GAN
DenseNet169 [0.78 0.89 0.99 0.943 0.957 0.579 0.721 0.906
DenseNet169 (0.786 0.89 0.993 0.943 0.957 0.57 0.72 0.906
GAN

Table 7: Results of the proposed models with respect to test data
Model AUC P(Norm) R(Norm) F(Norm) P(Mal) R(Mal) F(Mal) AC
EfficientNetV 0.946 0.99 0.94 0.96 0.8 0.96 0.87 0.94
2S
EfficientNetV 0.942 0.974 0.982 0.978 0.9317 0.9024 0.9168 0.9657
2S
|Attention
EfficientNetV 0.946 0.99 0.94 0.96 0.8 0.95 0.87 0.94
2S
QUANT
EfficientNetV [0.94 0.98 0.95 0.96 0.82 0.93 0.87 0.94
2S
GAN
EfficientNetV |0.94 0.98 0.95 0.97 0.84 0.93 0.88 0.95
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2S
GAN QUANT
EfficientNetV [0.957 0.99 0.97 0.98 0.88 0.95 0.91 0.96
2B2
EfficientNetV [0.94 0.982 0.947 0.964 0.824 0.936 0.876 0.944
2B2
|Attention
EfficientNetV [0.921 0.97 0.98 0.97 0.9 0.87 0.88 0.95
2B2
QUANT
EfficientNetV [0.921 0.96 0.99 0.98 0.95 0.85 0.9 0.96
2B2
GAN
EfficientNetV (0.92 0.96 0.99 0.97 0.95 0.85 0.9 0.96
2B2
GAN QUANT
ResNet101v2 |0.9 0.9677 0.9210 0.9438 0.7475 0.8839 0.8100 0.9133
ResNet101v2 [0.689 0.8597 0.9905 0.9205 0.9153 0.3891 0.5460 0.8647
GAN
ResNetl152v2 [0.87 0.9419 0.9754 0.95838 0.8926 0.7724 0.82810 0.9329
ResNet152v2 (0.8 0.9236 0.8759 0.8991 0.6074 0.7259 0.6614 0.8445
GAN
DenseNet201 |0.9 0.9694 0.9244 0.9464 0.7569 0.8897 0.8179 0.9172
DenseNet201 (0.8 0.9840 0.6442 0.7787 0.4166 0.9605 0.5812 0.7104
GAN
DenseNet169 [0.82 0.9184 0.9791 0.9478 0.8947 0.6713 0.7671 0.9147
DenseNet169 (0.833 0.9592 0.7951 0.8695 0.5296 0.8722 0.6591 0.8112
GAN
Table 8: Results of the proposed models
Model Size(MB) Inference(ms)
EfficientNetV2S 76.9 106.11
EfficientNetV2S 233 348.6
Attention
EfficientNetV2S 21 105.93
QUANT
EfficientNetV2S 76.9 105.28
GAN
EfficientNetV2S 21 105.77
GAN QUANT
EfficientNetV2B2 33.1 57.38
EfficientNetV2B2 100 61.3
Attention
EfficientNetV2B2 9.3 52.55
QUANT
EfficientNetV2B2 33.1 56.57
GAN
EfficientNetV2B2 9.3 52.84
GAN QUANT
ResNet101v2 488 79.3
ResNet101v2 488 76.7
GAN
ResNet152v2 688 94
ResNet152v2 688 125.2
GAN
DenseNet201 210 106.7
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DenseNet201 210 123.7
GAN
DenseNet169 145 93.45
DenseNet169 145 91.8
GAN
Table 9: Results of the proposed model compared to the state of the art studies
name AUC R (Norm) P (Mal) R (Mal) F (Mal) AC
[24] - 0.878 - 0.885 - 0.893
[25] - - 0.965 0.936 0.95 0.914
[26] 0.87 0.876 0.874 0.861 - 0.869
[291 - - - - 0.874 0.873
[30] - 0.925 - 0.82 - 0.904
[32] - - - - - 0.902
[36] - 0.913 - 0.936 - 0.923
[371 0.95 - 0.85 0.88 - 0.94
[39] - - - - - 0.884
[40] - 0.74 - 0.68 0.7 0.71
[41] - - 0.785 0.928 - 0.837
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