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Abstract: Skin cancer, an aggressive cancer with a global frequency, presents an evolving public health challenge 
requiring novel diagnostic approaches. The traditional method for diagnosing skin cancer involves a thorough examination 
of tissue samples obtained from skin lesions. Healthcare professionals must perform the complex task of identifying 
specific early symptoms to make an accurate diagnosis. Early detection of skin cancer is particularly challenging because 
of the tendency for misdiagnosis due to similarities with other dermatological conditions and variations in specialist 
expertise. Researchers have used machine learning algorithms to improve the performance of numerous medical 
applications in recent years to improve the dependability, productivity, efficiency, predictability, and precision of medical 
diagnostics. Current research presents a Multistage Deep Learning model for Skin Cancer Classifier (AMDS), a 
framework designed to improve the early detection of melanoma and non-melanoma skin lesions. The AMDS consists of 
several crucial phases, beginning with precise preprocessing techniques to remove extraneous components surrounding 
skin lesions. Given the inherent imbalances within most skin cancer datasets, the subsequent stage employs Generative 
Adversarial Networks (GANs) to generate synthetic images for enhancing dataset diversity and equip the classifier to 
handle a broad spectrum of skin lesions. In the subsequent stage, an attention-based U-Net model is introduced that is 
capable of generating masks for regions of interest while removing background noise. The process ended with the 
classification stage which uses distinct forms of the cutting-edge EfficientNet, ResNet, and DenseNet architectures, 
carefully trained using the segmented images, to find the best model for skin lesion classification. The proposed deep 
learning models are systematically evaluated by utilizing the International Skin Imaging Collaboration dataset (ISIC), a 
dermatology benchmark. The experimental results demonstrate that the proposed framework using a modified 
EfficientNetV2S with attention mechanism outperforms other tested architectures as well as most recent research. Notably, 
it achieves a 0.96 accuracy rate, 0.91 F1- score, 0.90 recall rate, and 0.93 precision rate on the test benchmarking datasets. 
These results highlight the importance of the proposed multistage framework as a potential transformative instrument for 
early skin cancer detection. 

Keywords: Skin Cancer, Deep learning, Generative Adversarial Networks, Image Segmentation, Convolutional Neural 
Network. 

 
1 Introduction 

Skin cancer is classified into Melanoma and Nonmelanoma which are considered among the 10 most common cancer 
types. It is contributing to 7.2% of new cases across the world that are suffering from cancer [1]. Despite the low 
percentage of melanoma compared to nonmelanoma, it causes most skin cancer deaths. Early identification of skin 
cancer is crucial for increasing a patient’s chances of being cured. For the last five years, the survivability rate had 
declined from 99% in cases of local disease to 63% in situations of regional disease and 20% in cases of disease 
disseminated across the body [2]. 

In the context of clinical lesion assessment, when relying just on visual inspection by the human eye, the detection rate 
for melanoma is approximately 54%, which can be considered low. However, when carried out by skilled dermoscopy 
practitioners, the use of dermoscopy—a non-invasive method that entails the microscopic examination of pigmented 
skin lesions—increases the diagnostic efficacy to a notable 79%. However, it is essential to acknowledge that the 
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effectiveness of dermoscopy relies heavily on human judgment. The inherent possibility of human error resulting from 
the participation of either unskilled or inadequately educated examiners may significantly influence the outcome [3]. 
Researchers have used machine learning algorithms to improve the performance of numerous medical applications in 
recent years [4, 5, 6]. Machine learning approaches are distinguished by their capability to analyze large amounts of 
data to uncover interesting correlations, give insight, and detect patterns. For many diseases, machine learning improved 
the dependability, efficiency, predictability, and precision of medical diagnostics. In [7], the authors use wearable 
technology and machine learning to control hypovolemia disorders. By applying machine learning on 
electroencephalogram (EEG), a record of brain activity, Parkinson’s disease can be diagnosed [8]. the convolutional 
neural network (CNN) is used to detect brain tumors using magnetic resonance imaging (MRI) [9, 10]. CNNs have also 
been utilized to develop mammogram-based breast cancer detection systems [11, 12]. Regarding skin cancer, 
Researchers have used CNNs to classify and extract the lesion boundary from this type of cancer [13, 14]. CNN can 
implicitly extract the ABCDE rule, which is commonly used to identify skin cancers. These features represent the 
asymmetry of two halves of skin lesion, smoothness of the border, color contrast, and lesion diameter size [15]. One of 
the most critical challenges in machine learning is an unbalanced dataset, which causes the model to be biased toward 
the dominant class. Over-sampling, under-sampling, data augmentation, and class weights modification on the loss 
function are all used to address this issue [16, 17, 18]. The generative adversarial network (GAN) is a potential solution 
for over-sampling since it generates synthetic pictures for classes with fewer samples and ensures the model 
generalization [19]. The current research endeavors to put forth a comprehensive framework aimed at the 
implementation of a sophisticated skin cancer classification system. This system is cleverly made up of a powerful 
combination of Generative Adversarial Network (GAN), attention U-Net, EfficientNet, ResNet, and DenseNet 
networks. All of these networks were carefully put together to deal with the complexity of the problem and improve the 
ability to find and classify melanoma and non-melanoma skin lesions [20, 21, 22, 23]. Noteworthy enhancements in 
image quality have been harnessed through judiciously applied techniques encompassing hair removal, median filtering, 
and image normalization. One of the notable aspects of this complicated framework involves the utilization of the GAN 
model, which is effectively used to generate synthetic images of skin cancer. This strategy serves an additional goal by 
addressing the issue of dataset imbalance while augmenting it with a diverse range of malignant skin representations. 
The main contributions can be summarized as follows: 

• Preprocessing of skin cancer images to improve image content and quality. 

• Balancing dataset based on GAN and augmentation techniques. 

• Proposing AMDS, a highly accurate skin cancer classification system composed of different stages. 

Experimental results demonstrated that the proposed framework had achieved high accuracy, recall, and precision 
compared with recent published results as will be shown next. This paper is organized as follows. Section 2 presents the 
recent studies that utilize machine learning for skin cancer classification. Section 3 illustrates the techniques used to 
implement AMDS from preprocessing to classification and also it presents the used evaluation criteria. This is followed 
by Section 4 to show the results of the proposed framework. After that, Section 5 compares AMDS’ best results with 
the recent studies. Finally, Section 6 presents the conclusions and future work. 

2 Literature Review 

Researchers have used deep learning for skin cancer classification. In [24], the authors utilized 1000 images from the 
ISIC dataset to categorize melanoma. They used ensemble learning by merging Random Forest (RF) and Support 
Vector Machine (SVM) classifiers. To eliminate noise, a median filter was utilized, followed by mean shift 
segmentation to extract ROI. For feature extraction, moments invariant features, grey Level Co-Occurrence Matrix 
(GLCM), and Gray Level Run Length Matrix (GLRLM) were used. The accuracy, recall, and specificity of GLCM 
coupled with their classifier were 0.8931, 0.8856, and 0.8781 respectively. 

The HAM10000 dataset, which comprises 10015 images obtained from Australian and Austrian patients, was used in 
[25]. This dataset contains 6705 non-melanoma, 1113 malignant, and 2197 unknown lesions images. A noise reduction 
technique based on thresholds was utilized. To make the classification task easier for the classifier, low-contrast and 
color- illumination images were excluded from the dataset. For classification, the authors proposed four stacked CNN 
layers followed by a fully connected layer. On the test dataset, their approach achieved 0.9657 on precision, 0.9366 on 
recall, 0.9509 on F1-score, and 0.9143 on accuracy. 

In [26], the authors of this study used the ISIC 2019 [27] and ISIC 2020 [28] datasets for skin cancer classification, 
totaling 24,225 images. To balance the dataset, the malignant class has been over-sampled. On the combined dataset, 
pre- trained Inception V3 achieved 0.869, 0.8747, 0.8614, 0.8766, and 0.87 on the accuracy, precision, sensitivity, 
specificity, and area under the receiver operating characteristic curve (AUC). 
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Fig. 1: Generalized block diagram of AMDS 

Inception-V3 has been used for skin cancer classification achieving 0.8861, 0.86, and 0.8742 on non-melanoma 
accuracy, malignant accuracy, and F1-score using a balanced dataset from the ISIC archive [29]. In [30], the authors 
have proposed a two-staged classification method. This first stage has been implemented using R-CNN which is 
responsible for the segmentation stage to generate a bounding box around the skin lesion using the ISIC 2017 dataset 
[31]. The second stage used the ResNet152 model for classification achieving 0.925, 0.820, and 0.904 on specificity, 
sensitivity, and accuracy. ISIC 2019 dataset has been used to train AlexNet and GoogLeNet to classify skin cancer. 
GoogLeNet has outperformed AlexNet achieving an accuracy of 0.902 [32]. 

Inception Block Skin Network (InSiNet) and U-Net were trained using ISIC 2018 [33, 34], ISIC 2019, and ISIC 2020 
datasets. Morphological techniques, as well as a Gaussian blur filter followed by the Otsu algorithm [35], were utilized 
in hair removal to reduce noisy regions. U-Net has achieved a dice coefficient of 0.9367, while InSiNet has achieved 
average accuracy, sensitivity, and specificity of 0.9234, 0.9361, and 0.913 [36]. 

Darkflow You Only Look Once (YOLO) network was used as a feature extractor integrated with GLCM, Gabor, and 
Color Level Co-occurrence Matrix (CLCM) features [37]. The concatenated features were then passed to a fully 
connected layer achieving an accuracy of 0.94, a precision of 0.85, a recall of 0.88, and an AUC of 0.95. They have 
used ISIC 2016 dataset [38] with an augmentation technique to perform oversampling. 

In [39], the authors have used a dataset from ISIC archive. A hair removal algorithm is used to eliminate noise followed 
by Morphological Active Contours without Edges (MorphACWE) for lesion segmentation. After extracting the skin 
lesion, low-level features have been extracted to represent the texture, color, and lesion border. Ensemble learning using 
majority voting between K-nearest neighbors (kNN), SVM, and CNN has been implemented achieving an accuracy of 
0.884. 

GAN has been used to increase the size of the ISIC archive dataset in [40]. CNN was proposed to perform skin cancer 
classification with and without the proposed GAN preprocessing. The performance metrics have improved by applying 
oversampling using GAN achieving an accuracy of 0.71, sensitivity of 0.68, specificity of 0.74, and F1-score of 0.7. 

Tailored deep neural network architecture has been proposed in [41]. The authors have implemented data balancing 
associated with data augmentation including random rotations, shifts, illumination correction, and contrast enhancement 
in order to enhance image quality and the generalization ability of their proposed model. They have designed several 
designs, the best model has achieved a recall of 0.928, a precision of 0.785, and an accuracy of 0.837. Table 1 shows a 
summary of recent related works for skin cancer classification. 

3 Materials and Methods 

This section presents the techniques used for implementing the multistage framework for skin cancer classification. As 
shown in Fig. 1, AMDS is implemented using four main stages, the first stage consists of a median filter to remove the 
noise from the image and a hair removal algorithm. After that, the GAN network was used to balance the dataset by 
generating malignant images. This stage is followed by the U-Net to extract ROI from the images. Finally, the classifier 
stage is implemented to classify the pre-processed image into two main classes. 

Table 1: A summary of recent scholarly publications pertaining to the classification of skin cancer 
Source Model/Algorithm Findings Challenges/Shortcoming 
[24] Ensemble model 

between SVM and 
RF 

Accuracy: 0.8931 
Recall: 0.8856 
Specificity: 0.8781 

Classical machine learning could suffer 
from translation 
variance which highly impacts the 
performance 

[25] CNN Accuracy: 0.9143 
Recall: 0.9366 

low-contrast and color-illumination 
images were excluded 



794                                                                                                    A. Hassan et al.: AMDS: A Multistage Framework … 

 
© 2024 NSP 
Natural Sciences Publishing Cor. 
 

Precision: 0.9657 
F1-score: 0.9509 

which consequently ease the task on the 
CNN. Although the model could be 
subjected to the eliminated samples on 
deployment. 

[26] Inception-V3 Accuracy: 0.869 
Sensitivity: 0.8614 
Precision: 0.8747 
Specificity: 0.8766 
AUC: 0.87 

The research has not used any 
segmentation algorithm in order to aid 
the model to concentrate on the tumor 
features which could negatively impact 
the performance. 

[29] Inception-V3 non-melanoma accuracy: 
0.8861 
Malignant accuracy: 0.86 
F1-score: 0.8742 

The research has not used any 
segmentation algorithm in order to aid 
the model to concentrate on the tumor 
features which could negatively impact 
the performance. 

[30] ResNet152 Accuracy: 0.904 
Sensitivity: 0.82 
Specificity: 0.925 

The research has not used all the 
available ISIC dataset which 
could impact the performance and the 
generalization 
ability of their model. 

[32] GoogLeNet Accuracy: 0.9202 The research has not provided 
performance metrics such as precession, 
recall, or throughput. 

[36] Inception blocks Accuracy: 0.9234 
Sensitivity: 0.9361 
Specificity: 0.913 

The research has not provided any 
complexity metrics 
such as throughput. 

[37] YOLO network Accuracy: 0.94 
Precision: 0.85 
Recall: 0.88 
AUC: 0.95 

The research has not used all the 
available ISIC dataset which 
could impact the performance and the 
generalization ability of their model. 

[39] KNN, SVM, and 
CNN  

Accuracy: 0.884 The research has not provided 
performance metrics such as precession, 
recall, or throughput. 

[40] GAN and CNN Accuracy: 0.71 
Sensitivity: 0.68 
Specificity: 0.74 
F1-score: 0.7 

The research has achieved low 
performance compared to other 
approaches. 
The research has not 
provided any complexity metrics. 

[41] CNN Accuracy: 0.837 
Recall: 0.928 
Precision: 0.785 

The research has not 
provided any complexity metrics. 

Table 2: Dataset distribution of non-melanoma and malignant 
Dataset non-melanoma Malignant 

ISIC 2016 727 173 
ISIC 2017 1626 374 
ISIC 2018 8061 1983 
ISIC 2019 16619 8712 
ISIC 2020 32542 584 

                          
(a) Image with hair            (b) Image after hair removal 

Fig. 2: Comparison between the image before and after hair removal 
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3.1 Dataset 

This section describes the datasets that have been used in this study which are a wide range of freely available 
online datasets such as the ISIC 2016, 2017, 2018, 2019, and 2020. The ISIC 2016 dataset, also known as the 
2016 ISIC-ISBI challenge, contains 900 training images. This dataset is categorized into two classes which are 
melanoma with 173 images and non-melanoma with 727 images. The 2017 ISBI Challenge on Skin Lesion 
Analysis towards Melanoma Detection, is also known as the ISIC 2017 dataset. This dataset includes training data 
(2000 images), validation data (150 images), and a blind held-out test dataset (600 images). The training dataset is 
divided into three classes, 374, 254, and 1372 dermoscopic images for melanoma, seborrheic keratosis, and nevus 
respectively. The ISIC 2018 dataset, also known as the HAM10000 (”Human Against Machine with 10,000 
training images”) dataset, was divided into two parts: a training dataset of 10015 images and a test dataset of 1512 
images. This dataset was driven from a retrospective sample of patients who had undergone skin cancer screening 
at multiple institutions using a variety of dermatoscopy techniques on all anatomic sites (except mucosa and 
nails). AKIEC, BCC, non-melanoma Keratosis (BKL), Dermatofibroma (DF), Melanocytic nevus (NV), 
Melanoma (MEL), and Vascular lesion comprise the training dataset (VASC). Each of these groups contains a 
different number of images. The MEL has 1113 people, the NV has 6705 people, the BCC has 514 people, and the 
AKIEC has 327 people, there are 1099 in the BKL, 115 in the DF, and 142 in the VASC. ISIC 2019 is made up of 
eight well-known classes and one for outlier images. MEL, NV, BCC, AKIEC, BKL, DF, VASC, and SCC are the 
classes involved. ISIC 2019 has 25,331 images, with AKIEC having 867, BKL having 2624, BCC having 3323, 
DF having 239, NV having 12,875, MEL having 4522, SCC having 628, and VASC having 253. Finally, ISIC 
2020 came from the Hospital Clinic de Barcelona, the Medical University of Vienna, the Memorial Sloan 
Kettering Cancer Center, the Melanoma Institute Australia, the University of Queensland, and the University of 
Athens Medical School. More than 2,000 patients are included in the dataset generating 33,126 dermoscopic 
training images of unique non-melanoma and malignant skin lesions forms. Table 2 shows the different dataset 
distributions over non-melanoma and malignant classes. 

3.2 Preprocessing 

Various preprocessing techniques have been employed on the dataset in order to improve the quality of the 
images. Initially, the images were resized to a dimension of 128x128 using bilinear interpolation. This was done 
in order to accelerate the training process and decrease the computing cost. Subsequently, the images received a 
median filter application, wherein the pixel values were substituted with the median value derived from the 
surrounding pixels to remove the presence of outlier noise, including salt, Gaussian, and pepper noises [42]. 

The presence of hair in nearby areas of the lesions may potentially limit the visualization of colored lesions. 
Consequently, the image received a hair removal algorithm, which involved the initial conversion of the colored 
image to grayscale format. Subsequently, the morphological black-hat transformation was applied to the grayscale 
image, followed by the application of the inpainting algorithm to the original image. The mask utilized for the 
inpainting algorithm was created from the grayscale image [43]. Figure 2 illustrates the impact of the hair removal 
algorithm on a representative image sample. Image augmentation has also been utilized to enhance the 
generalization potential of deep learning models, resulting in improved performance [44]. Rotation 
transformations using randomly generated angles have been employed, including random picture flipping, 
encompassing both horizontal and vertical flipping. 

Balancing the dataset is significant in data preprocessing if the dataset is heavily unbalanced, like in this case 
study. GAN is used to generate synthetic images of malignant cases which are the minority class to balance the 
dataset. GAN is made up of two primary networks: the generator, which generates a realistic image based on 
random inputs, and the discriminator, which judges the realistic probability of the input image. The training of 
generator and discriminant networks takes place concurrently as shown in Fig. 3. The discriminant network 
distinguishes whether the incoming image is fake or not. The generator network, on the other hand, attempts to 
produce more real images to mislead the discriminator network. The reliability of a trained GAN is determined by 
its ability to mislead the discriminator network with newly generated images from the generator network. The 
generator proposed in this study has four transposed convolutional layers with 128, 256, 512, and 512 as the 
number of filters respectively, that utilize the Leaky Rectified Linear Unit (LReLU) as the activation function. 
Leaky Rectified Linear Unit (LReLU) has been employed as a strategy to mitigate the issues of disappearing 
gradients and the occurrence of dying Rectified Linear Unit (ReLU) problems, as referenced in [45]. Subsequent 
to these layers, there is a single convolutional layer that employs the sigmoid activation function. In contrast, the 
discriminant network is comprised of five convolutional layers with 64, 128, 128, 256, and 512 as the number of 
filters respectively, utilizing the Leaky Rectified Linear Unit (LReLU) as an activation function. This is then 
followed by a dense layer for classification, employing the sigmoid function as its activation function. 
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Fig. 3: GAN block diagram 

Image segmentation can be implemented using several techniques such as thresholding, region growing, Markov 
random field models, and clustering using k-means [46]. The previously mentioned techniques can be sensitive to noise 
and intensity inhomogeneities which cannot generalize well on different patterns for the same object. CNN, on the other 
hand, utilizes weight sharing, memory savings, independence from local changes in the image, and performance 
improvement as data size increases [47]. As a consequence, the U-Net architecture, which consists of stacked layers of 
CNN, has been applied to image segmentation since it achieves high performance in a variety of biomedical 
applications [48, 49]. The U-Net architecture is composed of two main components: an encoder and a decoder. The 
encoder architecture is tasked with capturing important patterns found in the input images, while the decoder 
architecture is responsible for reconstructing the input from the encoder into a binary mask. This binary mask is then 
used to segment the original images through a multiplication operation. The fundamental component of the suggested 
encoder architecture consists of a convolutional layer, which is subsequently followed by a batch normalizing layer. 
The block completed a cascading process 18 times, wherein the number of filters in the convolution layer was 
incrementally increased every six blocks, ranging from 64 to 256 filters. The decoder architecture presented in this 
study comprises an upsampling layer followed by a convolution layer. A two-dimensional attention block has been 
incorporated between the up-sampling and matching encoding layers. After the upsampling layer, a sequence of six 
convolution layers has been incorporated, followed by a subsequent batch normalizing layer. The process of upsampling 
involved the repetition of the upsampling layer, along with the six convolution layers, until the original input 
dimensions were achieved. The ReLU activation function was employed for all layers except the output layer. In order 
to obtain a binary output mask, the sigmoid activation function was utilized. The attention mechanism was initially 
proposed as a means to enhance the efficiency of the encoder-decoder model in the context of machine translation [50]. 
The proposed model incorporates the attention mechanism to enhance the performance of the network since the 
structure of the machine translation encoder-decoder closely resembles the U-Net design at the highest level. Figure 4 
illustrates the U-Net architecture. 

 
Fig. 4: The U-Net architecture [20] 
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3.3 Classification 

The proposed classifiers are based on different versions of pre-trained EfficientNet, ResNet, and DenseNet networks 
[21, 22, 23]. ResNet has introduced the skip layer which is contributing to increasing network depth without suffering 
from vanishing gradient issues. Two different networks from ResNet architecture have been used as classifiers which 
are ResNet101v2 and ResNet152v2 having depth of 205 and 307 respectively. DenseNet architecture has introduced the 
principle of concatenating the feature maps of all previous layers allowing access to the features of all preceding levels. 
This principle allows the network to gain knowledge more effectively. Two different networks from DenseNet 
architecture have been used as classifiers which are DenseNet169 and DenseNet201 having depths of 338 and 402 
respectively. EfficientNet depends on the principle of compound model scaling. It scales the width, depth, and 
resolution of the network with a certain fixed set of scaling coefficients using AutoML [51]. Two different networks 
from EfficientNet architecture have been used as classifiers which are EfficientNetV2B2 and EfficientNetV2S. 
EfficientNet architecture has been modified by adding an attention layer instead of receiving the output on global 
average pooling or flattening layer. The attention layer has been used to summarize the output of the EfficientNet giving 
large weights to the significant output filters. 

3.4 Evaluation 

Evaluation metrics are employed in the machine learning pipeline to evaluate each machine learning algorithm’s ability 
to model the provided data using accuracy and complexity. Accuracy metrics measure the ability of each model to 
classify data samples correctly. After model training, this model must be tested on unseen data to ensure its 
generalization ability. A confusion matrix is generated by the trained model on the test dataset which consists of true 
positives (TP), false positives (FP), true negatives (TN), and false negatives (FN). TP was defined as the number of 
malignant samples that were correctly classified, while FP was defined as the number of normal samples that were 
incorrectly classified as malignant. TN was defined as the number of normal samples that were correctly classified, 
finally, the FN was defined as the number of malignant samples that were incorrectly classified as normal. The accuracy 
(AC), precision (P), recall (R), and F1-score (F) of each class were calculated from TP, FP, TN, and FN. The AC is 
defined as the ratio between correctly classified samples to the domain of all samples. The precision for a given class is 
defined as the ratio between the correctly classified samples of that class to the domain of the predicted samples for that 
class. Recall for a given class is defined as the ratio between the correctly classified samples of that class to the domain 
of actual samples for that class. F1-score is defined as the harmonic mean of P and R. Table 3 shows the mathematical 
equations of AC, P, R, F1-score. Another type of accuracy evaluation metric is AUC which gives us the accumulated 
performance over all the possible classification thresholds which makes it scale and threshold invariant since it is not a 
function of threshold. 

Table 3: Mathematical equations of evaluation metrics 

 

4 Results 

The proposed GAN was trained and tested on a total number of 2,538 malignant images from ISIC 2016, ISIC 2019, 
and ISIC 2020 using binary cross entropy as a loss function along with adaptive moment estimation (Adam) optimizer 
with a learning rate of 0.001. Adam provides faster convergence and a smaller number of hyperparameters to tune 
compared to other optimizers [52]. The input images have been subjected to a median filter, hair removal algorithm, and 
augmentation using rotation transformations. The proposed GAN comprises 7,252,867 and 3,027,009 with respect to 
the number of parameters on the generator and discriminator respectively. Fig. 5 shows the images generated by the 
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proposed GAN and Fig. 6 shows the generator loss and discriminator loss across epochs achieving 0.677127 and 
0.845434 on discriminator and generator losses respectively. 

U-Net has also been evaluated using binary cross-entropy loss in addition to the dice coefficient. Fig. 7 shows the 
descent of training and validation loss across the number of epochs. The proposed U-Net has achieved 0.967 and 0.033 
on dice coefficient and loss respectively. The proposed U-Net has been trained and tested on 5,494 images from ISIC 
2016, ISIC 2017, and ISIC 2018 with a total number of parameters of 5,904,291. This dataset has been split to form the 
training dataset and test dataset with ratios of 0.9 and 0.1 respectively. Fig. 8 shows examples of generated masks by U-
Net compared to their ground truth binary masks on the dataset. 

Table 4 shows the details of each proposed model architecture. ISIC 2020, ISIC 2019, and ISIC 2016 datasets have 
been used to train the proposed classifiers using the concept of transfer learning [53] since these models are pre-trained 
on ImageNet [54]. The dataset has been split into training, validation, and test datasets with ratios of 0.8, 0.1, and 0.1 
respectively. Two trials have been conducted for each proposed model to solve the unbalanced dataset problem. First, 
the non-melanoma class images are under-sampled to be the same size as the malignant class. The second approach is to 
perform over-sampling using the artificial images generated by the proposed GAN. Finally, each trial is subjected to 
post-training dynamic range quantization which converts weights to 8-bit precision to compress model size and 
decrease the inference time to fit a real-time system on edge devices [55]. Tables 8,5,6 and 7 show the results of the 
proposed classifiers trials with respect to the size of the model file in megabytes (MB), inference time in milliseconds 
(ms), AUC, the precision of non-melanoma (Norm) and malignant (Mal), recall of Norm and Mal, F1-score of Norm 
and Mal, and accuracy of train, validation and test data. EfficientNetV2S and EfficientNetV2B2 represent the models 
that are subjected to under-sampling, the same models with postfix GAN are the same architecture but the proposed 
GAN has been used to perform over-sampling to overcome the unbalanced dataset issue. Post-training dynamic range 
quantization has been expressed using postfix QUANT to reduce model size. This reduction is accompanied by a 
compression ratio, making the models more suitable for real-time edge device deployment. The models with postfix 
Attention are the same architecture but an attention layer has been used instead of a flattened layer. 

            
Fig. 5: Generated malignant images by the proposed GAN 

 
Fig. 6: GAN generator loss and discriminator loss across epochs 



 Inf. Sci. Lett. 13, No. 4, 791-807  (2024)     /  http://www.naturalspublishing.com/Journals.asp                                                         799 

 
                                                                                                                                                                                                                                                     © 2024 NSP 
                                                                                                                                                                                                                                                                                      Natural Sciences Publishing Cor. 
 

Table 4: Details of each model architecture 
Name Parameters Layers 

count 
Attention Global average 

pooling 

Dense count 

EfficientNetV2S 20.333 M 513 0 1 1 
EfficientNetV2S 
Attention 

20.334 M 513 1 0 2 

EfficientNetV2B2 8.772 M 349 0 1 1 
EfficientNetV2S 8.772 M 513 1 0 2 
ResNet101V2 42.630 M 377 0 1 1 
Resnet152v2 58.335 M 564 0 1 1 
DenseNet169 12.646 M 595 0 1 1 
DenseNet201 18.325 M 707 0 1 1 
U-Net 5.904 M 143 0 0 0 
GAN generator 3.553 M 20 0 0 0 
GAN 
discriminator 

1.291 M 11 0 0 1 

Table 5: Results of the proposed models with respect to trained data 
Model AUC P(Norm) R(Norm) F(Norm) P(Mal) R(Mal) F(Mal) AC 
EfficientNetV2S 0.939 0.978 0.958 0.968 0.854 0.919 0.885 0.95 
EfficientNetV2S 
Attention 

0.939 0.972 0.986 0.979 0.944 0.892 0.917 0.966 

EfficientNetV2S 
QUANT 

0.931 0.97 0.958 0.966 0.85 0.903 0.875 0.947 

EfficientNetV2S 
GAN 

0.939 0.98 0.953 0.966 0.839 0.926 0.88 0.947 

EfficientNetV2S 
GAN QUANT 

0.947 0.981 0.964 0.972 0.873 0.93 0.9 0.957 

EfficientNetV2B2 0.94 0.974 0.977 0.976 0.915 0.904 0.909 0.962 
EfficientNetV2B2 
Attention 

0.944 0.985 0.942 0.963 0.812 0.946 0.874 0.943 

EfficientNetV2B2 
QUANT 

0.936 0.971 0.984 0.977 0.936 0.888 0.912 0.964 

EfficientNetV2B2 
GAN 

0.923 0.962 0.992 0.977 0.966 0.854 0.906 0.963 

EfficientNetV2B2 
GAN QUANT 

0.921 0.96 0.99 0.975 0.962 0.851 0.903 0.96 

ResNet101v2 0.927 0.982 0.916 0.9484 0.7481 0.9381 0.8324 0.921 
ResNet101v2 
GAN 

0.92 0.977 0.921 0.948 0.76 0.92 0.83 0.92 

ResNet152v2 0.914 0.97 0.936 0.953 0.788 0.8932 0.8375 0.9275 
ResNet152v2 
GAN 

0.65 0.856 0.819 0.837 0.42 0.486 0.45 0.749 

DenseNet201 0.907 0.96 0.9667 0.963 0.87 0.847 0.859 0.942 
DenseNet201 
GAN 

0.871 0.958 0.887 0.922 0.667 0.855 0.749 0.88 

DenseNet169 0.81 0.907 0.9994 0.948 0.963 0.627 0.759 0.915 
DenseNet169 
GAN 

0.8 0.904 0.993 0.95 0.96 0.607 0.744 0.916 
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Fig. 7: Comparison between U-Net training loss and validation loss 

5 Discussion 

The results of EfficientNet outperform all previous CNN architectures on most benchmarking datasets. EfficientNetV2S 
Attention has outperformed other models on malignant F1-score and accuracy achieving 0.9168 and 0.965 respectively. 
Using GAN on preprocessing has improved the recall of the normal class in addition to the precision of the malignant 
but it has a negative impact on the precision of the normal class and recall of the malignant class. Quantization has 
reduced the EfficientNetV2S model size from 76.9 to 21 MB with a compression ratio of 3.66 and the 
EfficientNetV2B2 model size from 33.1 to 9.3 MB with a compression ratio of 3.55. Although the positive impact of 
quantization on model size and inference time, it has a relatively small negative effect on the other performance metrics. 
The proposed framework has outperformed state-of-the-art studies on the recall of normal and malignant classes and 
accuracy. EfficientNetV2S Attention has achieved an improvement ratio of 2.7 over the best-achieved accuracy by the 
state-of-the-art studies. The EfficientNetV2S model Attention might have been subjected to extensive hyperparameter 
tuning in order to maximize its learning rates, regularization approaches, and other crucial configurations. Optimizing 
these parameters has the potential to enhance the performance of the model. In addition, the attention processes enable 
the model to selectively concentrate on particular regions of interest within the input data, specifically in the context of 
skin lesion images. This technique enhances the model’s ability to effectively collect important features relevant to the 
classification task. Fig. 9 shows the Receiver operating characteristic curves (ROC) of the best five models on AUC, 
EfficientNetV2B2 has achieved the highest AUC with a value of 0.96. Table 9 shows the proposed framework results 
compared to state-of-the-art models. 

6 Conclusions 

In this study, a framework for the classification of skin lesion images is proposed, combining several techniques, 
beginning with image preprocessing, including the implementation of a median filter, followed by the execution of a 
hair removal algorithm, segmentation of ROI, and ending with the generation of melanoma lesions images in the 
training set to solve the unbalanced dataset problem. Finally, transfer learning was applied to six different pre-trained 
CNNs from the EfficientNet, ResNet, and DenseNet families. These techniques enabled CNN to outperform in the 
evaluation metrics. In contrast to prior research, the findings showed an enhancement in the accuracy of classification. 
The selection of EfficientNetV2S attention model as a classifier is based on its superior performance in terms of 
malignancy F1-score and accuracy, surpassing other models. AMDS has not only achieved low latency but also has 
outperformed state-of-the-art studies in recall, accuracy, and F1-score. This finding is of tremendous significance since 
it can aid in the early detection of skin cancer, which is critical for increasing patient survival rates and providing a 
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foundation for future research into skin lesion classification. 

 

 
(a) (b) (c) (d) 

Fig. 8: Group (a) represents the original image, Group (b) represents the ground truth, Group (c) represents the 
predicted mask, Group (d) represents the ROI output of U-Net 

 
Fig. 9: ROC curves of the best five models 
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Table 6: Results of the proposed models with respect to validation data 
Model AUC P(Norm) R(Norm) F(Norm) P(Mal) R(Mal) F(Mal) AC 
EfficientNetV
2S 

0.936 0.9761 0.9614 0.9687 0.862 0.911 0.885 0.95 

EfficientNetV
2S 
Attention 

0.942 0.973 0.987 0.98 0.948 0.897 0.922 0.968 

EfficientNetV
2S 
QUANT 

0.938 0.97 0.963 0.97 0.86 0.91 0.89 0.95 

EfficientNetV
2S 
GAN 

0.89 0.947 0.99 0.968 0.956 0.79 0.86 0.948 

EfficientNetV
2S 
GAN QUANT 

0.93 0.977 0.964 0.97 0.866 0.91 0.89 0.953 

EfficientNetV
2B2 

0.93 0.973 0.9788 0.976 0.918 0.898 0.9 0.961 

EfficientNetV
2B2 
Attention 

0.946 0.985 0.947 0.965 0.82 0.945 0.88 0.946 

EfficientNetV
2B2 
QUANT 

0.934 0.971 0.979 0.975 0.92 0.89 0.9 0.96 

EfficientNetV
2B2 
GAN 

0.91 0.956 0.989 0.973 0.955 0.831 0.88 0.956 

EfficientNetV
2B2 
GAN QUANT 

0.906 0.954 0.99 0.972 0.956 0.82 0.884 0.95 

ResNet101v2 0.922 0.977 0.923 0.95 0.76 0.92 0.83 0.923 
ResNet101v2 
GAN 

0.919 0.974 0.929 0.95 0.77 0.9 0.83 0.92 

ResNet152v2 0.916 0.97 0.94 0.955 0.798 0.891 0.84 0.93 
ResNet152v2 
GAN 

0.658 0.861 0.81 0.85 0.41 0.5 0.45 0.746 

DenseNet201 0.907 0.95 0.97 0.96 0.88 0.841 0.86 0.943 
DenseNet201 
GAN 

0.88 0.963 0.89 0.926 0.68 0.87 0.76 0.88 

DenseNet169 0.78 0.89 0.99 0.943 0.957 0.579 0.721 0.906 
DenseNet169 
GAN 

0.786 0.89 0.993 0.943 0.957 0.57 0.72 0.906 

Table 7: Results of the proposed models with respect to test data 
Model AUC P(Norm) R(Norm) F(Norm) P(Mal) R(Mal) F(Mal) AC 
EfficientNetV
2S 

0.946 0.99 0.94 0.96 0.8 0.96 0.87 0.94 

EfficientNetV
2S 
Attention 

0.942 0.974 0.982 0.978 0.9317 0.9024 0.9168 0.9657 

EfficientNetV
2S 
QUANT 

0.946 0.99 0.94 0.96 0.8 0.95 0.87 0.94 

EfficientNetV
2S 
GAN 

0.94 0.98 0.95 0.96 0.82 0.93 0.87 0.94 

EfficientNetV 0.94 0.98 0.95 0.97 0.84 0.93 0.88 0.95 
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2S 
GAN QUANT 
EfficientNetV
2B2 

0.957 0.99 0.97 0.98 0.88 0.95 0.91 0.96 

EfficientNetV
2B2 
Attention 

0.94 0.982 0.947 0.964 0.824 0.936 0.876 0.944 

EfficientNetV
2B2 
QUANT 

0.921 0.97 0.98 0.97 0.9 0.87 0.88 0.95 

EfficientNetV
2B2 
GAN 

0.921 0.96 0.99 0.98 0.95 0.85 0.9 0.96 

EfficientNetV
2B2 
GAN QUANT 

0.92 0.96 0.99 0.97 0.95 0.85 0.9 0.96 

ResNet101v2 0.9 0.9677 0.9210 0.9438 0.7475 0.8839 0.8100 0.9133 
ResNet101v2 
GAN 

0.689 0.8597 0.9905 0.9205 0.9153 0.3891 0.5460 0.8647 

ResNet152v2 0.87 0.9419 0.9754 0.95838 0.8926 0.7724 0.82810 0.9329 
ResNet152v2 
GAN 

0.8 0.9236 0.8759 0.8991 0.6074 0.7259 0.6614 0.8445 

DenseNet201 0.9 0.9694 0.9244 0.9464 0.7569 0.8897 0.8179 0.9172 
DenseNet201 
GAN 

0.8 0.9840 0.6442 0.7787 0.4166 0.9605 0.5812 0.7104 

DenseNet169 0.82 0.9184 0.9791 0.9478 0.8947 0.6713 0.7671 0.9147 
DenseNet169 
GAN 

0.833 0.9592 0.7951 0.8695 0.5296 0.8722 0.6591 0.8112 

Table 8: Results of the proposed models 
Model Size(MB) Inference(ms) 

EfficientNetV2S 76.9 106.11 
EfficientNetV2S 

Attention 
233 348.6 

EfficientNetV2S 
QUANT 

21 105.93 

EfficientNetV2S 
GAN 

76.9 105.28 

EfficientNetV2S 
GAN QUANT 

21 105.77 

EfficientNetV2B2 33.1 57.38 
EfficientNetV2B2 

Attention 
100 61.3 

EfficientNetV2B2 
QUANT 

9.3 52.55 

EfficientNetV2B2 
GAN 

33.1 56.57 

EfficientNetV2B2 
GAN QUANT 

9.3 52.84 

ResNet101v2 488 79.3 
ResNet101v2 

GAN 
488 76.7 

ResNet152v2 688 94 
ResNet152v2 

GAN 
688 125.2 

DenseNet201 210 106.7 
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DenseNet201 
GAN 

210 123.7 

DenseNet169 145 93.45 
DenseNet169 

GAN 
145 91.8 

Table 9: Results of the proposed model compared to the state of the art studies 
name AUC R (Norm) P (Mal) R (Mal) F (Mal) AC 
[24] - 0.878 - 0.885 - 0.893 
[25] - - 0.965 0.936 0.95 0.914 
[26] 0.87 0.876 0.874 0.861 - 0.869 
[29] - - - - 0.874 0.873 
[30] - 0.925 - 0.82 - 0.904 
[32] - - - - - 0.902 
[36] - 0.913 - 0.936 - 0.923 
[37] 0.95 - 0.85 0.88 - 0.94 
[39] - - - - - 0.884 
[40] - 0.74 - 0.68 0.7 0.71 
[41] - - 0.785 0.928 - 0.837 
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