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Abstract: The research proposes alternative tariff systems to estimate the pure premium for The Misr Insurance Company –the biggest

insurance company in Egypt, which has 46.39% of the automobile insurance market share– for comprehensive automobile portfolio.

The proposed tariff systems construct insurance rate for each risk class according to the risk factors that might affect the loss instead of

a fixed rate that is applied by the company. Three different statistical models are used: Generalized Linear Model (GLM), Generalized

Linear Mixed Model (GLMM) and Generalized Additive Model (GAM) using Gamma and Poisson distributions. The data consists of

576,381 cases during the years 2013, 2014, 2015 and 2016. Every case represents an insurance contract.The research found that GLMM

is the most convenient model for ratemaking for Misr company because it has the lowest value of Akaike’s Information Criterion (AIC)

and takes into consideration the nature of the most insurance data that contains repeated measures.

Keywords: Ratemaking, Comprehensive Automobile Insurance, Generalized Linear Model (GLM), Generalized Linear Mixed Model

(GLMM), Generalized Additive Model (GAM) and Semi-Parametric Regression.

1 Introduction

The Misr Insurance Company in its automobile line sets a fixed rate for all insureds regardless of the risk they represent.
The rate can be changed for specific groups but depends on subjective decisions. This method has two drawbacks: The
first is that it introduces adverse selection risk. For example, suppose company A sets constant rate £y for every risk unit
and the competitive company B sets two different prices £(y− t) for low risk units and pounds(y+ t), (t > 0), for high
risk units. In this case, high risk units will move gradually from company B to company A, so this selection is against
company A’s interest. The second drawback is that the risk burden is not distributed fairly among the policyholders.

Equitable distribution of the risk burden must be structured using advanced statistical methods to divide the portfolio
into homogenous classes, not just set up a fixed price for all the insured regardless of their amount of risk. Thus, each
insured belonging to a particular class can pay the pure premium proportional to the risk degree of this class.

The research objective is to find proposed alternative statistical models that give Misr Insurance Company the
opportunity to choose an equitable tariff system (the pure premium) and avoid the drawbacks related to the current,
simple ratemaking plan used by the company. The research uses three statistical models: Generalized Linear Model
(GLM), Generalized Linear Mixed Model (GLMM) and Generalized Additive Model (GAM). Every model has its
merits and drawbacks. The company has to determine the model most compatible with it according to how much each
model is successful in representing the sample data using Akaike’s Information Criterion (AIC). As well as, considering
the characteristics of the Egyptian market, and the competitors’ reaction to these models when Misr Insurance Company
apply one of these models.

There are many beneficiaries of our research. On the one hand, Misr Insurance Company most likely will have a bigger
market share and consequently more profit. The main reason for that is twofold. First, the high risk insured units will find
that the competitor’s rate is cheaper, so it is expected for those unprofitable insureds to terminate their contract with the
company and move to competitors, and this will decrease the adverse selection risk. Second, the company will be more
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attractive for the low risk insured units than the other competitors because they will get a cheaper rate to reflect the actual
risk they have. On the other hand, for the insured units, the proposed tariff system will distribute the insurance cost among
the insured units equitably. In addition, the proposed models might attract low-income people that have not considered
insurance service before, and that will protect more people under the insurance umbrella from unexpected risks.

The remainder of this paper is organized as follows. In section 2, we illustrate a brief literature of ratemaking models.
The research methodology is introduced in section 3, and we discuss many parametric and semi-parametric models such
as GLM, GLMM and GAM. Then, section 4 encompasses data used and results. Lastly, section 5 contains the conclusion
and recommendations.

2 Literature

Insurance researchers have used many approaches for ratemaking process. Some of them use credibility models using Log-
normal/normal distribution assumption for loss data, see, e.g., [1] and [2]. Others used the Empirical Bayes credibility
theory models, see, e.g.,[3] and [4].

Other methods allow researchers to classify the insureds into two classes or more according to specific risk factors
such as discriminant analysis, see, e.g., [5], and fuzzy set theory, see, e.g., [6] and[7].

Simple regression models have been used also to set different rates for classes of insureds using many independent
rating factors and variables, see, e.g., [8]. All the previous methods assume a linear relationship between the independent
variable and dependent variables. However, this assumption is not appropriate to exhibit an actual relationship existing
between the rating variables and the expected loss as a dependent variable. One of the methods that relaxes this assumption
is Generalized Linear Models.

Over the last decade, Generalized Linear Models (GLM) has been a common statistical tool for a prior classification,
see, e.g., [9], [10], [11], [12], [13], [14], [15] and [16]. The merits of this model are twofold. First, the random deviations
from the mean may have a non-normal distribution, see, e.g., [17]. Second, the transformed mean of the dependent variable
may be a linear function of the explanatory variables, which is determined by the link function.

However, this model has two drawbacks. First, it assumes that the random variables are independent, which may
not be fulfilled in the case of longitudinal, repeated measurements and spatial data. Second, the model is not convenient
for unknown nonlinear effects of independent variables because, in the GLM, the independent variables appear only
linearly. Generalized Linear Mixed Model (GLMM)—a special case of hierarchical models—is used to recover the first
shortage and superimpose credibility on a GLM setting, see, e.g., [18], [19], [20] and [16]. However, GLMM still models
all the independent variables linearly. On the other hand, Generalized Additive Model (GAM) overcomes the linearity
assumptions inherent to GLM, but GAM is not convenient to longitudinal data.

Another ratemaking statistical tool is the spatial model that gives us the chance to analyze the risk variation between
different districts where data contain spatial dependence. Spatial dependence appears when variables observed in areas
close to each other are related. Ignoring such spatial dependence patterns may cause overdispersion and erroneous
conclusions. Unfortunately, the spatial models are not totally consistent because they depend on the Bayesian Approach
to evaluate the risk associated with each district but use a frequentist approach to estimate the effect of the other risk
factors, see, e.g., [18].

The Bayesian GAM model can tackle the previous inconsistency problem in spatial models by depending fully on a
Bayesian approach to estimate simultaneously nonlinear effects of the continuous variables, factors, spatial effects, and
interactions between factors. See, e.g., [21], [22] and [23] which considers a Bayesian implementation of the GAM.

Generalized Additive Model for location, scale and shape (GAMLSS) has recently been used in ratemaking, see, e.g.,
[24], where the exponential family assumption is relaxed and replaced by a very general distribution family assumption.
Moreover, the model allows the mean, location and parameters of the conditional distribution of the dependent variable to
be modeled as parametric or nonparametric functions for the fixed and random effects terms.

3 Research Methodology

In this section, we illustrate a brief background of the used models: Generalized Linear Models (GLM),Generalized Linear
Mixed Models (GLMM) and Generalized Additive Models (GAM).
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3.1 Generalized Linear Models

The Generalized Linear Models (GLM) that will be used here to model the effect of p explanatory variables
x′ := (x1,x2, . . . ,xp) on the dependent variable Y given by the following system of equations

Y = E(Y )+ ε, Y = β0 + x′β + ε, Y = η + ε, (1)

where β := (β1, · · · ,βp)
′ is a vector of unknown real valued parameters.

In this section we assume the availability of a random sample of N units following the above model. Let
xi := (xi1, · · · ,xip)

′ and Yi denote the values of the ith unit explanatory variable vector and response, respectively. Let X

denote the N × p matrix whose ith row consists of (1,x′i), 1 ≤ i ≤ p, Y := (Y1, · · · ,Yn)
′ and β := (β0,β1, · · · ,βp).

Therefore, the model that describes the given data can be written as:

Y = E[Y]+ ε, Y = Xβ + ε, Y = η + ε, η = Xβ . (2)

The Generalized Linear Models consists of the three components: random, systematic components and link function.
The characteristics of each determine a unique model.

GLM components:

–Random components: The response variables Yi,1 ≤ i ≤ N are
independent r.v.’s and follow one of the exponential family distributions, e.g., normal, exponential, gamma, Bernoulli,
Poisson, Tweedie. We write this as:

Yi ∼ Exponential(µi,φ), 1 ≤ i ≤ N. (3)

µi = E(Yi) = b′(θi), V (Yi) = b′′(θi).a(φ), (4)

where θi is natural or canonical parameter and φ is scale or dispersion parameter. Their values can be determined as
illustrated by the following table:

Table 1: Canonical and dispersion parameters.

Distribution Notation Canonical parameter (θ ) Dispersion parameter (φ )

Normal N(µ,σ2) µ σ2

Poisson P(µ) ln µ 1

Gamma G(µ ,v) 1/µ v−1

Binomial (m: trials) B(µ,π)/m ln(µ/(1−µ)) 1/m

Inverse Gaussian IG(µ,σ2) 1/µ2 σ2

–Systematic components: The combination of (p+ 1) β parameters to obtain the model prediction.

ηi = β0 +β1xi1 +β2xi2 + · · ·+βpxip (5)

–Link function: Determines the relationship between the random components E(Yi) = µi and the systematic
components.

g(µi) = β0 +β1xi1 +β2xi2 + · · ·+βpxip (6)

The link function g can take many forms. One of them is the ln link function. If g = ln, then the previous equation
becomes:

ln(µi) = β0 +β1xi1 +β2xi2 + · · ·+βpxip (7)

µi = exp(β0 +β1xi1 +β2xi2 + · · ·+βpxip) (8)

This link function transforms the additive effect of independent variables to multiplicative effect. This actually is
more suitable for ratemaking in insurance companies because, unlike the additive models, it cannot produce negative
prediction. Also, the multiplicative the effect of GLM makes effect of any independent variable nonlinear. Therefore, it is
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a more convenient and reasonable method for insurance ratemaking.
The exponential family probability function can be defined as:

f (Yi;θ ,φ) = exp

(

Yiθi − b(θi)

a(φ)
+ c(Yi,φ)

)

(9)

Different choices of a(φ),b(θi)andc(Yi,φ) determine different types of distributions belonging to the exponential
family as seen in the following table.

Table 2: Membership parameters of the exponential family.

Distribution a(φ) b(θi) c(Yi,φ)

Normal φ/w θ 2
i /2 − 1

2

(

wY 2
i

φ+ln( 2πφ
w )

)

Poisson φ/w eθi −lnYi!

Gamma φ/w −ln(−θi)
w
φ ln

(

wYi

φ

)

− lnyi − ln(Γ (w
φ ))

Binomial (m: trials) φ/w m.ln
(

1+eθi
)

ln
(

m
Yi

)

Inverse Gaussian φ/w −
√
−2θi − 1

2

[

ln(
2πφY 3

i

w
)+ w

φYi

]

In (Table 2), w represents constant prior weight. It equals one if we model claim count and equals number of claims
if we model claim severity.
The log likelihood function of the exponential family distribution can be written as:

l = ∑
i

(

Yiθi − b(θi)

a(φ)
+ c(Yi,φ)

)

. (10)

Then, maximizing the log likelihood function by taking the derivative of l with respect to β j ; j = 1,2, .., p and setting the
result equals zero to get the estimated parameters.

3.2 Generalized Linear Mixed Models

Even though GLM is a common statistical tool having many merits and is widely used, it has two drawbacks. The first is
that it assumes that variables are independent random variables. This assumption cannot be fulfilled in insurance
ratemaking data because usually many years are used for rating (longitudinal data), so there is an autocorrelation over
time in model variables. The two models can be used to tackle this issue. One of them is Generalized Estimating
Equations GEE (marginal model). The other one is the Generalized Linear Mixed Model GLMM (conditional model).

The second drawback is that GLM gives full credibility to the data. That means the coefficient estimation of the
model is trying to represent and describe the actual data perfectly in every level of independent factors regardless of how
much this data is small and sparse. GLMM tackles this GLM drawback as it regards the coefficients of random effects
as random variables, not fixed values. The more data is sparse and small, the less the model analyses will depend on that
data in estimation for every level of random effect variables. Actually, GLMM is regarded as an alternative approach for
introducing credibility theory in insurance.

In this section, GLMM will be introduced to eschew the drawbacks of GLM. Let Y be the response variable with
conditional distribution given the exponencial random effects. Let xi; i = 1, . . . , p be a set of p explanatory variables
representing the fixed effects, and let uk;k = 1, . . . ,q be a set of q random effects, then The Generalized Linear Models of
interest here written as:

ηi j = g(E(Yi | u1, . . .uq)) = β0 +
q

∑
i=1

βixi j +
q

∑
k=1

ukzk j, j = 1, . . . ,n, (11)
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where β0 is the intercept, βi is the ith fixed effect coefficents, xi j is the ith fixed effect independant variables for the jth

observation, uk is the kth random effect coefficents, zk j is the kth random effect variables for the jth observation, ηi j is the

expected value for the ith variable and jth observation and g is the link function. The model is written in matrix form as

ηηη = g(E(Y |U)) = Xβββ +ZU, (12)

where Y is n× 1 vector of the dependant variable, X is n× (p+ 1) design matrix of rank k representing the fixed effect
variables, βββ is (p+ 1)× 1 vector of fixed effect coefficients, Z is n× q design matrix representing the random effect
variables, U is q×1 vector of random effect coefficients with multivariate normal distribution. The observations vector Y

is obtained by adding residuals vector εεε:

Y = ηηη + εεε = Xβββ+ZU + εεε, Y |U ∼ (g(E(Y |U),∑∑∑), (13)

U ∼ MVN(0,G) (14)

∑∑∑ and G is the coveriance matrix of the conditional distribution of Y |U and the random effect coefficients respectively.

The estimation of the maximum likelihood in GLMM is difficult due to the fact that it requires high dimentional
integration. Therefore, there is no closed form of the maximum likelihood function, and the approximation methods are
required. In the Bayesian framework, there are Markov Chain Monte Carlo (MCMC) methods and the hybrid approach.
In the frequentist framework, there are three approximation methods: Laplace, Penalized Quasi Likelihood (PQL) and
Adaptive Guassian Quadrature (AGQ). [25] finds that PQL gives biased results and recommends using Laplace and AGQ.
The Laplace and AGQ methods approximation procedures use intensive computations and sometimes become abstruse
and arduous to solve, such as our case. The R software got stuck in calculations with these two methods. In this research,
we shall use an approximation of the Laplace method using the penalized iteratively reweighted least squares (PIRLS)
algorithm, see, e.g., [26].

3.3 Generalized Additive Models

The main advantage of Generalized Additive Models (GAM) is its resilience to depict the nonlinear relationship between
dependent and independent variables. However, the link function or some transformation of the variables can represent
nonlinear relationship, like log link function, but this method introduces a specific relationship form and is not as flexible
as GAM. The previous models (GLM, GLMM) assume that the relationship between dependent variable and independent
variables is linear or semi linear (with log link function), as it represents the relationship in fixed coefficients. That means
one unit increase in any independent variable leads to a specific fixed amount of increase in the dependent variable along
with the whole domain of every independent variable, but it is not the realistic case in our data, as we will see later. GAM is
GLM but in addition, we replace the parametric coefficients in GLM with a non-parametric one or add new nonparametric
covariates.

Let Y be the response variable, xi; i = 1, . . . , p be a set of p explanatory variables corresponding to the parametric effect
and uk;k = 1, . . . ,q be a set of q variables representing non-parametric effects. The Generalized Additive Model is written
as

η j = g(E(Yi)) = β0 +
q

∑
i=1

βixi j +
q

∑
k=1

fk(uk j), j = 1, . . . ,n, (15)

where β0 is the intercept, βi is the ith parametric effect coefficients, xi j is the ith parametric effect independent variables

for jth observation, fk(uk j) is kth non-parametric effect functions for jth observation, η j is the expected value for the jth

observation and g is the link function. Every non-parametric function of fk(uk) is a summation of many weighted base or
smooth spline functions, for that the term additive came from.

There are two main estimating smoothing methods, REstricted Maximum Likelihood (REML) and Generalized Cross
Validation (GCV). The REML smoothing method has less optimization problems, lower volatility of smoothing parameter,
and it penalizes ovefit more efficiently than GCV, see, e.g., [27] and [28]. Therefore, we select the REML method for
modeling. GAM gives us the chance to understand how the covariates affect both number of accidents and compensation
variables without a restriction of linear relationship
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4 Numerical Application

4.1 DATA USED

The research will depend on the data set related to an Egyptian motor insurance portfolio observed during 2013, 2014,
2015 and 2016. The portfolio relates to Misr Insurance Company, the biggest insurance company in Egypt, which has
46.39% of the market share.

The data consists of 576,381 cases, and every case represents an insurance contract. Variables of the research can be
illustrated by the following table:

Table 3: Research variables.

4.2 RESULTS

4.2.1 Generalized Linear Model (GLM)

Finding suitable regression models for insurance to predict pure premiums is challenging because of the special
characteristics of the data. Insurance data has a lot of zeros, and the positive values are highly right skewed. The common
regression models cannot deal with this situation.

One alternative models to predict pure premium is estimating two separate models. One is for the severity of accidents
using the cases that achieve losses only using Gamma GLM (GLM 2). One could also use the inverse Gaussian GLM
model here, but this is not justified because the AIC of this model is approximately 8.3 times larger than the Gamma
GLM in our case. The other model estimates the probability of accident occurrence using Poisson GLM (GLM 1) or
negative binomial GLM, which has a greater AIC by 2226 units. Therefore, the proposed GLM model for severity will
be Gamma GLM with AIC 2676123.1 and for number of accidents Poisson GLM with AIC 771277.9 . We can write the
GLM equation as:
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(µCompensation) = β0 + factor(District)+ factor(Car age group)+factor(Use)+ factor(Coverage)+β33Agec (16)

(µNum acc) = β0 + factor(District)+ factor(Car age group)+factor(Use)+ factor(Coverage)+β33Agec (17)

Table 4: Model 1 parameters.

factor levels Beta

District 9 fromβ1toβ8

Car type group 18 fromβ9toβ25

Use 5 fromβ26toβ29

Coverage 4 fromβ30toβ32

The output analysis is shown in tables 5 and 6. These Tables represent severity and probability of loss, respectively.
The first GLM equation 16 models the positive loss values of compensation variables because it is not possible to model
zeros with Gamma GLM. It can be modeled also by inverse Gaussian GLM, but Gamma distribution fits the research
data better. The second GLM equation 17 represents the probability of loss occurrence modeled using the whole data
with Poisson distribution. Negative binomial distribution can be used also, but Poisson GLM fit the data better with lower
standard error and confidence interval for estimated parameters. The pure premium can be calculated by multiplying the
expected compensation by the expected corresponding probability. If we multiply GLM 1 relatives by GLM 2 relatives, it
produces the loadings that might be used in the ratemaking process.

The car type variable has 3589 different car types, so it is not possible to include it as a categorical variable even if it is
reduced to the brand name only. On the other hand, it does not make any sense to model it as a continuous variable because
it is not a numerical variable. Therefore, the variable is sorted in descending order according to frequencies (popularity)
and then divided into 18 intervals with 200 car types for each interval, introduced by Car type group variable.

District factor has 9 levels with 8 parameters from β1 to β8 and 8 variables from x1 to x8. Every variable takes values
zero or one. For instance, if the insurance contract belongs to Alexandria, x1 will take value one and the other variables
for the same factor will take value zero and so on. Otherwise, if the insurance contract belongs to the central area of Cairo
(the base for district factor), all variables in the same level will take value zero, and the central area effect will be included
into the intercept. The same concept is applied to the other factors.

The omnibus test sig. in the following tables indicates a significant effect of the models. This means the explained
variance of the dependent variable is significantly greater than the unexplained variance. The test of model effect is also
significant. And accordingly, all independent variables have a significant effect on the dependent variable. Exp(B)
column shows factor relatives or loadings. In property insurance ratemaking, log link function is the most commonly
used function for two reasons. First, it makes the model coefficients easy to be interpreted. For example, if B33 equals
-.006 as in GLM 1, that means for every increase in Agec variable by 1, the probability of accident will be decreased by
1− Exp(−.006) = .006. Second, the insurance companies tend to select the ratemaking model that will be easy for
insureds to understand. For These reasons, we used log link function for all models in this research. The standard error is
an indicator of how fast log likelihood function will fall from its maximization value as parameters move away from the
point of maximization.
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Table 5: GLM 1 estimated parameters. Estimates of probability of loss occurrence using Number of Accidents as a
dependent variable.

NOTE: In this table, Sig. is the p-vlaue, EXP(B) returns the natural exponential of B, Std. error is the standard error, and Df is the

degree of freedom.
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Table 6: GLM 2 estimated parameters. The dependent variable represents the expected mean of compensation.

NOTE: In this table, Sig. is the p-vlaue, EXP(B) returns the natural exponential of B, Std. error is the standard error, and Df is the

degree of freedom.

4.2.2 Generalized Linear Mixed Model (GLMM)

As mentioned at the beginning of this section, the main disadvantages of GLM are twofold: first, the autocorrelation over
time in model variables and second, it gives full credibility for every class in the data, and that might create a problem for
classes which have small and sparse data. Therefore, we resort to GLMM to tackle these flaws and suggest (GLMM 1,
GLMM 2) models. The unique serial number of an insured car is labeled as ID. The structures and the output of 2 models
are delineated in the following tables:
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Table 7: GLMM models

Table 8: GLMM 1 model output

NOTE: In this table, Sig. is the p-vlaue, EXP(B) returns the natural exponential of B, Std. error is the standard error, and Df is the

degree of freedom.
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Table 9: GLMM 2 model output

NOTE: In this table, Sig. is the p-vlaue, EXP(B) returns the natural exponential of B, Std. error is the standard error, and Df is the

degree of freedom.

The two models show acceptable CI except for coverage factor that have a wide CI. The coverage factor has four
levels. One of them is a base level in the model–Comprehensive level–and the others appeared in the model with a wide
CI. This can be a result of the fact that the majority of the data are comprehensive coverage and there is a little information
available about the rest of the levels.

4.2.3 Generalized Additive Model (GAM)

The estimation model of number of accidents (claim frequency GAM 1) and compensation (claim cost GAM 2) for our
case study can be written respectively as:

(µCompensation) = β0 + factor(District)+ factor(Use)+ factor(Coverage)+S(Agec)+S(Car Type) (18)
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(µNum acc) = β0 + factor(District)+ factor(Use)+ factor(Coverage)+S(Agec)+S(Car Type) (19)

The first equation is modeled with Poisson distribution and the second one with GAM distribution. The link function
is log for both of them. Car type variable is modeled as a continuous variable since we coded it according to its popularity
in the Egyptian market. Therefore, it can be regarded as car value or popularity index.

The outcome analysis can be illustrated in the following table:

Table 10: Generalized Additive Models parameters estimation.

NOTE: In this table, EXP(B) returns the natural exponential of B, Std. error is the standard error, and Df is the degree of freedom.

Now, it is better to visualize the smoothing function of the non-parametric portion of the model. The following graphs
clarify the marginal effect of Agec and Car type variable on the dependent variable in GAM 1 and GAM 2 models. To
show the marginal effect, the other factors are fixed on the base level and other continuous variable are fixed on its mean.

The first chart on the left side of (Figure 1) illustrates the nature of the relationship between car age and number of
accidents. It reveals a positive relationship with approximately +1 slope to age 10 (a ten years old vehicale), which has the
highest number of accidents among all ages, and then the curve turns to a negative relationship with nearly -1 slope. After
that, the probability of accidents has remained constant from age 32 to 35, followed by a downward trend with the same
previous trend until age 45. From age 45 to 65 the slope is declined to -.5 approximately. The lowest number of accidents
belongs to the oldest car in our data. The gray area represents the confidence interval for the expected values of number
of accidents, which becomes very large from age 50 due to the small points available in that area.

The second chart on the left side shows a fluctuating positive and negative relationship with a declining pattern. The
turning points on the graph are for car types 500, 1450, 2200 and 2750.

The first chart on the right side illustrates a negative relationship between car age and its expected risk cost with slope
less than -1 until age 5. Then the slope rises gradually to age 35. After that, there is no effect of the car age on the risk
cost.

The last chart depicts a positive effect of the car type on compensation until car type 400, then an approximately fixed
effect to car type 1500. After that, the curve pulsates with two peaks on 2100 and 3100 car types.
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So the question at this point is what is the ideal model to represent our data? One of the criteria that be used to compare
GLM, GLMM and GAM is Akaike’s Information Criterion (AIC). As illustrated in the following table, GAM has the worst
AIC both for number of accidents models and for compensation models. The best model statistically regarding total AIC
value is alternative number 2. GLM models come in the second place and they have two shortages as we illustrated before
in 3.2 . Hence, The recommended models for the company are GLMM 1 and GLMM 2 models (alternative number 2).

Table 11: Akaike’s Information Criterion (AIC) of all regression models in the research.

5 Conclusion

Among all models in this research, we suggest GLMM 1 and GLMM 2 models as a recommended tariff system for loss
probability and loss severity respectively for Misr insurance company because they are the only models that have the
following merits. First, they have the lowest AIC value. Second, they take into consideration the repeated measure nature
in insurance data that regards as a violation of the premises of the GLM model. Third, they can apply credibility theory
in one step with the risk classification process. Hence, the prediction power of the ratemaking model will be increased .
Hence, GLMM can be regarded as the most convenient tariff system for our case study. GLM is the second best statistical
model to be used in the ratemaking process for Misr insurance company. In spite of GAM is having the worst AIC both
for number of accidents models and for compensation models, it gives us the chance to understand how the covariates
affect both number of accidents and compensation variables without a restriction of linear relationship.

To sum up, the optimal model selection depends on many factors like the reliability of the used statistical models,
to what extent that model was tested before in the market, statistical tests, insurance company financial position, and the
expected reaction of the rivals in the market upon the application of this tariff system.
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