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Abstract: The problem of characterizing entanglement status of a multipartite pure quantum state was completely solved through

the factorization algorithm in [1]. This factorization algorithm for systematically extracting factors is based on utilizing the following

criterion: One has a factorization for the given N-qubit pure quantum state as tensor product of an m-qubit state and an n-qubit state,

where m+n = N, if and only if the rank of the associated matrix, A, of size 2m ×2n is equal to unity. The main computational effort

for factoring is thus centered around checking whether or not the rank of the associated matrices that arise during extraction of factors

is equal to unity. This paper is about proposing a smart procedure to check this. Due to this smart procedure the maximum number

of arithmetical operations one needs to carry out to extract one factor, when it exists, become of the order of the cardinality of B,
|B| = 2N , where B denotes the corresponding computational basis. Further, for finding full factorization one just needs to repeat the

rank testing procedure at most N times as the given N−qubit state can have at most N factors, and thus the overall complexity of

complete factorization is of the order N|B|. In this paper we carry out our discussion for the N−qubit case for the sake of simplicity of

presentation. The extension to the N-qudit case is straightforward and the computational complexity remains the same.
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1 Introduction

One of the central issues in quantum information theory is
whether a given multiqubit pure quantum state is
separable or entangled [2,3,4]. This important problem
was completely solved in [1] in terms of the factorization
algorithm proposed there. This factorization algorithm
consists of a systematic procedure for extracting all
possible factors of the given pure quantum state. This
algorithm finally expresses the given quantum state as a
product of factor states such that these factor states are
not further factorisable. As the main result of the present
paper we show that in order to completely factorize an
arbitrary N-qubit pure quantum state, the number of
arithmetical operations required by this algorithm is of
the order N|B| = N2N , where |B| denotes the cardinality
of the corresponding computational basis B. As shown in
[1], for the given N−qubit pure quantum state to be a
product of an m− qubit state and an n−qubit state where
m+ n = N, one requires that certain “associated matrix”
has rank equal to unity. Here it should be noted that one
does not require to find out the exact value of this rank but
only whether it is equal to unity or not.

In this paper we carry out our discussion for the
N-qubit case instead of an N-qudit case for the sake of
simplicity of presentation. The extension to the case of
N-qudit pure quantum state is straightforward. For
N-qudit case the arithmetical operations required to
extract one factor, when it exists, are of the order
|E| = dN = the cardinality of the corresponding
computational basis E, where d denotes the number of
single qudit states, {|0〉, |1〉, · · · , |d − 1〉}. Again there can
be at most N factors for an N−qudit state. Therefore, in
order to completely factorize an arbitrary N-qudit pure
quantum state the the number of arithmetical operations
required by the algorithm is of the order N|E|= NdN .

2 Notation, Definitions, and Some Useful

Results

Let |ψ〉 be an N-qubit pure state :
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|ψ〉=
2N

∑
s=1

ars |rs〉 (1)

expressed in terms of the computational basis. Here the
basis vectors |rs〉 are ordered lexicographically. That is,
the corresponding binary sequences are ordered
lexicographically: r1 = 00 · · ·00, r2 = 00 · · ·01, . . . ,
r2N = 11 · · ·11, so that |r1〉= |00 · · ·00〉, |r2〉= |00 · · ·01〉,
. . . , r2N = |11 · · ·11〉. Let m,n be any integers such that
1 ≤ m,n < N and m+ n = N. Let the corresponding two
sets of computational basis vectors ordered
lexicographically be |i1〉, . . . , |i2m〉 (each of length m) and
| j1〉, . . . , | j2n〉 (each of length n). Rewrite |ψ〉 thus :

|ψ〉=
2m

∑
u=1

2n

∑
v=1

aiu jv |iu〉⊗ | jv〉. (2)

Here in the symbol aiu jv , the suffix iu jv is the juxtaposition
of the binary sequences iu and jv in that order. Thus we
get a 2m × 2n matrix A = [aiu jv ] which will be called the
2m × 2n matrix associated to |ψ〉.

We now quote some results from [1]:

Lemma 1: The state |ψ〉 given by (1) can be factored as
the product, |ψ1〉⊗ |ψ2〉, of an m−qubit state |ψ1〉 and an
n−qubit state |ψ2〉 if and only if the 2m × 2n matrix A

associated to |ψ〉 can be expressed as BTC where B is a
1×2m matrix, C is a 1×2n matrix and BT is the transpose
of B.

Lemma 2: An a× b non-zero matrix A over the field C of
complex numbers can be expressed as BTC for some 1×a

matrix B and 1×b matrix C if and only if rank(A) = 1. By
combining Lemmas 1 and 2 we have

Theorem 1: The state |ψ〉 given by (1) can be factored
as the product, |ψ1〉⊗ |ψ2〉, of an m−qubit state |ψ1〉 and
an n−qubit state |ψ2〉 if and only if the 2m × 2n matrix A

associated to |ψ〉 is of rank 1.

For convenience, we make the following two definitions :

Definition 1. Let A be a p×q matrix over the field C. Two
non-zero rows of A, say [a1 · · ·ap] and [b1 · · ·bp], are said to
be proportional if their non-zero elements correspond i.e.
ai 6= 0 if and only if bi 6= 0, 1 ≤ i ≤ p and these elements
have the same constant ratio i.e. there is a constant k 6= 0
such that ai/bi = k whenever ai 6= 0, 1 ≤ i ≤ p.

Definition 2. The non-zero rows of a matrix A are said to
be mutually proportional if any two non-zero rows of A

are proportional.

Lemma 3: Let A be a p× q matrix over the field C. Then
rank (A) = 1 if and only if the non-zero rows of A are
mutually proportional.

Proof: Let rank (A) = 1. It then follows that any two
rows of A are linearly dependent. Hence if [a1 · · ·ap] and

[b1 · · ·bp] are any two non-zero rows of A, then there is a
non-zero constant k such that ai = kbi, 1 ≤ i ≤ p. Hence
these rows are proportional. Hence the non-zero rows of
A are mutually proportional. The converse is clearly valid.
Hence the lemma.

With the help of Lemma 3, Theorem 1 above can be
restated as follows:

Theorem 1a: The state |ψ〉, given by (1), can be factored
as the product |ψ1〉⊗ψ2〉, of an m-qubit state |ψ1〉 and an
n-qubit state ψ2〉 if and only if the non-zero rows of the
2m × 2n matrix A associated to |ψ〉 are mutually
proportional.

Remark 1: It is easy to see that for all the nonzero rows
to be mutually proportional it is enough to have any one of
the nonzero row to be “proportional”to each of the other
nonzero rows. Thus, if there are some p nonzero rows in
the matrix then it is enough to check that any one of these
p nonzero rows is proportional to each of the remaining
(p− 1) nonzero rows of that matrix.

Hence with the above notation we can now determine the
computational effort required to check whether the given
pure quantum state |ψ〉 can be factored as the product
|ψ1〉⊗ |ψ2〉.

Lemma 4: If tm(N) denotes the maximum number of
arithmetical operations one needs to carry out, i.e. the
number of ratios one needs to evaluate, to determine
whether the N-qubit state |ψ〉 has an m-qubit factor |ψ1〉,
then tm(N) = O(2N).

Proof: The associated matrix, A, in this case contains 2m

rows. Each of these rows contains 2n elements. Now,
suppose all the rows of A are nonzero. By remark 1 above,
we may take first row of A and pair it with second, third,
· · · 2m−th row. Thus, we will have 2m − 1 such pairs of
nonzero rows. We now proceed to check whether the first
row is proportional to the second row and if so, then we
proceed with checking the next pair for proportionality,
otherwise we stop; and so on. Now, for testing a pair of
rows for proportionality, we need to evaluate 2n ratios and
such pairs of rows are in all (2m − 1) in number. Thus for
testing whether rank(A) = 1 we need to carry out at most

2m × 2n = 2N arithmetical operations. Hence the lemma.

Remark 2: Note that the order of number tm(N) is
independent of m. In fact, tm(N) = O(|B|) where |B|= 2N

is the cardinality of the corresponding computational
basis B.

3 Complexity Analysis of the Factorization

Algorithm

We now proceed to estimate the complexity of the
factorization algorithm proposed in [1], our main aim of
this paper. At various steps of the algorithm we try to find
out whether the state has an m-qubit factor, m ≥ 1.
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Lemma 4 of section 2 gives an estimate of the number
tm(N) of arithmetical operations required to do this. So
repeatedly applying Lemma 4 we obtain the following
result:

Theorem 2: If T (N) denotes the maximum number of
arithmetical operations one needs to carry out to
completely factorize an N−qubit pure quantum state, then
T (N) = O(N2N).

Proof: We are given an N-qubit pure state |ψ〉 in terms of
the computational basis as

|ψ〉=
2N

∑
s=1

ars |rs〉

where the basis vectors |rs〉 are ordered lexicographically.
As first step the algorithm checks whether |ψ〉 factors as
|ψ1〉⊗ |ψ2〉 where |ψ1〉 is a 1−qubit state. By Lemma 4,
by applying t1(N) = O(2N) arithmetical operations we
determine whether (I) such a factor |ψ1〉 exists or (II) it
does not exist. As second step of the algorithm, in case
(I), we check whether |ψ2〉 has a 1−qubit factor and in
case (II), we check whether |ψ〉 has a 2−qubit factor. In
either of these cases we again need to carry out
t1(N) = O(2N), t2(N) = O(2N) arithmetical operations.
The same estimate holds for each step of the algorithm.
Now an N−qubit state |ψ〉 can have at the most N factors.
Hence the total number, T (N) say, of arithmetical
operations required to completely factorize an N−qubit
state is T (N) = Ntm(N). Thus T (N) = O(N2N). Hence
the result follows.

4 Conclusion:

Since in order to determine whether a particular factor
exists we just need to know whether or not the rank of the
associated matrix is equal to unity (and we do not need to
actually evaluate the rank) and further, since for an
N−qubit state we can have at most N factors, therefore,
the complexity of the factorization algorithm is
T (N) = O(N2N). For an N−qudit state it remains similar
as it just changes to O(NdN).
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