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Abstract: In this paper, a numerical scheme is introduced for solving a linear system of fractional delay integro-differential equations
(FDIDESs). The fractional derivative is considered in the Caputo sense. The spectral least squares method with the aid of the first
kind Chebyshev polynomials was introduced to treat the proposed systems. The suggested method reduces this type of system to the
solution of a block system of linear algebraic equations. To demonstrate the accuracy and applicability of the presented method some
test examples are provided. Numerical results show that this approach is easy to implement and accurate when applied to the proposed

system of FDIDEs.
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1 Introduction

Many problems can be modeled by integro-differential
equations (IDEs) from various sciences and engineering
applications. The inclusion of fractional calculus greatly
enriched the consideration of applications of IDEs and
made the base of applications much wider than before.
Both fractional Fredholm and Volterra types play a pivotal
role in the modeling and applications. A particularly rich
source is an electric-circuit analysis [1], the control of
systems and the activity of interacting inhibitory are all
governed by fractional integro-differential equations
(FIDEs) [2]. Many applications to floating structures and
viscoelastic [3,4] and some computational neuroscience
are modeled by FIDEs [5].

Recently, several numerical methods treat systems of
FDEs and have been given. The authors in [7,23] are
applied the collocation method for solving the following:
non-linear fractional Langevin equation involving two
fractional orders in different intervals and fractional
Fredholm IDEs. Chebyshev collocation method is
introduced in [8,9,10,16] for solving multi-terms FDEs,
non-linear Volterra, and Fredholm The authors in [11] are

applied the variational iteration method for solving FIDE
with the non-local boundary conditions. Adomian
decomposition method is introduced in [17] to employ
FIDEs. References[8,13,14] used the Homotopy
perturbation method for solving non-linear Fredholm and
systems of linear FIDEs. Taylor series collocation method
is introduced in [6] for solving linear FIDEs of Volterra
type. In [27] numerical solution of fractional
integro-differential equations by least squares method and
shifted Laguerre polynomials pseudo-spectral method.
The appearance of a delay in the argument enriches the
meaning and history of the variables. The
integro-differential equations that have fractional
derivative and their argument being delayed are called
fractional delay integro-differential equations (FDIDEs).
In this paper, the least-squares method with aid of
Chebyshev polynomials of the first kind is used to
approximate systems of FDIDEs [28,29]. The spectral
least-squares method has been studied in [24,25,26]. In
our previous work [18,19,20,21,22] we introduce some
spectral solutions to delay FDEs and FIDEs, and this
work is more developable and generalized to systems.
The introduced system of fractional delay
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integro-differential equations (SFDIDE) of the general
form is:

n

o, hy,
s i x Tsi)+ZPri(x)y£ z)(x) =

r=1

)+ [ ki) (Z Bk,.ykm) d
a k=1

with supplementary conditions

(&) = by,
such that m —1 < o; < m, o, > 0,

€{0,1---,m}, m € Ny. Where yl(a) means D%y;(x) and it
indicates the oth Caputo’s fractional derivative of y;(x)
and we note that: the symbol D? is used instead of §D¥
for short. Additionaly, f;(x), Qs (x), P (x), ki(x,t) are
given functions, B, € R, x,t are real varying in the
interval [a,b] and y;(x) are the unknown functions to be

determines.

Z@,
- (1)

i=1,.n j=01,. [o]—1,

hy, are integers

2 Preliminaries and notations
In this section, we present some necessary definitions and

mathematical preliminary theories required for our
subsequent development.

2.1 The Caputo’s fractional derivative

Definition 1. The Caputo’s fractional derivative operator
DY of order v is defined in the following form:

1 ")
DVg(x) = / dt, v>0,
g( ) F(m—v) 0 (x_t)vferl
where, m — 1 < v, m € Ny and x > 0.
Similar to integer-order differentiation, Caputo’s fractional
derivative operator is a linear operator:

k
DY Z Aigi(x) = MD"g1(x) +A2D"g2(x) - - - + D" g (x)
i=1
k
- Z A'l'l)vgl(-x)a
i=1
where, A; are constants.
For the Caputo’s derivative we have [12].
D'C=0, C is a constant, 2)

forn € Ngand n < [v];
forn € Nyand n > [v]

3)

0,
D'X" =< Tt -y
{ F(nJrlfv)xn

We use the ceiling function [v] to denote the smallest
integer greater than or equal to v, and No = {0,1,2,---}.
Recall that for v € Ny, the Caputo’s differential operator
coincides with the usual differential operator of integer
order.

2.2 Chebyshev polynomials of the first-kind

The Chebyshev polynomials 7,(x) of the first kind are
orthogonal polynomials of degree n in x defined on the
closed interval [—1,1] as

T, (x) = cos(ng),

where cos¢ = x and ¢ € [0, w]. The polynomials 7;,(x) be
generated by using the following recurrence relation with
its initials

Thi1(x) = 24T, (x) —

T,,,](x), To(x) = 1, T| (x) =

n=1,2,...

The Chebyshev polynomials 7,(x) can be expressed in
terms of the power x" in different forms found in [18, 19,
20,21,22], one of them is

[n/2]
Z C xn 2/(, (4)
where
M= (—1)k2”*2k’l—n (nk) 2k<n
L n—k k ’ -

Theorem 1. (Chebyshev truncation theorem) [15].

The error in approximating the well defined function
¢ (x) by the sum of its first m terms is bounded by the sum
of the absolute values of all the neglected coefficients. If

=) biTi(x), )
i=0
then
Er<m>}¢(x>¢m<x> <Y bl ®
k=m+1

for all ¢(x), all m, and x € [—1,1].
Corollary 2.1. x and ¢ are the independent variables of (1),
a < x,t < b or they belong to [a,b], and the interval [a,b]
is the intersection of the intervals of the different exists
delayed arguments and [—1, 1], i.e

x,t € [a,b] = [t;, 1+ 1] ([—1.1], and 7, < 1.
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3 Numerical scheme

In this section, the least squares method with aid of
Chebyshev polynomials is applied to study the numerical
solution of the proposed system of fractional
integro-differential with delay (1). The method is based
on approximating the unknown functions y;(x) as:

)’i(x):iaj‘Tj(x); —-1<x<1, @)
j=0

where, Tj(x) is the Chebyshev polynomial of the first kind
and aé-, i=1,2,3,--- n, are constants.
Substituting (7) into (1), we obtain

n m n m
Y05 | Y D Tj(x =) | + Y Py | Y DT ()
s=1 Jj=0 r=1 r=0
X n m
=i+ [ ko | X By | L aTi0] ) ar
a k=1 j=0
®)
Hence, the residual equation is defined as:
. X n m .
Rt(xvaé)valla" ain) = ZQSi ZaljDaSiTj(x_Tsi) +
s=1 j=0
n m .
Y P )Y a,D"i T, (x) | —
r=1 r=0
X n m
ki(e,t) | Y B | Y aiTi(0) | | di = filx)
Ja k=1 j=0
)

o . b o .
Si(aé)vallv e 7a;n) = /a [Ri(xvaé)aalla T aain)]z W(x) dx,
(10)

where, w(x) is the positive weight function defined on the
interval [a,b], in this work we take w(x) = 1, then (10)
obtains as:

Si(aé)aaila"' aafn) =

[t

+

mn .
Z aljDaS" Tj(x — 1)
=0

n m X
Z P, Z a, D" Tr(X)] N
r=1 r=0
X n m 2
/ ki(x,1) (Z Bi [Zaﬁn(I)D dt—ﬁ(x)} dx.
a k=1 |j=0
(11)
So finding the values of a, j = 0,--- ,m which minimize

S; is equivalent to finding the best approximation for the

solution of the SFDIDE (1). The minimum value of §; is
obtained by setting

dS; .
8ai-:07 J:Oala"'vmv (12)

J
b ( n
/a {Zl 0,

m

+

j=

a;DaSi Tj(x o TSi)
0

13)

The above system of equations (13) for j = 0,---,m
forms a block system of n(m+ 1) x n(m + 1) linear
equations with n(m+ 1) x n(m+ 1) unknown coefficients
a; this system can be formed by using matrices form as
follows:

W-A=F, (14)
where A is the unknown coefficients vector, and
Woo Woz -+ Won
Wi Wiz --- Wy,
W= ; (15)
Wnl WnZ Wnn
F
123
F= , (16)
Fy

Wi =
ffRi(x,ai.)yédx fabRi(x,a;)y(‘;dx fabRi(x,a;)yédx

J? Ri(x,a)yidx [?Ri(x,ab)yidx - [V Ri(x,dl)yidx

Jo Rix ) Yndx [ Ri(x,a) Y -+ [} Rilx,al)pdx
(17)
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624 NS e
S £i(x) Yidx
S fiomide
F = , (18)
S fi(x) phdx
where
) b n mo
Ri(x,d}) = / {Z Oy | Y aiD*iTi(x— 1) | +
a s=1 Jj=0
Y P, | Y dD T ()| - (19)
r=1 r=0
/Xkl(x7t) <Z ﬁlk lz alchj(t)‘|> dt—ﬁ(x)} )
a k=1 J=0
%= { Y Qi | Y DUTi(x—15)| + X By | L D™ T*(x)]
s=1 /=0 r=1 [r=0

(20)

Using the properties of fractional calculus (3), proposition
(4) and the binomial expansion theorem, one writes

[i/21 ) ‘
DT (x-5,) = Y, o/ D% (x5, % =
k=0
I G [N R G e
o5 ! K ri+1-oy)
(2D
also,
[r/2] "
Dl T.(x) = Z ckr Dlri (x)rfzk
" @)
— C(r) (rf Zk)' (x)rfzkfh,i
=k (r—2k—hy)! ’
where ¢!’ and c,({r) given in (2.2). By solving the above

linear system (14) we obtain the values of the unknown
coefficients and consequently the approximate analytic
solutions of (1) obtained.

4 Numerical examples

In this section, the Chebyshev polynomials with least
squares method have been applied for solving systems of
linear fractional delay integro-differential equations with
known exact solution to exmamin the proposed method.
All results are obtained by using codes ranning on
Mathematica 10.0 packge.

Example 1. Consider the following system of linear
fractional integro-differential equation with delay

Diyi(x— 1)+ Dy, (x— 1) +y5(x) = fi1(x)+
[ 0+ ar,

D= 1) 43100 = o)+ [ VELD(0) -] dr.

(23)
Subject to y; (0) =0, y2(0) = 0, and
Tt o 4x!/*(—15+ 8x)
= 14+ — 4 4y - ~ = "7
fix) +2x 12+20+ SF[H
8x1/4(15 4 4x(—9 + 4x))
D
9/2 11/2 13/2
fold) =x= = b e et
5x2/3 (=214 10x)
14 [2]

The exact solutions of this system yi(x) = x — x,

y2(x) = x*> — x. Applying the least squares method with
aid of Chebyshev polynomials Tj(x), as mentioned in
previous section, j = 0,---,m, at m = 4, n = 2 to the
system of the linear fractional delay integro-differential
equation (23) and we obtain a system of linear equations
with five unknown coefficients a;. The solution obtained
using the suggested method as:

ah = —6.0984x107"* al =0.25, a) = —1.60035% 10",
at=-025 ai=-1.0077%10""13,

a3 =0.5, a=—1, a=0.5,
a3 =1.78626%10""3,  af=-9.84045%10""1.

The numerical results are showing in figure.1 It is evident
that the overall errors can be made smaller by adding new
terms from the series (5). Comparisons are made between
approximate solutions and exact solutions to illustrate the
validity and the great potential of the proposed technique.
Example 2. Consider the following system of fractional
integro-differential equation [13]

Dh(x=1)+540) = fi()+ [ G+0ba(0)+5200)) i,

Dys(x—1)+y1(x) = fo(x) + /Ox(xft) 1(2) = y2(2)] dt.
(24)

@© 2021 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci. 15, No. 5, 621-629 (2021) / www.naturalspublishing.com/Journals.asp NS e 625

03 4
& yl(x)exact
~ [ 1(x)approx
2 02 @ yl(x)app
'_>“ L
0.1
0.0 (®
0.0 0.2 0.4 0.6 0.8 1.0
X
0.0
005
[ & y2(x)exact
20.10 L -@ y2(x)approx ]
= [
& L
> [
-0.15p B
-020f ]
—025F ]

Fig. 1: Results for example (1).

Subject to y;(0) =1, ¥2(0) = 0 and

32 290 7t 11x0
N R
fix) + + 3 30 +

2 6
8(7 — 4x)x>/4
TaH

3

32 8 A x®

— - = 4
(%) 2 6 12T30"
25x*/3(—399 + 4x(133 + 5x(—19 + 5x)))

1596I" 2]

with exact solution yi(x) = 1 —x%, ya(x) = x* — x.

Similarly, as in example.l applying the least squares
method with Chebyshev polynomials 7j(x), m = 4 at
n = 2 to the fractional integro-differential equation (24)
the numerical results are showing figure.2 and we obtain
the approximate solution as:

yi =0.5—3.72906 % 10~ %(x) — 0.5(2x* — 1) 4 8.68425x%
10713 x (4x° — 3x) 4+ 4.45434 % 10 13(1 — 8x% 4 8x%),

y2 = 0.375 —x+0.5(—1 +2x%) — 8.38486 % 10 ¥x
(=3x+4x) +0.125(1 — 8x* 4 8x%).

The solution obtained using the suggested method is in

T T T
’ & yl(x)exact
y1(x)approx

0.8+

0.6
)
=

04r

02r

00, 0 T T T

0.0 0.2 04 0.6 0.8 1.0

y2(x)

Fig. 2: results for example (2).

excellent agreement with the already exact solution and
show that this approach can be solved the problem
efectively. It is evident that the overall errors can be made
smaller by adding new terms from the series (5).
Comparisons are made between approximate solutions
and exact solutions to illustrate the validity and the great
potential of the proposed technique.
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Table 2: The absolute error between the exact solution and the

Example 3. Consider the following system of integro
differential equations of fractional order[30]

X | absolute error y, | absolute error y,
5 1 PO N=3 N =16[30]
D1y1(x) = m}(l *g‘l’XCOS(X)*Sin(X)‘F 0. 0 0
' y 0.1 1.2 x 10*: 2.6 % 10*?
; 0.2 1.2x10™ 1.8 x 10~
/0 sin(t)yi(6) +32(0)] 0.3 12x10°8 1.1x1073
1 2 3 ¥ 3, 0.4 1.1x1078 1.2%107%
D2y,(x) = s Ta et 05| 1Lix1078 3.1x 1073
x 3
| =3 e+,
0
6 5 x2 ¥ X Table 3: The absolute error between the exact solution and the

3
D3 - = 54 4
B =rEsY T2 3T

approximate solution for example (3)

approximate solution for example (3).

X x | absolute error y3 | absolute error y3

| b1+ 220+ 3560 ar. N=3 N = 16130]

0 0. 0 0
(25) 01| 1.06x10°8 6.5% 104
) 0.2 1.06 x 1078 1.1x1073
Sub_](?ct to yj (0) =0,y (0) =0and y3(0) =0 thezexact 03 1.06 x 108 20x%10-3
solution c;f this system is yl.(x) =x y2(x) = x* and 04 1.06 x 10-8 8.7 x 10~
y2(x) = x°. Similarly, as pervious in examples.1 and 2 05 1.07 % 10-8 41%103

applying the proposed method m = 3 at n = 3 to the
fractional integro-differential equation (25), and we
obtain the approximation solution as:

y1 = 7.88698 % 10104 x+2.62372 % 10~ (—1 4 2x%)+
1.02391 % 107 10(—3x 4+ 4x%),

y2=0.5+42.61514%10""% 4 0.5(—1 +2:2)+ .
1.22512% 107 19(—3x 4 4x%), " 04
y3=—1.03378%10"°40.75x+2.94291 % 10" 02
X (—142x%) +0.25(—3x +4x%). .
0.0 (@ ‘ ‘
The numerical results are showing in Figure.3, 4 and the 0.0 02 04 0.6 08 10
comparision of the absolute errors between the exact X
solution and the approximate solution with the method in e
[30]. Tables 1, 2 and 3 show the absolute error between T e y2texact
the exact and the approximate solutions comparing with :‘yz“)appm |
08+ ]

results of [30].

Table 1: The absolute error between the exact solution and the
approximate solution for example (3)

A S
& yl(x)exact
-@-y 1(x)approx

0.8

y2(x)

X | absolute error y; | absolute error y;

N=3 N = 16[30] ]
0. 0 0
0.1 1.1x107° 1.6x 1073 g
02| 44x10°10 7.4%1074 10
03| 41x10°10 8.1x10°4 !
0.4 1.3x107° 1.8x 1073 Fig. 3: results for example (3)
0.5 24%x1077 41x1073
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1O ——— A
0 L |®y3(x)exact
[ -@-y3(x)approx

ylx)

Fig. 4: results for example (3)

5 Conclusion and Remarks

In this article, we introduced an accurate numerical
technique for solving a system of linear fractional delay
integro-differential equations (FDIDE). An approximate
formula for the Caputo’s fractional derivative of the first
kind Chebyshev polynomials obtained in terms of
themselves in matrix forms. The spectral least squares
method with the Chebyshev polynomials was introduced
to treat the proposed systems. This work is more
developable and generalized to systems of FDIDE. The
results show that the algorithm converges as the number
of terms is increased and the errors are decreased. Some
numerical examples are presented to illustrate the
theoretical results and compared with the results obtained
by other numerical methods.
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