A Novel Algorithm for the Conversion of Parallel Regular Expressions to Non-deterministic Finite Automata

Ajay Kumar* and Anil Kumar Verma
Computer Science and Engineering Department, Thapar University, Patiala, Punjab, 147001, India

Received: 11 Mar. 2013, Revised: 16 Jun. 2013, Accepted: 16 Jun. 2013
Published online: 1 Jan. 2014

Abstract

The aim of the paper is to concoct a novel algorithm for the metamorphosis of parallel regular expressions to ε-free nondeterministic finite automata. For a given parallel regular expression r, let m be the number of symbols that occur in r and let C denote the number of concatenation operators in r. In the worst case, 2^{m+1} states are required for the construction of the non-deterministic finite automaton using the novel algorithm. In the earlier existing approaches, the number of states of the non-deterministic finite automaton in the worst case is equal to $2^{2|r|-3 C}$.

Keywords: Non-deterministic finite automaton, Parallel finite automaton, Regular expression, Shuffle operator

1 Introduction

Regular expressions(REs) play a prominent role in numerous applications, such as finite state based testing, XML schema languages, compiler designs, pattern matching and as a programming tool for various scripting languages, such as Perl and PHP [2,4,10,15]. REs used in these applications include union, Kleene closure and concatenation operators. Parallel regular expression(PRE) consists of Kleene closure(*), union(+), concatenation(.) and shuffle(\&) operators [3].

In one form or another, shuffle operators emerge in multifarious forms of Computer Science, namely multipoint communications [11], XML schema language Relax $N G$ [8], process algebra [9], and the concurrency of processes $[3,4,14]$. The metamorphosis of PREs to REs or deterministic finite automata (DFAs) render a way of studying the serialization of concurrency [4], as well as the metamorphosis of Relax $N G$ to the XML schema definition [8]. PREs bestow a concise way to depict concurrent and parallel processes.

1.1 Related Work

Gelade [18] reasserted that the double exponential size is required for the metamorphosis of PREs to REs. Biegler et al. [6] worked on the shuffle decomposition and
reaffirmed that shuffle decomposition is not unique over the finite sets. Gelade et al. [19] calibrate the REs with shuffle operator and numerical constraints. They depict the overview of complexity for the decision problems of $X M L$ schema languages namely Relax $N G, D T D s$ and XSDs. Hovland [5] worked on the unordered concatenation and proposed a membership algorithm for the REs with unordered concatenation and numerical constraints. In unordered concatenation, languages can be concatenated in any order. For example $\&(a b c, d e)=\{a b c d e, d e a b c\}$ where $\&$ denotes the unordered concatenation. Standard Generalized Markup Language (SGML) [5] permits unordered concatenation. Unordered concatenation is a confined form of shuffle.

Estrade et al. [4] calibrate the metamorphosis of PREs to DFAs using parallel finite automata (PFAs) and non-deterministic finite automata (NFAs) as intermediate steps. PREs to PFAs metamorphosis can be accomplished by using the modified Thompson's construction. PFAs to NFAs metamorphosis require the effacement of λ-transitions and enumeration of all possible states explicitly [3]. λ-transitions represent the joining of two languages using a shuffle operator. The FLAT tool kit [7] is designed for the metamorphosis of PREs to DFAs using the intermediate steps of PFA and NFA.

In the direct conversion method [1,2], REs can be converted into DFAs. Given RE r over an alphabet Σ with length n. Let m depicts the number of instances of

[^0]symbols from Σ in r. Table 1 narrates the output and number of states generated by Thompson's construction, Glushkov automata [17] and the direct conversion method. Clearly the direct conversion method is preferential in terms of the number of states and outputs generated to the Thompson's construction and Glushkov automata. There is scope for producing svelte finite automata using the direct conversion method [2] for the metamorphosis of PREs to NFAs.

Table 1: Comparison between direct conversion, Thompson's construction and Glushkov automata

Direct Conversion [2]	Thompson's Construction[12]	Glushkov Automata[17]
$D F A$	$\varepsilon-N F A$	NFA
$\|Q\| \leq m+1$	$\|Q\| \leq 2 n$	$\|Q\|=m+1$

Impendence of shuffle operators in REs offers umpteenth benefits in the area of process algebra, the concurrency of processes, multipoint communications and XML schema language. Impetus for this research stems from the applications of REs with shuffle operators. In this paper, the authors propose a novel algorithm for the metamorphosis of PREs to ε-free NFAs without using any intermediate steps. This algorithm is an extension of the direct conversion of REs to DFAs.

The contents of the paper are organized as follows. In Section 2, we render some preliminary concepts. In Section 3, we present an algorithm for metamorphose of PREs to DFAs. Section 4 is devoted to the numerical example followed by section 5 consists of results and discussion. In the last section, concluding remarks are given.

2 Preliminaries

Let Σ be a finite non-empty set of symbols called an alphabet. Σ^{*} [10] is the free monoid generated by concatenation on Σ, including the empty string. A language is a subset of Σ^{*}. A string $\mathrm{w}=a_{1} a_{2} \ldots a_{n}$ is a finite sequence of symbols taken from Σ, having length n. The length of a string w is denoted by $|w|$. Empty string (denoted by ε) does not contain any symbol.The null language (denoted by ϕ) does not contain any string. A natural number position is assigned to each occurrence of symbols from an alphabet and \# symbols in r. Position number increases from the left side to the right side of the $R E$. Position of symbol $a \in \Sigma$ of r can be enlightened by position $_{a}(r)$.

Definition 2.1: Language L elucidated by $R E r$ over an alphabet Σ can be defined using the following rules:

1. $L(\phi) \leftarrow\{\phi\}$
2. $L(\varepsilon) \leftarrow\{\varepsilon\}$
3. For $a \in \Sigma, L(a) \leftarrow\{a\}$
4. $L\left(r_{1} r_{2}\right) \leftarrow L\left(r_{1}\right) L\left(r_{2}\right)$
5. $L\left(r^{*}\right) \leftarrow \cup_{k=0}^{k=\infty}\left\{\left(L^{k}\right)\right\}$
6. $L\left(r_{1} \cup r_{2}\right) \leftarrow L\left(r_{1}\right) \cup L\left(r_{2}\right)$

Definition 2.2: DFA [10] is a quintuple $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$, where

1. Q is the set of states.
2. Σ is an alphabet.
3. $q_{0} \in Q$ is the starting state.
4. Transition function $(\boldsymbol{\delta})$ is a partial function mapping $Q \times \Sigma \rightarrow Q$.
5. Set $F \subseteq Q$ is the set of final states.

Definition 2.3: NFA [10] is a quintuple $M=\left(Q, \Sigma, q_{0}, \delta, F\right)$, where

1. Q is the set of states.
2. Σ is an alphabet.
3. $q_{0} \in Q$ is the starting state.
4. Transition function (δ) is a partial function mapping $Q \times \Sigma \rightarrow 2^{Q}$.
5. Set $F \subseteq Q$ is the set of final states.

Definition 2.4: Shuffle operator is denoted by \&. Shuffling [13] can be formally defined as follows:

1. For $a \in \Sigma, a \& \varepsilon=\varepsilon \& a=a$
2. For $a, b \in \Sigma, x, y \in \Sigma^{*}$

$$
a x \& b y=a(x \& b y) \cup b(a x \& y)
$$

Example 2.1: Consider $w_{1}=a b c$ and $w_{2}=x y$, then $w_{1} \& w_{2}=\{a b c x y, x y a b c, a x b c y, a x y b c, a x b y c, a b x y c$, $x a b c y, x a y b c, x a b y c, a b x c y\}$

Definition 2.5: If L_{1} and L_{2} are two languages, then $L_{1} \& L_{2}$ is a set consisting of the strings w such that

$$
\left\{w \mid w=x \& y, \exists x \in L_{1} \wedge \exists y \in L_{2}\right\}
$$

Definition 2.6: Language L elucidated by PRE r over an alphabet Σ can be defined using the following rules:

1. $L(\phi) \leftarrow\{\phi\}$
2. $L(\varepsilon) \leftarrow\{\varepsilon\}$
3. For $a \in \Sigma, L(a) \leftarrow\{a\}$
4. $L\left(r_{1} r_{2}\right) \leftarrow L\left(r_{1}\right) L\left(r_{2}\right)$
5. $L\left(r^{*}\right) \leftarrow \cup_{k=0}^{k=\infty}\left\{\left(L^{k}\right)\right\}$
6. $L\left(r_{1} \cup r_{2}\right) \stackrel{\kappa\left(r_{1}\right) \cup L\left(r_{2}\right)}{\leftarrow}$
7. $L\left(r_{1} \& r_{2}\right) \leftarrow L\left(r_{1}\right) \& L\left(r_{2}\right)$

Definition 2.7: PFA [16] consists of 7-tuple $\left(\Sigma, Q, q_{0}, F, N, \delta, \gamma\right)$, where

1. Σ is an alphabet.
2. $Q \subseteq 2^{N}$ is a finite set of states.
3. $q_{0} \in Q$ is the starting state.
4. Set $F \subseteq N$ is the set of final states.
5. N is a finite non-empty set of nodes.
6. δ is a state transition function defined by $Q \times(\Sigma \cup \lambda) \rightarrow 2^{Q}$.
7. γ is a node transition function defined by

$$
2^{Q} \times(\Sigma \cup \lambda) \rightarrow 2^{2^{N}}
$$

Definition 2.8: Syntax tree of $\operatorname{PRE} r$ is a binary tree in which every node has at most two children and the following conditions holds:

1. $a \in \Sigma$, \# and $\#_{s}$ appear as a leaf node.
2. Operators act as an internal node of the syntax tree.
3. In-order traversal of the syntax tree is equivalent to the PRE.

Definition 2.9: $\operatorname{Firstpos}(r)[2]$ is a function that renders a set of positions of the first symbol occurs in the strings defined by PRE r. Firstpos(r) is inductively calculated as follows:

1. firstpos $(\phi) \leftarrow$ first $\operatorname{pos}(\varepsilon) \leftarrow\{\emptyset\}$
2. $\operatorname{If}((a \in \Sigma) \vee(a=\#))$ firstpos $(a) \leftarrow \operatorname{position}(a)$
3. Let $r=\left(r_{i} r_{j}\right)$

If $\varepsilon \notin L\left(r_{i}\right)$ then firstpos $(r) \leftarrow$ firstpos $\left(r_{i}\right)$
Else

$$
\text { first pos }(r) \leftarrow \text { first pos }\left(r_{i}\right) \cup \text { first pos }\left(r_{j}\right)
$$

4. Let $r=\left(r_{i}+r_{j}\right)$ then
firstpos $(r) \leftarrow$ first pos $\left(r_{i}\right) \cup$ first pos $\left(r_{j}\right)$
5. Let $r=r_{i}^{*}$ then firstpos $(r) \leftarrow$ firstpos $\left(r_{i}\right)$
6. Let $r=\left(r_{i} \& r_{j}\right)$ then firstpos $(r) \leftarrow$ first pos $\left(r_{i}\right) \cup$ first pos $\left(r_{j}\right)$

Definition 2.10: $\operatorname{Lastpos}(r)$ [2] is a function that renders a set of positions of the last symbol occurs in the strings defined by PRE r. Lastpos(r) is inductively calculated as follows:

1. lastpos $(\phi) \leftarrow$ lastpos $(\varepsilon) \leftarrow\{\emptyset\}$
2. $\operatorname{If}((a \in \Sigma) \vee(a=\#))$ last pos $(a) \leftarrow \operatorname{position}(a)$
3. Let $r=\left(r_{i} r_{j}\right)$

If $\left(\varepsilon \notin L\left(r_{j}\right)\right)$ then last pos $(r) \leftarrow$ lastpos $\left(r_{j}\right)$
Else lastpos $(r) \leftarrow$ lastpos $\left(r_{i}\right) \cup$ last pos $\left(r_{j}\right)$
4. Let $r=\left(r_{i}+r_{j}\right)$ then lastpos $(r) \leftarrow$ lastpos $\left(r_{i}\right) \cup$ lastpos $\left(r_{j}\right)$
5. Let $r=r_{i}^{*}$ then lastpos $(r) \leftarrow$ lastpos $\left(r_{i}\right)$
6. Let $r=\left(r_{i} \& r_{j}\right)$ then last pos $(r) \leftarrow$ lastpos $\left(r_{i}\right) \cup \operatorname{last} \operatorname{pos}\left(r_{j}\right)$

Definition 2.11:Followpos (i) [2] of a position i consists of a set of positions which can follow the position i in the $R E r$. Followpos is inductively calculated as follows:

1. If $\left(\left(\varepsilon \in L\left(r_{i}\right)\right) \wedge\left(j \in \operatorname{lastpos}\left(r_{i}\right)\right)\right)$
followpos $(j) \leftarrow$ followpos $(j) \cup_{r_{i} \in r}$ firstpos $\left(r_{i}\right)$
2. If $\left(i \in \operatorname{lastpos}\left(r_{j}\right)\right)$ followpos $(i) \leftarrow \cup_{r_{j} r_{k}}$ first pos $\left(r_{k}\right)$

Definition 2.12:Nullable[2] is a function that returns either true or false value. Nullable(r) is inductively calculated as follows:

1. nullable $(\phi) \leftarrow$ nullable $(a) \leftarrow$ false
nullable $(\varepsilon) \leftarrow$ true
2. Let $r=r_{i}^{*}$ then nullable $(r) \leftarrow$ true
3. Let $r=\left(r_{i} r_{j}\right)$

If $\left(\left(\right.\right.$ nullable $\left(r_{i}\right)=$ true $) \wedge\left(\right.$ nullable $\left(r_{j}=\right.$ true $\left.\left.)\right)\right)$ nullable $(r) \leftarrow$ true
Else
nullable $(r) \leftarrow$ false
4. Let $r=\left(r_{i} \& r_{j}\right)$

If $\left(\left(\right.\right.$ nullable $\left(r_{i}\right)=$ true $) \wedge\left(\right.$ nullable $\left(r_{j}\right)=$ true $\left.)\right)$ nullable $(r) \leftarrow$ true
Else
nullable $(r) \leftarrow$ false
5. Let $r=\left(r_{i}+r_{j}\right)$

If $\left(\left(\right.\right.$ nullable $\left(r_{i}\right)=$ true $) \vee\left(\right.$ nullable $\left(r_{j}\right)=$ true $\left.)\right)$
nullable $(r) \leftarrow$ true
Else
nullable $(r) \leftarrow$ false
Definition 2.13:Shuffle flag at a node of the syntax tree is calculated as follows:

1. $\operatorname{shuffle}(\phi) \leftarrow \operatorname{shuffle}(\varepsilon) \leftarrow$ false
2. Let $((a \in \Sigma) \vee(a=\#))$ shuffle $(a) \leftarrow$ false
3. Let $\left(\left(r_{i} \& r_{j}\right) \in r\right)$
shuffle $\left(r_{i} \& r_{j}\right) \leftarrow$ true
4. Let $r_{i}^{*} \in r$ then $\operatorname{shuffle}\left(r_{i}^{*}\right) \leftarrow \operatorname{shuffle}\left(r_{i}\right)$
5. Let $\left(\left(r_{i}+r_{j}\right) \in r\right)$

If $\left(\operatorname{shuffle}\left(r_{i}\right)=\right.$ true $) \vee\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $)$ shuffle $\left(r_{i}+r_{j}\right) \leftarrow$ true
Else shuffle $\left(r_{i}+r_{j}\right) \leftarrow$ false
6. Let $\left(r_{i} r_{j} \in r\right)$

If $\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $)$
shuffle $\left(r_{i} r_{j}\right) \leftarrow$ true
Else
If $\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \wedge\left(\right.$ nullable $\left(r_{j}\right)=$ true $\left.)\right)$
shuffle $\left(r_{i} r_{j}\right) \leftarrow$ true
Else
shuffle $\left(r_{i} r_{j}\right) \leftarrow$ false
Example 2.2: Given a particular node with the $P R E$ formed at that node.

1. shuffle $(a) \leftarrow$ false
2. shuffle $(a \& b) \leftarrow$ true
3. shuffle $(a \& b)^{*} \leftarrow$ true
4. shuffle $(a b)^{*} \leftarrow$ false
5. shuffle $(a \& b) c \leftarrow$ false
6. shuffle $(a(b \& c)) \leftarrow$ true
7. shuffle $(a \& b) c^{*} \leftarrow$ true

Definition 2.14:Shuffle-first (r) of a PRE r consists of set of positions calculated as follows:

1. shuffle - first $(r) \leftarrow\{\emptyset\}$
2. If $\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right) \in r\right)$ shuffle - first $(r) \leftarrow$ shuffle - first $(r) \cup$ $\operatorname{Min}\left(f i r s t \operatorname{pos}\left(r_{i} \#_{s}\right)\right) \cup \operatorname{Min}\left(\operatorname{firstpos}\left(r_{j} \#_{s}\right)\right)$

Definition 2.15:Shuffle-last (r) of a PRE r consists of set of positions calculated as follows:

1. shuffle-last $(r) \leftarrow\{\emptyset\}$
2. If $\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right) \in r\right)$ shuffle - last $(r) \leftarrow$ shuffle - last $(r) \cup$
$\operatorname{Max}\left(\operatorname{lastpos}\left(r_{i} \#_{s}\right)\right) \cup \operatorname{Max}\left(\operatorname{lastpos}\left(r_{j} \#_{s}\right)\right)$
Example 2.3: Given PRE $r=\left((a b) \#_{s} \&(c d) \#_{s}\right) \#$
Augmented PRE with position $r^{\prime}=\left((a b) \#_{s} \&(c d) \#_{s}\right) \#$ shuffle - first $(r) \leftarrow$ shuffle - first $(r) \cup$
$\operatorname{Min}\left(\operatorname{firstpos}\left(a b \#_{s}\right)\right) \cup \operatorname{Min}\left(\right.$ firstpos $\left.\left(c d \#_{s}\right)\right) \leftarrow\{1,4\}$
shuffle - last $(r) \leftarrow \operatorname{shuffle}-\operatorname{last}(r) \cup$

Followpos of $\#_{s}$ are taken as \emptyset. Now the question arises: which one is the next symbol to be processed, after reading each symbol of r_{1} and r_{2} involved in shuffling? Immediate-follow will give the positions to be followed after a pair of $\#_{s}$ involved in the shuffling.

Definition 2.16:Immediate-follow(p) of a set of positions p labeled by $\#_{s}$ is calculated as follows:

```
1. Let \(\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right) r_{k} \in r\right)\)
    If \(\left(\left(\varepsilon \in r_{i}\right) \wedge\left(\varepsilon \in r_{j}\right)\right)\)
    \(I F \leftarrow\) position \(_{\#_{s}}\left(r_{i} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{j} \#_{s}\right)\)
    immediate - follow \((I F) \leftarrow\) immediate - follow \((I F)\)
        \(\cup\) firstpos \(\left(r_{i} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{j} \#_{s}\right) \cup\) firstpos \(\left(r_{k}\right)\)
2. Let \(\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right) r_{k} \in r\right)\)
    If \(\left(\left(\varepsilon \in r_{j} \#_{s}\right) \wedge\left(\varepsilon \notin r_{i}\right)\right)\)
    IF \(\leftarrow\) position \(_{\#_{s}}\left(r_{i} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{j} \#_{s}\right)\)
    immediate - follow \((I F) \leftarrow\) immediate - follow \((I F)\)
        \(\cup\) first pos \(\left(r_{j} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{i} \#_{s}\right) \cup\) first pos \(\left(r_{k}\right)\)
    3. Let \(\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right) r_{k} \in r\right)\)
    \(I F \leftarrow \operatorname{position}_{\#_{s}}\left(r_{i} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{j} \#_{s}\right)\)
    immediate - follow \((I F) \leftarrow\) immediate - follow \((I F)\)
        \(\cup\) firstpos \(\left(r_{k}\right)\)
4. Let \(\left(\left(r_{i} \#_{s} \& r_{j} \#_{s}\right)^{*} r_{k} \in r\right)\)
    \(I F \leftarrow \operatorname{position}_{\#_{s}}\left(r_{i} \#_{s}\right) \cup\) position \(_{\#_{s}}\left(r_{j} \#_{s}\right)\)
    immediate - follow \((I F) \leftarrow\) immediate - follow \((I F)\)
        \(\cup\) first pos \(\left(r_{i} \& r_{j}\right)\)
    immediate - follow \((I F) \leftarrow\) immediate - follow \((I F)\)
        \(\cup\) firstpos \(\left(r_{k}\right)\)
```

Example 2.4: Given the $\operatorname{PRE} r \leftarrow\left((a b) \#_{s} \&(c d) \#_{s}\right) e \#$ Augmented PRE with their position is $\left(\left(a_{1} b_{2}\right) \#_{s 3} \&\left(c_{4} d_{5}\right) \#_{s 6}\right) e_{7} \#_{8}$

$$
\text { immediate }- \text { follow }(3,6) \leftarrow\{7\}
$$

Example 2.5: Given the $\operatorname{PRE} r \leftarrow\left((a b)^{*} \#_{s} \&(c d) \#_{s}\right) e \#$ Augmented PRE with their position is $\left(\left(a_{1} b_{2}\right)^{*} \#_{s 3} \&\left(c_{4} d_{5}\right) \#_{s 6}\right) e_{7} \#_{8}$

$$
\text { immediate }- \text { follow }(3,6) \leftarrow\{1,6,7\}
$$

Example 2.6: Given the $\operatorname{PRE} r \leftarrow\left((a b) \#_{s} \&(c d) \#_{s}\right)^{*} e \#$
Augmented PRE with their position is $\left(\left(a_{1} b_{2}\right) \#_{s 3} \&\left(c_{4} d_{5}\right) \#_{56}\right)^{*} e_{7} \#_{8}$ immediate - follow $(3,6) \leftarrow\{1,4,7\}$

Example 2.7: Given the $P R E$ $r \leftarrow\left((a b)^{*} \#_{s} \&(c d)^{*} \#_{s}\right) e \#$

Augmented PRE with their position is $\left(\left(a_{1} b_{2}\right)^{*} \#_{s 3} \&\left(c_{4} d_{5}\right)^{*} \#_{56}\right) e_{7} \#_{8}$

$$
\text { immediate }- \text { follow }(3,6) \leftarrow\{1,4,7\}
$$

Definition 2.17:Separator is a functions that returns either true or false value. Separator at a node n is inductively calculated as follows:

1. separator $(\phi) \leftarrow$ separator $(\varepsilon) \leftarrow$ separator $(a) \leftarrow$ separator $(\#) \leftarrow$ false
2. Let $\left(r_{i}+r_{j}\right) \in r$

$$
\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\text { true }\right) \vee\left(\operatorname{shuffle}\left(r_{j}\right)=\text { true }\right)\right)
$$

$$
\text { separator }\left(r_{i}+r_{j}\right) \leftarrow \text { true }
$$

Else

$$
\text { separator }\left(r_{i}+r_{j}\right) \leftarrow \text { false }
$$

3. Let $\left(r_{i}^{*}\right) \in r$
separator $\left(r_{i}^{*}\right) \leftarrow$ separator $\left(r_{i}\right)$
4. Let $\left(r_{i} \& r_{j}\right) \in r$
$\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \vee\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $\left.)\right)$
separator $\left(r_{i} \& r_{j}\right) \leftarrow$ true
Else
separator $\left(r_{i} \& r_{j}\right) \leftarrow$ false
5. Let $\left(r_{i} r_{j}\right) \in r$
$\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \wedge\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $\left.)\right)$
If (nullable $\left(r_{j}\right)=$ true $)$
separator $\left(r_{i} r_{j}\right) \leftarrow$ true
Else
separator $\left(r_{i} r_{j}\right) \leftarrow$ false
Definition 2.18:Separator-first (r) of a PRE r is calculated as follows:
6. Separator - first $(r) \leftarrow \emptyset$
7. Let $\left(r_{i} \mid r_{j}\right) \in r$
$\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \vee\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $\left.)\right)$
Separator - first $(r) \leftarrow$ Separator - first $(r) \cup$
$\operatorname{Min}\left(\right.$ firstpos $\left.\left(r_{i}\right)\right) \cup \operatorname{Min}\left(\right.$ first pos $\left.\left(r_{j}\right)\right)$
8. Let $\left(r_{i} r_{j}\right) \in r$
$\operatorname{If}\left(\left(\right.\right.$ shuffle $\left(r_{i}\right)=$ true $) \wedge\left(\right.$ shuffle $\left(r_{j}\right)=$ true $) \wedge$
(nullable $\left(r_{j}\right)=$ true $)$)
Separator - first $(r) \leftarrow$ Separator - first $(r) \cup$ $\operatorname{Min}\left(\right.$ firstpos $\left.\left(r_{i}\right)\right) \cup \operatorname{Min}\left(\operatorname{first} \operatorname{pos}\left(r_{j}\right)\right)$
Definition 2.19:Separator-last(r) of a PRE r is calculated as follows:
9. Separator - last $(r) \leftarrow \emptyset$
10. Let $\left(r_{i} \mid r_{j}\right) \in r$
$\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \vee\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $\left.)\right)$
Separator $-\operatorname{last}(r) \leftarrow$ Separator $-\operatorname{last}(r) \cup$ $\operatorname{Max}\left(\operatorname{last} \operatorname{pos}\left(r_{i}\right)\right) \cup \operatorname{Max}\left(\operatorname{last} \operatorname{pos}\left(r_{j}\right)\right)$
11. Let $\left(r_{i} r_{j}\right) \in r$
$\operatorname{If}\left(\left(\operatorname{shuffle}\left(r_{i}\right)=\right.\right.$ true $) \wedge\left(\operatorname{shuffle}\left(r_{j}\right)=\right.$ true $) \wedge$

$$
\begin{aligned}
& \left.\left(\text { nullable }\left(r_{j}\right)=\text { true }\right)\right) \\
& \text { Separator }-\operatorname{last}(r) \leftarrow \text { Separator }-\operatorname{last}(r) \cup \\
& \text { Max }\left(\text { lastpos }\left(r_{i}\right)\right) \cup \operatorname{Max}\left(\text { lastpos }\left(r_{j}\right)\right)
\end{aligned}
$$

Example 2.8: Given the augmented $P R E$ $r=\left(\left(a_{1} \#_{s 2}\right) \&\left(b_{3} \#_{s 4}\right)\right) \mid\left(\left(c_{5} \#_{s 6}\right) \&\left(d_{7} \#_{s 8}\right)\right)$ at a node n.
separator $(n) \leftarrow$ true
separator - first $(r) \leftarrow\{1,5\}$
separator $-\operatorname{last}(r) \leftarrow\{4,8\}$
Example 2.9: Given the augmented $P R E$ $r=\left(\left(a_{1} \#_{s 2}\right) \&\left(b_{3} \#_{s 4}\right)\right) \cdot\left(\left(c_{5} \#_{s 6}\right) \&\left(d_{7} \#_{s 8}\right)\right)$ at a node n. separator $(n) \leftarrow$ true
separator - first $(r) \leftarrow\{1,5\}$
separator $-\operatorname{last}(r) \leftarrow\{4,8\}$

3 Proposed Algorithm

In the direct conversion $[1,2]$ of $R E$ to $D F A$, a syntax tree is constructed conforming to the augmented $R E r \#$ such that all operators act as the internal nodes and symbols act as the leaf node of the syntax tree. Positions are assigned to the symbols of the $R E$ increasing from left to right. The leftmost symbol of r is assigned the position one. Firstpos, lastpos and nullable are defined for all the nodes of the syntax tree. Followpos is computed for the leaf node of the syntax tree. Using firstpos, lastpos, nullable and followpos, an equivalent $D F A$ is generated.

In this section, the authors propose the algorithm (MPRENFA) for the metamorphosis of PRE to NFA. This conversion is evolved on the followpos of symbols of the PRE. The detail of the MPRENFA algorithm is as follows:

1. Augmented PRE: Add \# at the end of PRE. If $\left(r_{i} \& r_{j}\right) \in r$ enclose $\#_{s}$ after r_{i} and r_{j}. Assign position to the symbols of the augmented $P R E$ from left to right.
2. Calculation of Followpos, Shuffle-first, Shuffle-last and Immediate-follow: Syntax tree is constructed for the augmented PRE. L and R enlighten the left and the right child of a node during traversal of the syntax tree. Firstpos, lastpos, nullable and followpos of the nodes are determined using definitions 2.9 to 2.12 with meagre modification. These variations occur due to the shuffle operators. Shuffle, shuffle-first, shuffle-last, separator-first, separator-last, separator and immediate-follow are determined using the definitions 2.13 to 2.19 .
3. NFA Creation: Using different values determined in step $2, \varepsilon-N F A$ is generated.

Shuffle operator is associative. Given PRE $r=r_{1} \& r_{2} \& r_{3}$ is converted into $\left(r_{1} \& r_{2}\right) \& r_{3}$ or $r_{1} \&\left(r_{2} \& r_{3}\right)$ before applying the algorithm.

Example 3.1: Given PRE $r=\left((a \& b)^{*} c\right) \& d$
Using step 1 and step 2 of the algorithm MPRENFA,
Augmented PRE $r^{\prime}=\left(\left(a_{1} \#_{s 2} \& b_{3} \#_{s 4}\right)^{*} c_{5} \#_{s 6}\right) \& d_{7} \#_{s 8} \#_{9}$
A syntax tree as shown in Fig. 1 is constructed for the augmented PRE r^{\prime}.During traversal of the syntax tree in
post-order, different values are computed using the definitions 2.8 to 2.18 .

Notation used in the algorithm : Current node of the post-order traversal is represented by n. The left and right children are depicted by L and R respectively. At any instant of time, let $s f$ indicates the number of elements in the separator-first. Based on the values of separator-first and separator-last, immediately-follow is determined in step 5 and 6 of the procedure Follow_Calc. In step 4 and 5 of the procedure shuffle-traverse, for avoiding duplicate entries in the shuffle-first, care should be taken so that the left and right branch of the syntax tree, which was already traversed, does not contain a shuffle operator. Min and Max represent the minimum and maximum value from a set. The complete procedure is explained with the help of example 3.2. symbol(i) depicts the symbol at $i^{\text {th }}$ position. $I F$ depicts the positions of a pair of $\#_{s}$.

Example 3.2: On applying Follow_Calc($\left.r^{\prime}\right)$ to the Example 3.1

Using algorithm 2, following values are determined during traversal of the syntax tree:

Fig. 1: Syntax tree for the augmented PRE $r=$ $\left(\left(a \#_{s} \& b \#_{s}\right)^{*} c \#_{s}\right) \& d \#_{s} \#$

```
immediate - follow \((2,4) \leftarrow\{1,3,5\}\)
immediate - follow \((6,8) \leftarrow\{9\}\)
shuffle - first \(\leftarrow\{1,3\}\)
shuffle-last \(\leftarrow\{2,4\}\)
followpos \((1) \leftarrow\{2\}\), followpos \((3) \leftarrow\{4\}\)
followpos \((5) \leftarrow\{6\}\), followpos \((7) \leftarrow\{8\}\)
```

Using different values determined from algorithm Follow_Calc, we can convert PRE into ε-free NFA. The novel algorithm for the construction of NFA is given in algorithm 5. Consider the state $q \in Q$ consists of positions from the sub-expression r_{i} and r_{j} such that $\left(r_{i} \& r_{j}\right) \in r$. Consider the situation, where we have to take the symbol a on q from r_{i} then epos depicts the positions in q pertaining to r_{j}. Epos will not include the position of $\#_{s}$.

Lpos depicts the position on which we have recently read the symbol $a . q \in Q$ depicts the current states on which symbol are read. Consider there are n entries in the shuffle-first and shuffle-last. Consider there are m entries in the separator-first and separator-last. The step by step procedure of the algorithm is illustrated in section 4 by a numerical example.

Input: $P R E r$
Output: ε-free $N F A M$ such that $L(M)=L(r)$ initialization;

$$
\begin{aligned}
& \text { 1. for } \exists\left(\left(r_{i} \& r_{j}\right) \in r\right) \text { do } \quad \triangleright \text { Augmented } P R E \\
& \quad \begin{array}{l}
r_{i} \leftarrow r_{i} \#_{S} \\
r_{j} \leftarrow r_{j} \#_{s}
\end{array} \\
& \text { end }
\end{aligned}
$$

2. $r^{\prime} \leftarrow r \#$
3. Assign position to the symbols of the augmented $P R E$
4. Follow_Calc $\left(r^{\prime}\right) \quad$ Call to procedure Follow_Calc
5. Create-NFA() \triangleright Call to procedure Create-NFA

Algorithm 1: MPRENFA(r,NFA)

4 Numerical Example

In this section, the complete procedure for the conversion of PRE to NFA is described with the help of an example.

Example 4.1: Given the $\operatorname{PRE} r=(a \& b)^{*}(c \& d)^{*}$

N denotes the nullable is true and S denotes the shuffle is true
Blue color values denote the firstpos of a node.
Green color values denote the lastpos of a node.

Fig. 2: Syntax tree for the augmented PRE $r=$ $\left(a \#_{s} \& b \#_{s}\right)^{*}\left(c \#_{s} \& d \#_{s}\right)^{*}$ using the proposed approach

Fig. 2 delineates the syntax tree corresponding to r. followpos $(1) \leftarrow\{2\}$, followpos $(3) \leftarrow\{4\}$

Input: An Augmented PRE ${ }^{\prime}$
Output: Followpos, shuffle - first, shuffle-last,immediate - follow, separator - first, se parator - last
initialization;

1. Construct a syntax tree for r^{\prime}
2. Repeat step 3 to 7 for each node n during the post-order traversal of the syntax tree $\quad \triangleright$ Leaf Node
3. if $\left(((n=a) \wedge(a \in \Sigma)) \vee\left((n=\#) \vee\left(n=\#_{s}\right)\right)\right)$ then first pos $(n) \leftarrow$ last pos $(n) \leftarrow \operatorname{position}(n)$ nullable $(n) \leftarrow \operatorname{shuffle}(n) \leftarrow$ false separator $(n) \leftarrow$ false
end
4. if $n=+$ then
first pos $(n) \leftarrow$ first pos $(L) \cup$ first pos (R)
last pos $(n) \leftarrow$ last pos $(L) \cup$ last $p o s(R)$
if $(($ nullable $(L)=$ false $) \wedge($ nullable $(R)=$ false $))$ then nullable $(n) \leftarrow$ false
else
nullable $(n) \leftarrow$ true
end
if $((\operatorname{shuffle}(L)=$ true $) \vee(\operatorname{shuffle}(R)=$ true $))$ then
shuffle $(n) \leftarrow$ separator $(n) \leftarrow$ true
separator - first \leftarrow separator - first \cup
$\operatorname{Min}($ first pos $(L)) \cup \operatorname{Min}($ first $\operatorname{pos}(R))$
separator - last \leftarrow separator - last \cup
$\operatorname{Max}($ first $\operatorname{pos}(L)) \cup \operatorname{Max}($ first $\operatorname{pos}(R))$
else
shuffle $(n) \leftarrow$ false
separator $(n) \leftarrow$ false
end
end
\triangleright Concatenation operator, call to Algorithm 3
5. if $n=$. then

Concatenation-traverse();
end
6. if $n=*$ then $\quad \triangleright$ Kleene closure
firstpos $(n) \leftarrow$ first pos (L)
lastpos $(n) \leftarrow$ last pos (L)
nullable $(n) \leftarrow$ true
separator $(n) \leftarrow$ separator (L)
$\operatorname{shuffle}(n) \leftarrow \operatorname{shuffle}(L)$
$I F \leftarrow \emptyset$
for $\overleftarrow{i} \in$ last $\operatorname{pos}(n)$ do
if $\left(\operatorname{symbol}(i) \neq \#_{s}\right)$ then
followpos $(i) \leftarrow$ followpos $(i) \cup$
first pos(n)
$I F \leftarrow I F \cup i$
end
end
end
if $(I F \neq \emptyset)$ then
if $\operatorname{separator}(n)=$ true then
\square Assume sf elements in separator-first
for $(i \leftarrow 1 ; i \leq s f ; i \leftarrow i+1)$ do for $(z \in I F)$ do if separa
if separator - first $[i] \leq z \leq$
separator - last $[i]$ then
end
immediate - follow $(I F) \leftarrow$
first pos $(L) \cup$
immediate - follow $(I F)$
end
end
else
immediate - follow $(I F) \leftarrow$
immediate - follow $(I F) \cup$
first pos (L)
end
end
end
\triangleright Shuffle operator, call to Algorithm 4
7. if $n=\&$ then $n=\&$ then
Shuffle-traverse();

Algorithm 2: Procedure Follow_Calc(r^{\prime})

Input: An Augmented PRE r^{\prime}
Output: Followpos, shuffle - first shuffle - last,immediate - follow, separator - first, separator - last at Concatenation operator.
initialization;

1. first pos $(n) \leftarrow$ first $\operatorname{pos}(L)$
lastpos $(n) \leftarrow$ lastpos (R)
2. if nullable $(L)=$ true then
first pos $(n) \leftarrow$ first pos $(n) \cup$ first $\operatorname{pos}(R)$ end
3. if nullable $(R)=$ true then
last pos $(n) \leftarrow$ last pos $(n) \cup$ last pos (L)
end
4. if $(\operatorname{nullable}(L)=$ true $) \wedge\left((\right.$ nullable $(R)=$ true $\left.) \vee\left(R=\#_{s}\right)\right)$ then
| \quad nullable $(n) \leftarrow$ true else
nullable $(n) \leftarrow$ false end
5. if $(\operatorname{shuffle}(R)=$ true $)$ then
shuffle $(n) \leftarrow$ true else
if $\left((\right.$ shuffle $(L)=$ true $) \wedge\left(\left(R=\#_{s}\right) \vee\right.$
$(\operatorname{nullable}(R)=$ true $))$) then
else
end \quad shuffle $(n) \leftarrow$ false
end
6. if $((\operatorname{shuffle}(L)=$ true $) \wedge(\operatorname{shuffle}(R)=$ true $))$ then if nullable $(R)=$ true then
separator $(n) \leftarrow$ true
separator - first \leftarrow separator - first \cup
$\operatorname{Min}($ firstpos $(L)) \cup \operatorname{Min}($ firstpos $(R))$
separator - last \leftarrow separator - last \cup
$\operatorname{Max}(\operatorname{lastpos}(L)) \cup \operatorname{Max}($ last pos $(R))$
end
else
separator $(n) \leftarrow$ false
end
\triangleright IF consists of positions of \#
7. $I F \leftarrow \emptyset$
for $i \in \operatorname{last} p o s(L)$ do
if $\left(\right.$ symbol $\left.(i) \neq \#_{s}\right)$ then
followpos $(i) \leftarrow$ followpos $(i) \cup$ first $\operatorname{pos}(R)$
else
$I F \leftarrow I F \cup i$
end
8. if $I F \neq \emptyset$ then
if $\operatorname{separator}(n)=$ true then
for $(i=1 ; i=s f ; i=i+1)$ do
for $z \in I F$ do
if separator - first $[i] \leq z \leq$ separator - last $[i]$ then
end
end
immediate - follow $(T) \leftarrow$ first pos $(R) \cup$ immediate - follow (T)
end
else
immediate - follow $(I F) \leftarrow \cup$ first $\operatorname{pos}(R)$ immediate - follow (IF)
end
end
Algorithm 3: Procedure Concatenation-traverse

Input: An Augmented PRE ${ }^{\prime}$
Output: Followpos, shuffle - first, shuffle - last,immediate - follow, separator - first, separator - last at Shuffle operator.
initialization;

1. firstpos $(n) \leftarrow$ firstpos $(L) \cup$ firstpos (R)
last pos $(n) \leftarrow$ last pos $(L) \cup$ last pos (R)
shuffle $(n) \leftarrow$ true
2. if $($ nullable $(L)=$ true $) \wedge($ nullable $(R)=$ true $)$ then
nullable $(n) \leftarrow$ true
else
nullable $(n) \leftarrow$ false
end
3. flag \leftarrow false
\triangleright For avoiding duplicate shuffle-first entry
if $(\operatorname{shuffle}(L)=$ false $)$ then
or $\quad \triangleright$ Assume m shuffle-first entry
for $(z=1 ; z<m ; z=z+1)$ do
if $(\operatorname{Min}($ firstpos $(L)) \leq \operatorname{shuffle}-$ first $[z] \leq$ $\operatorname{Max}($ last pos $(L)))$ then flag \leftarrow true break
end
end
if $($ flag \neq true $)$ then
shuffle - first \leftarrow shuffle - first $\cup \operatorname{Min}($ firstpos $(L))$
shuffle - last \leftarrow shuffle - last $\cup \operatorname{Max}($ last $\operatorname{pos}(L))$
end
end
4.flag \leftarrow false
\triangleright For avoiding duplicate shuffle-first entry
if $(\operatorname{shuffle}(R)=$ false $)$ then
for $(z=1 ; z<m ; z=z+1)$ do
if $(\operatorname{Min}($ firstpos $(R)) \leq$ shuffle - first $[z] \leq$ $\operatorname{Max}(\operatorname{lastpos}(R)))$ then flag \leftarrow true
break
end
end
if (flag \neq true $)$ then
shuffle-first \leftarrow shuffle - first \cup
$\operatorname{Min}($ firstpos $(R))$
shuffle - last \leftarrow shuffle - last $\cup \operatorname{Max}(\operatorname{last} \operatorname{pos}(R))$
end end
5.if $($ separator $(L)=$ true $) \vee($ separator $(R)=$ true $)$ then
| separator $(n) \leftarrow$ true end
6.IF $\leftarrow \emptyset$
\triangleright determine immediate-follow
if $(i \in \operatorname{lastpos}(n))$ then
if $\left(\operatorname{symbol}(i)=\#_{s}\right)$ then
$I F \leftarrow I F \cup i$
end
end
if $(I F \neq \emptyset)$ then
immediate - follow $(I F) \leftarrow \emptyset$
if (nullable $(L)=$ true $)$ then
immediate - follow $(I F) \leftarrow$ first pos $(L) \cup$
immediate - follow (IF)
if (nullable $(R)=$ false) then
immediate - follow $(I F) \leftarrow$ first $p o s(R) \cup$ immediate - follow (IF)
end
end
if (nullable $(R)=$ true $)$ then
immediate - follow $(I F) \leftarrow$ first pos $(R) \cup$
immediate - follow (IF)
if (nullable $(L)=$ false $)$ then
immediate - follow $(I F) \leftarrow$ first pos $(L) \cup$
immediate - follow (IF)
end
end
end
Algorithm 4: Procedure Shuffle-traverse

Input: AugmentedPRE and different values calculated using Follow_Calc(r)
Output: An equivalent NFA corresponding to PRE

1. Starting state $q_{0} \leftarrow$ firstpos(root)
$Q \leftarrow\left\{q_{0}\right\}$ and make q_{0} as unmarked state.
2. for \exists (unmarked $q \in Q$) do

Choose an unmarked state q and mark it.
3. for $\exists a \in \Sigma$ do
\triangleright for each value of shuffle-first and shuffle-last
4. for $i=1$ to $i=n$ do
epos \leftarrow lpos \leftarrow qtrans $\leftarrow \emptyset$
for $\exists j \in q$ do
if shuffle - first $[i] \leq j \leq$
shuffle - last $[i]$ then
if $\operatorname{symbol}(j)=a$ then
qtrans $\leftarrow q$ trans \cup
followpos(j)
$l p o s \leftarrow j$
else
if $\operatorname{symbol}(j) \neq \#$ then
$e p o s \leftarrow e p o s \cup j$
end
end
else
end
end if qtrans $=\emptyset$ then
go to 4
end
for $j=1$ to $j=m$ do
if (separator - first $[j] \leq l$ pos \leq separator - last $[j]$ then
break
end
end
for $\exists p o s \in e p o s$ do
if $($ separator - first $[j]>p o s) \vee$ (separator-last $[j]<$ pos) then epos $=$ epos - pos
end
end
qtrans \leftarrow qtrans \cup epos
$I F \leftarrow \emptyset$
for $\exists p o s \in q$ trans do
if $\left(\right.$ symbol $($ pos $\left.)=\#_{s}\right)$ then

$$
I F \leftarrow I F \cup p o s
$$

end
end
if $($ immediate $-\operatorname{follow}(I F) \neq \emptyset)$ then
qtrans \leftarrow qtrans $-I F \cup$
immediate - follow (IF)
$\operatorname{trans}[q, a]=$ qtrans
$Q \leftarrow Q \cup$ qtrans
end
end
end
end
5. Final state:
$F=\left\{\forall q_{f} \mid\right.$ last pos $($ root $) \subseteq q_{f} \wedge q_{f} \in$ Nstates $\}$
Algorithm 5: Procedure Create-NFA

```
followpos \((5) \leftarrow\{6\}\), followpos \((7) \leftarrow\{8\}\)
shuffle - first \((r) \leftarrow\{1,3,5,7\}\)
shuffle-last \((r) \leftarrow\{2,4,6,8\}\)
immediate - follow \((2,4) \leftarrow\{1,3,5,7,9\}\)
immediate - follow \((6,8) \leftarrow\{5,7,9\}\)
separator - first \(\leftarrow\{1,5\}\)
separator - last \(\leftarrow\{4,8\}\)
```


NFA creation:

$q_{0} \leftarrow$ first pos $($ root $) \leftarrow\{1,3,5,7,9\}$

Reading of symbols on q_{0}

Symbol a

$i \leftarrow 1$
qtrans \leftarrow followpos $(1) \leftarrow\{2\}$
epos $\leftarrow\{3,5,7\}$
Using separator - first $\leftarrow\{1,5\}$
separator - last $\leftarrow\{4,8\}$, epos $\leftarrow\{3\}$
qtrans \leftarrow followpos $(1) \cup$ epos $\leftarrow\{2,3\}$
$\operatorname{trans}\left(q_{0}, a\right) \leftarrow\{2,3\} \leftarrow q_{1}$
$i \leftarrow 2, i \leftarrow 3, i \leftarrow 4$
qtrans $\leftarrow \emptyset$

Symbol b

$i \leftarrow 1$
qtrans $\leftarrow \emptyset$
$i \leftarrow 2$
qtrans \leftarrow followpos $(3) \leftarrow\{4\}$, epos $\leftarrow\{1,5,7\}$
Using separator - first $\leftarrow\{1,5\}$,
separator - last $\leftarrow\{4,8\}$, epos $\leftarrow\{1\}$
qtrans \leftarrow followpos $(3) \cup$ epos $\leftarrow\{1,4\}$
$\operatorname{trans}\left(q_{0}, b\right) \leftarrow\{1,4\} \leftarrow q_{2}$
$i \leftarrow 3, i \leftarrow 4$
qtrans $\leftarrow \emptyset$

Symbol c

$$
i \leftarrow 1, i \leftarrow 2
$$

$$
\text { qtrans } \leftarrow \emptyset
$$

$i \leftarrow 3$
qtrans \leftarrow followpos $(5) \leftarrow\{6\}$, epos $\leftarrow\{1,3,7\}$
Using separator - first $\leftarrow\{1,5\}$,
separator-last $\leftarrow\{4,8\}$, epos $\leftarrow\{7\}$
qtrans \leftarrow followpos $(5) \cup$ epos $\leftarrow\{6,7\}$
$\operatorname{trans}\left(q_{0}, c\right) \leftarrow\{6,7\} \leftarrow q_{3}$
$i \leftarrow 4$
qtrans $\leftarrow \emptyset$

Symbol d

$i \leftarrow 1, i \leftarrow 2, i \leftarrow 3$
qtrans $\leftarrow \emptyset$
$i \leftarrow 4$
qtrans \leftarrow followpos $(7) \leftarrow\{8\}$, epos $\leftarrow\{1,3,5\}$ Using separator - first $\leftarrow\{1,5\}$,

$$
\text { separator - last } \leftarrow\{4,8\}, \text { epos } \leftarrow\{5\}
$$

qtrans \leftarrow followpos $(7) \cup$ epos $\leftarrow\{5,8\}$
$\operatorname{trans}\left(q_{0}, d\right) \leftarrow\{5,8\} \leftarrow q_{4}$

Reading of symbols on q_{1}

Symbol a

$i \leftarrow 1$
qtrans \leftarrow followpos $(1) \leftarrow\{2\}$, epos $\leftarrow\{4\}$
Using separator - first $\leftarrow\{1,5\}$,
separator - last $\leftarrow\{4,8\}$, epos $\leftarrow\{4\}$
qtrans \leftarrow followpos $(1) \cup$ epos $\leftarrow\{2,4\}$

```
    \(\operatorname{trans}\left(q_{2}, a\right) \leftarrow\) immediate - follow \(\{2,4\} \leftarrow\)
        \(\{1,3,5,7,9\} \leftarrow q_{0}\)
\(i \leftarrow 2, i \leftarrow 3, i \leftarrow 4\)
    qtrans \(\leftarrow \emptyset\)
Symbol \(b\)
    \(i \leftarrow 1\)
        qtrans \(\leftarrow \emptyset\)
\(i \leftarrow 2\)
        qtrans \(\leftarrow\) followpos \((3) \leftarrow\{4\}\), epos \(\leftarrow\{2\}\)
        Using separator - first \(\leftarrow\{1,5\}\),
        separator-last \(\leftarrow\{4,8\}\), epos \(\leftarrow\{2\}\)
            qtrans \(\leftarrow\) followpos \((3) \cup\) epos \(\leftarrow\{2,4\}\)
            \(\operatorname{trans}\left(q_{1}, b\right) \leftarrow\) immediate - follow \(\{2,4\} \leftarrow\)
                    \(\{1,3,5,7,9\} \leftarrow q_{0}\)
```

Symbol c
$i \leftarrow 1, i \leftarrow 2, i \leftarrow 3, i \leftarrow 4$
qtrans $\leftarrow \emptyset$

Symbol d

$$
\begin{aligned}
& i \leftarrow 1, i \leftarrow 2, i \leftarrow 3, i \leftarrow 4 \\
& \quad \text { qtrans } \leftarrow \emptyset
\end{aligned}
$$

On repeating the procedure, we obtain the NFA $\mathrm{M}\left(\left\{q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right\},\{a, b\}, q_{0}, \delta,\left\{q_{0}, q_{5}\right\}\right)$ shown in Fig. 3.

Fig. 3: $N F A$ for $P R E r=(a \& b)^{*}(c \& d)^{*}$

5 Results and Discussion

Using Estrade et al.'s methodology [4], PREs r can be converted into PFAs using the modified Thompson's construction requiring $2|r|-3 C$ where C is the number of
times a concatenation operator appears in r. A PFA (having $2|r|-3 C$ states) can be converted into NFA using subset construction requiring $2^{2|r|-3 C}$ states in the worst case. Fig. 4 delineates the PFA corresponding to $P R E$ $a \& b^{*}$ using Estrade et al.'s methodology. Fig. 5 delineates the DFA corresponding to the PRE a\&b* using the proposed algorithm. Table 2 depicts the differences between the proposed algorithm and Estrade et al.'s methodology.

Fig. 4: PFA for $r=a \& b^{*}$ using Estrade et al.' 's methodology

Fig. 5: DFA for $r=a \& b^{*}$ using the proposed approach

Table 2: Comparison between Estrade et al.'s methodology and proposed algorithm

Estrade et al.[4]	Proposed Algorithm
ε - NFA	ε-free NFA
$P R E \rightarrow P F A \rightarrow \varepsilon-N F A$	$P R E \rightarrow N F A$
$2^{2\|r\|-3 C}$ states	2^{m+1}

Theorem 5.1: Let m denote the total number of occurrences of symbols in PRE r, then the worst case state complexity of the NFA generated using the proposed approach is equal to 2^{m+1}.

Proof. A state of the NFA can be constructed from a set of positions. Maximum 2^{n} states can be constructed using the n positions. The number of leaf nodes in the syntax tree is equal to $m+2 s+1$. A state except the final state cannot be constructed by contemplating only the positions of $\#_{s}$. The number of positions is equal to $(m+1)$ by excluding the positions of $\#_{s}$. Hence the worst case state complexity of the NFA constructed from $(m+1)$ positions is equal to 2^{m+1} states.

6 Conclusions and Future Scope

An algorithm is proposed for the metamorphosis of PREs to ε-NFAs. The worst case state complexity of the NFA is equal to 2^{m+1} which is a significant improvement over the Estrade et al. approach [4]. The major benefit of the novel algorithm is the production of a svelte NFA. Another major benefit of the novel algorithm is that the PREs can be converted into ε-free NFAs without using any intermediate steps. In future, work can be done on reducing the time complexity of the proposed algorithm. A tool can be designed for the conversion of $P R E$ to $N F A$ using the proposed algorithm.

Acknowledgement

The authors are grateful to the anonymous referee for a careful checking of the details and for helpful comments and suggestion that significantly improve the quality of this paper.

References

[1] A. Brueggemann-Klein, Regular expressions into finite automata, Theoretical Computer Science, 120, 197-213 (1993).
[2] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: principles, techniques and tools, Pearson Education, (2005).
[3] B. D. Estrade, An investigation of equivalent serialized forms of parallel finite automata, Master's Thesis, The University of Southern Mississippi, (2005).
[4] B. D. Estrade, A. L. Perkins and J. M. Harris, Explicitly parallel regular expressions, Proc. of the first International multi-symposiums on computer and computational sciences (IMSCCS06), IEEE, 402-409 (2006).
[5] D. Hovland, The membership problem for regular expressions with unordered concatenation and numerical constraints, Language, Automata Theory and Applications, Lecture Notes in Computer Science, 7183, 313-324 (2012).
[6] F. Biegler, M. Daley, M. Holzer and I. McQuillan, On the uniqueness of shuffle on words and finite languages, Theoretical Computer Science, 410, 3711-3724 (2009).
[7] http://www.0x743.com/flat.
[8] J. Clark and M. Murata, RELAX NG specifications, Available: http://relaxng.org/spec-20011203.html, (2001).
[9] J. C. M. Baeten and W. P. Weijland, Process algebra, Cambridge tract in theoretical computer science, Cambridge University press, Cambridge, 18, (1990).
[10] J. E. Hopcroft, R. Motwani and J. D. Ullman, Introduction to automata theory, Languages and computation, Pearson Education, (2005).
[11] K. Iwama, Unique decomposability of shuffled strings: A formal treatment of asynchronous time-multiplexed communication, Proc. of the 15 th annual ACM symposium on theory of computation, 374-381 (1983).
[12] K. Thompson, Regular expression search algorithm, Communications of the ACM, 11, 419-422 (1968).
[13] M. H. Ter Beek and J. Kleijn, Infinite unfair shuffles and associativity, Theoretical Computer Science, 380, 401-410 (2007).
[14] Nivat M., Behaviours of synchronized systems of processes, L.I.T.P. Report no. 81-64 University de Paris 7, (1981).
[15] P. D. Stotts and W. Pugh, Parallel finite automata for modeling concurrent software systems, Journals of Systems and Software, 27, 27-43 1994.
[16] V. K. Garg, Modeling of distributed systems by concurrent regular expressions, Proc. of the $2^{\text {nd }}$ International conference on formal description techniques for distributed systems and communication protocols, (1989).
[17] V. M. Glushkov, The abstract theory of automata, Russian Mathematical Surveys, 16, 1-53 (1961).
[18] W. Gelade, Succinctness of regular expressions with interleaving, intersection and counting, Theoretical Computer Science, 411, 2987-2998 (2010).
[19] W. Gelade, W. Martens and F. Neven, Optimizing schema languages for XML: numerical constraints and interleaving, Database Theory-ICDT 2007, Lecture Notes in Computer Science Springer, 4353, 269-283 (2006).

\quad Ajay	Kumar is an	
Assistant	Professor	at
Computer	Science and	
Engineering	anderant,	

Anil Kumar Verma is Associate Professor at Computer Science and Engineering Department, Thapar University, Patiala, India.He obtained his B.S. and M.S. in 1991 and 2001 respectively, majoring in Computer Science and Engineering. He obtained his
PhD in Mobile Adhoc Network from Thapar University, India in 2008. His research interests are wireless networks, routing algorithms, Theoretical Computer Science and cloud computing. He has published more than 100 papers in referred Journals. He has chaired various sessions in the International and National Conferences. He is a MIEEE, MACM, MISCI, LMCSI, MIETE, GMAIMA. He is a certified software quality auditor by MoCIT, Govt. of India.

[^0]: * Corresponding author e-mail: ajayloura@gmail.com

