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1 Introduction independent solutions and asymptotic formulas for the
Eigen-values and Eigen-functions df) (and @) with a

In this work we have a fourth order linear differential new accurate, but before doing this we need some

operator which is generated by the differential equationauxiliary results as we proved in section 2 .

and the boundary conditions of the form:

ly) =y (x) +aXy(x) =A%(x), xe[0,a (1) 2 Auxiliary Results

y(0) =0 i=0.1 If A = o +it, then the complex plane can be divided into

’ 8 sectors as we see if][ so that for each sectdi and
Uj(y) = _ _ (2)  T.k=0:3, different roots of 1 can be arranged as:
s (iw) " ly¢ @A) =0 j=23

WhereA is the spectral parameter aq(k) is an arbitrary Re(iAWo) < ReliAw,) < Re(iAwp) < Re(iAws) — (3)

complex-valued function such thagx) € C2[0,a] and

also satisfies,(0) = q(a) = 0, /2q(x)dx = 0 and

g(a) # 0. The spectral properties of Eigen-values and

Eigen-functions of a differential equations was

investigated by many authors such as, G. D. BirkHdff

V. M. Kurbanovp], H. Menken B], K. H. F. Jwamer, 5] ) o, o

and G. A. Auginov f], V. A. Chernyatin,] and so forth. ~ The numbering depend of arranging so that satisfying

We can notes tha®@] studies the differential equation of equation 8). We introduce the sectoilg andT,,k=0:3

order "2n" y(2n)(x) + q(X)y(x) = A2"p(X)y(x),x € 0,3 of the complex plain. The numbering of the sectors

and consideredp(x) # 1, then they got the asymptotes depending onw; such that satisfy3) as we see in the

formulas only for the Eigen-values. The aim of this work figurel. So the sectors are:

is to find a new expression for the fourth linearly

Wherew. is one ofw; andw; is the root of unity of
degree 4, Which can be listed as:

WO:17W1:i7W2:_17W3:_i (4)
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the above inequalities far andt we get that:

s m m
< < — — < < — i ’ ’ ’
TO Oiarg()\)i 4-7 Tl 47arg()\)7 2 Wozi,lel,sz—l,Wsz—i
Tg:ggarg(/\)g%n To:m<arg( )g%ﬂ Now,
7 _ 37 771 S =S —-2mA) = — 2|Alsin(arg(A)). Thus,
To:p<argA)<2m  Tii— <arg(A)< S =S — 2|A|sin(arg( ) And since, 0< arg(A) <
- 5m 3m — 3m and sir{x) > 0,forx € [0, 7. so sif{arg(A)) > 0 and hence
- < <= - < < =% =
Ts 7 <arg(A) < 3 T 2 <argA)<m S <5,
Fors
S = S — [Allsinarg(ia)) + sinfargd))] =
— |A][sin(a + E) +sin(a)] ,wherea = arg(A) S
. S = S1— |A[[sina+ 2) +sin(a).
: To evaluate sifor + 7—2T) +sin(a) ,
3 : for 0 < a < g we get
Ty Ty . m T
B} - " sin(rm— Z) <sin(a + 2) <sm(§)
o S0 m m n
. n w . sin(Z) < sin(a + ) < sin() (5)
b Y And since KX a < g , then
N . . T
0<sin(a) < sm(Z) (6)
= Then from 6) and 6) we get:
sinla + ) + sin(a)] > sin(g) So
N . S =5 — [A[sin(a + F) +sin(a)] < S — [A[sin().
Fig. 1. The positions of the sectors ThusSs < S - A |S|n( )
For
_ - : - ,
If A located in some fixed sectdi or T we denote < = St — [Allsin(a_+ 3) + sin(a)],where
: T .
all possible amount sums as: a=ag(A)<S—|A |sm(z) as in the above case So
L / o , S < S —|Alsin(%).
S =Re(iA(Wy+ws3)) S =Re(iA(wy+ws)) ForSs
! ! !/ !/ . T[ .
S =Re(iA(Wy+Ws3)) S =Re(iA(w,+W,)) S = S — 2A[sin(a + E) < S - 2A[sin(f) <
S =Re(iA(Wo+Wp)) S5 =Re(iA (Wo+wi)) S1—2/A[sin(7) asin 6).
Lemma 1. The following relation hold fofS; andw,, w; : EOSSSBS S1—[A[sin(7).
or
S>>, And S >S5+ |/\|sin(77:), j=3:6 S = S — 2Alsin(arg(iA)) + sin(arg(A))] <
, , . S1—2|A|sin(§) < S —|A[sin() asinthe above case,
W, = —Wi, Wy = W, if AeTk. S0 <SG — |)\|S|n( ). If)\eTo,thenSl>szand
Wy = Wi, Wy = —W, if AeT. for k=0:3 S =2 5 - |)‘|S'n( il = 3 1 6 and

W'2 =-1= —Wo,w1 1=wp.
We can use a similar arguments as above for all other
sectors to get the result of the lemma.

Proof. We prove the Theorem for every sectors, first i
ToandA = o+ir, then0<arg()\) 7,0>0,1>0and

o>1.To arrangew according taw; such that satisfyJ),

that is

Re(iAwp) < Re(iAw;) < Re(iAW,) < Re(iAws) 3 Expressions of Fundamental Solutions
And , since, ,Re(i’\wj) /: m(A J) then i this section we find a new asymptotic expression for the
IM(Awg) > Im(Aw;) > Im(Aw,) > ( ) By using  fundamental solutions ofi.
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Theorem 1. If we have the differential equationl)|
where q(x) € C"9[0,a], then for A € T, or
T,k =0:3 andwi.k = 0: 3 are fourth root of unity we

can find four linearly independent solutions which it is

and their derivatives can be expressed as:

O (X A) = (IAw) e | A () + 1) P
N Ass(X) A4sk( ) Ass(X)
A3 A4 AS
A6§<( ) Ans(X)
G + ...+ T
+ O()\ n+1)
where
Arsc = Ak (X), Aosc = Ao (), Azsc = Azk(X)

A= Aa) ) wck ().
P = o) ) Aa)— (5 WA,
P = ) ) A)— 5 ) WA

n

+ (Z) WA (X).

N

, Wwhereg(x) = iwk+y/p(X) , but in our problenp(x) =
SO we can wnte

[ee]

el)\ WX

We want to find y;(,yﬁ,yﬁ',y(k“) and putting in the
differential equation).

Now
Wlx ) = Mg + A 00 o )
™)
Vi (%A)=iAweh s
Ao(X) + 3 (A1(X) — IWEALX) + 5 (Aol) — WA ()
3 (As() — WEAL(X) + 7 (Aa(x) — WA ()
ot (A0~ 9 1)+ O ) [ (®)
Ve (GA) = (iAwy)2eA W«
[Ao<x>+j< 1)~ 2WEA00) + 25 (Ao(x)

" i

—2IWEA (X) — WEAG(X)) + 5 (Ag(X) — 2IWEAy(X)

And so on fom > 7 we have: A3
n 1 . !/ "
Pk = Aok(X) — @ WEAL 1 (X) @m@ e —WEAL () + 37 (Aa () — 2R (X) — WEAS(X))
1 . ’ " 1
+ @ WAL () + @ A (X). + 35 (A6 (X) — 2WAg(X) = WiAg(X) + .+ 37 (An(X)
And 20, 1)~ WAL 5() + Ol 55r7) ©)
Ax(¥) =1, Ax(x)=0,  Ax(x) =0,
Agc(X) = —% " (t)Agk(t)dlt, Ve (GA) = (iAw)3eM i< s
Aal) = 2 [ (a2 (D) +a(0AK(D)d AolX) + % (A1(X) — FWRG(X)) + 35(Ao(x)
A =~ [~ BuBAG (1) + A1) —BINEA () — BBAG(X) + 5 (As(x) — HNEAL (X
+a(b)Ax() ), WAL () -+ Wi () + 7 (Aa(x) — IWEAL(X)
Andlorinieger n= 8- R () + A () + 45 (As(x) — AL )
Ank(x) = _Tk ( - G\NEA;;fl,k(t) + 4iWkA;fl/72,k(t) " . " 1 . /
0 . —3WicAg(X) + WA, (X)) + 76 (Ae(X) — 3igAs(X)
+AY (1) + () An-ak() )t R L
Proof. As we see in {] the solution of the differential 30 X) WA () - )\“(An(x)
equation can be written in a power series of the form —3ivv§A;,l(x) — 3WEAn—2(X) |WkAn73(X))
wixA) =t B y A0 +O(5a7) (10)
j=
(@© 2017 NSP
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W (x2) = A% Ag(x) + T (An(6) — Ao (x)

37 (A2(0) — 4mFA’1<x> — BWEA(X)) + 33 (As(x)

AZ
Ao + 57 (A

—4inEAg(x) — 6wFA2<x>+4ika1< X)+ Ay (X))

As(X) — 4WEA,(X) — BWEAG (X) -+ 4iwiA; (X)

+ )\—1,1(Ano<)

! " "

—2(X) + 4iwiAn_3(x)

+AL4(x)) +O( 3 nl+1)] (11)

Puttingyk,yf:‘) in (1) , then we get:

A4éAWW

= (Ao (x)

1 4
T3z

(—4ivgAL (X) — BWEA (X))

>-'

A_13( AWEA, (X) — BWEA, (X) + 4iwiAg (X))
A_14( AR AG(X) — BUZAG (X) + 4iiA] (X) +

A
A () + 609 A0(X) + 55 (~4IMEAL )
—6WZA(X) -+ diwA; () + ALY (X) + g(x) A (X))
s (- AEAG(6) —
ALY (X) + A(X)A2(X)) + ..+ 5 (—AIWEA, 1 (X)
—BWEA (%) + AiwAr_5(x) + ALY 4(X)

BW2A,(X) + 4iWAg (X) +

>-‘|H

Aai(x) =~ [ (~OugAG (1) + A (t) + AL
AL

Arsd) =~ [ (—0ngagu(0) + A (t) + AL
A

And hence for integem > 6 we get that:

i Wk "

Ank(X) = — 7 (6VV2An
+An skt

<t>+4ika:§’_2,k(t>
q(t)An_zk(t))dt

By using the above recursion relations fyg.derivatives
of the solution of the differential equatiori)(have the
following forms:

Ve A) = iAngeA WX
Aok()+ 3 (i) ~ 92,()
5 (Ao() — WAL ()
g (o) — A ()
o (Aag() — B () +
o (k) ~ B, 1,(9) +O(yp)

Ve(XA) = (1A w)2eM Wik s

Aok(x)
1
+0(X)An-4(x)) + O(57 )1 =0 ,
" o (Ak() — 2 )

By equating the coefficients of the same powegothen 1 - "

We get the following relation: ! P(AZ K(X) = Z'WEALK(X) B WZkAka(X))
Aok =1, A =0,  Aok(x =0, b5 (A — 2R () — WA (X))
R S ACCL OIS s (k) — WG () — WA ()
Agk(x) = —% A (—6WRAg (1) + ()AL k(D)) /\—15(A5k( X) — 2iWEA, 1 (X) — WEAG (X)) +

1 . / 4
X + o (Ank(x) = WA, 1 1(X) — WA, 24(X))
Pok(X) = —— [ (—BWEAL(t) + AimaAg(t) 1
4 Jo +O(-)
+q(t)Azk(t))dt, AnHt
(@© 2017 NSP
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yﬁ’ (x,A) = (iA wk)3e"“"’kx Aok (X) asymptotic of eigenvalues of the problem for sufficiently
large|m| ,has the following forms:
1 !
5 (Avk(X) — 3iWgAg (X)) .
)\1 ‘ ,k , Aom= (i)4((2mn+ i+ 112514q(a)[i 12 5
5 (Aak() — BWEAL (X) — 3WEAG (X)) a0 .
- — O(= AT
s (A klX) — WG () — BWEAL () ) Ol AT
. mn 1 . !
HWiA k(X)) + 57 (Aa(x) - 3iWAg (X) Aom = (2_161)4((25 mr— 33)*
" . m 1 |
_3@A2/,k<x> * 'WkAl,f )+ 35 (Aex(X) +4a(320(a) + 240(0)) |-+ —(rf,f)z
_3|W§A4,k(x) _BW%AB,k(X) 'WkAz,k(X)) 6 (33) (33) o N T_ 1
o (Aak() — 30 () — WAL (9 s~ () Ol AT 42
. mn 1 . !
+|WkA3,k(X)) +...+ F(An’k(X) — 3I\N§An_17k(X) )\1,m _ (Zia)4((2|mn—_ 1)4+32a4|q( )[In::n g (mlln)
4 . " 1
—3WEA, 2 (X) + WA, _3(X)) + O Fet) g(milrr)3 B % (mil?)4]) +0($) AeTy, (13)

’ ~

WI0A) = A4 (o) 4 T (i) — Ao, () gy = (o) ((@mm— 1"

1 g " , 2% 322 312
A—lz(Az K(X) — AIWEA  (X) — BWEAG (X)) —4(1+ 2|)a4q(a)[%— (ngi 7_)[)2 + (m|(n))3
4 ) ’ _ " 1 1 _
53 (Ask() - 4w1rEA2,k<x> 6L (X) ~migi) FOGg) AT (14)
+AIWiAG (X)) + 37 (Aa(X) — 4WgAg(X) .
OB () + AT () + AT (X)) Yam = (55" ((@mn+ (1 -8)*
1 . / " 8 . 12
+55(Ask(X) — 4iWEA, 1 (X) — BWEAG i (X) +4a*(2q(a) +309(0) [+ (I —8) (2
" 1 . 6 . 1
FAiviAZ () + AT (0) + 5 (Asi(¥ Hi-8 s+ (-8 )
— WA i (X) — 6\/\/2A4k( X) + 4iwAg i (X) ol % A e (15)
FAL00) 4+ 2 (Aokl) — AEA 1)
UL i) HAMAL XA () Aam = (n)*((@ms 1P - 2+ Ddaa(a) - o
: 6 6i 1
+O(+ -
()‘nﬂ)} (2 mme (mn)4])
Since,(}) = W then we get the result of the theorem. +O(%), AeT,, (16)
4 Asymptotic behavior of the Eigen-values Aom = (%)4<(Zimn+33)4
In this section we try to find the Eigen-values of the A 8 12
problem @)'(2) +4a (|32q(a.) — 24q(0))[|m7'[+ 33W
Theorem 2. Consider the boundary value probleiz(2) , 6 3 1
, whereq(x) is smooth function, for which satisfy the +(33) (imm)? +(33) (imn)4])
conditions ¢'(a) = 0,¢'(0) = 0, [q(x Jdx = 0, and 1
q(a) # 0, then forA € Ty or A € T,,K =0: 3 then +O0(5),  AeTs, a7
(@© 2017 NSP
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Agm = (%)4((2imrt+ (2+8i)*

—i(2q(a) + 3q(0))4a4[%T + (24 8i)

3
3
N

~— —

+(2+8i)? +(2+8i)3 ]

(imm)?

6
(imm)3

A €Ts. (18)

form=N,N+1,N+2, ..

Proof. If we choose five terms qff? (X,A) in Theorem 1
then:

Y (X A) = (1AW, )59 [Aoy(x) " Al%w + Aoyl

WhereN is a large integer.

For,s=1,2,3,k=0,1,2,3. We have:

Aok =1, Ak =APos=0,

iw
A3sk—__k/ q(t

Now, to find the boundary conditiondJj(yy) for
k,j = 0,1,2,3. WhereUp(y) = y(0) = 0,Us(y) =y (0) =
0,Uj(y) = 3, (iwjA)'~1y4D(a,A) = 0 j = 2,3, where,
= 1= = % k =0,1,2,3.andg(x)is smooth
function. we know thatvg = —wWo = 1,w; = —wz =1i. W,
are thew; which numbering so that satisiB)( We can

easily find out the form of each boundary conditions up to

order six in each sectors:

1+O(i

=) (20)

Uo(Yk) =

4.3z .
Ui(yk) = i)\wi( 1— %L(Z) B '(Wk)squ((S)) +29(0)
+0(35) (21)

.1 ra
Uil = —i)\3em""kal(w;()3( i Sy

+ 8

/\4
+[—ﬁs(WL)3(q/(ai\)5 2% (W)3d (0)] Lo )\_16 ))
() (Wi ? (1+ 4kJA‘€3q<t>dt

+O(505))  (wy 2o (1 e o 90

(1= B+ 2

5i(w)* [d (a) ' (0)] 1
16 A5 * O(F)) (22)
Forj=2,3.
If A€ To, then )
WO—I Wy =W =1,W, = —Wp = —1,Wy = —i.
g (a)=0andq (0) = 0and/$'q(x)dx=0, then after along

computation from equation2{ and22) we get:

Uo(yk) =A, Ui(yo) =—AB, Ui(y1) =iAB,

Ui(y2) = —iAB, Ui(ys) =AB (23)

Ua(yo) = (i+ DASMGC,  Up(yn) = iA%eMvieC,

Ualyz) = iA361"3D, Uy (ys) = (i — 1)A%ASAC,

Us(yo) = A%"4C,  Us(yr) = (i + DA,

Us(yo) = (1—)ASEM2C,  Us(ys) = A%M6%D. (24)
Where,

we form the determinamt(A ) = det[Uj(yx)|as was proved
in [9],the eigenvalues of the probler){(2) are the zeros

(@© 2017 NSP
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of A(A).
So we will findA(A), in To: SinceA(A) = det[Uj(yk)], for
k,j=0:3,then
Uo(Yo) Uo(y1) Uo(yz) Uo(ys)
A = Ui(Yo) Ui(ys) Ui(y2) Uailys)
Ua(Yo) Ua(yz) Ua(y2) Ua(ys)
Us(Yo) Us(yr) Us(yz) Us(ys)

Substituting the expressions &J)-(24) in A(A) Then by

For,m=N,N+1,N+2,... WhereN is a large integer. And
we know that the eigen-values of the problem &gg =

()\o,m)“,thus we obtainedl@). By the same way we can
find the eigen-values in all other sectors.

5 Asymptotic Formulasfor the
Eigen-Functions

Laplace expansion theorem for determinant as we see iin this section we find an expression for the eigen functions

[9], [10] and Lemma 1 we can reduggA ) to

A :/\7ABei)‘Wl3a{(1+ )‘(1i_DI)C (1= 1)C) gavia,.
(1_i)‘(15)c (i _Dl)c ei)\w/la
+0(e Mising )} (25)

Calculating equation26)leads the following form for
A(A)
A(A) = —(1-1)AABE 22 DD — 20C] Vel a2
+[iCD +2CC]
_|_O(ef\)\\sin%)}
(26)

From @26) it is clear thatA(A) = O for sufficiently large
|A]if and only if

[DD — 2cCjéM3gMWia | [iCD +20C] =0 (27)

We can easily obtain that

of the boundary value problem)¢(2) in each sector3y
andTy that we defined in section 2.

Theorem 3. Asymptotic behavior of the Eigen-function
for the boundary value problem corresponding ten, A,
, for j = 0: 3 has the form:

1
Yim(X, Akm) = i€ kam"x+e""“kell’“’”(JrO(W), A €T
(28)
. - 1 _
Yiem(% Akm) = Ie*Wk%m”XjLéWk%"‘”"qLO(m), AEeTh.
(29)

K,j=0:3 form=NN+1,N+2,...

Where N is a large integer.

Proof. If we choose three terms gf) (X,A) in Theorem 1
then:

Y (% A) = (iAwj) %€M [Aog((x) T

1
+0(53)]
Fors=0,1,2,3,k=0,1,2,3, We have:

Ar(X)
A A2

[DD —2cC] 1 = ~14+ 1299 1 O( ). Aosc = 1, A1 = 0, Ao = O,
And - o
iCD + 2CC| = 2i A( a) +O(ie) And to flndllng the boundary condltlanslj(yk) for
So from @7) we find out: k = Q, 1,?,3,1 =123 up to orderO(F) and q(x)
o satisfies/$q(t)dt =0, and IfA € To, then
é?Wamw)a_ 1pp — 2CC]~Y[iCD + 2CC] = 0 . , .
Wy =1,W; =Wp=1,W, =—Wp=—1,Wz=—I.
Then, N i find
ei/\(w/z—w/ﬁ [2&% +O()\_16)] ow we can easily fin )
. : Us(yo) = ~A[1+0( )] Uslya) = iA[1+O( )]
And since inTo we havew, = wo,w1 Wo , then . 1
_ U1(yz) = —IA[1+O(55)],Ua(ys) = A[1+O(53)],
ema_1- 14289 o L) A A
A A Ua(yo) =0,  Uz(y1) =0,
Then according to J),[13], [14] and [11] by using Ua(ys) = 4,)\3e—|/\a[1+ O(= 1 )],Ua(ys) = 0,
Rouche’s theorem we can solve it and we get: A3
Us(Yo) =0, Us(y1) =0, Us(yz) =
Nom= ——[2mm—1+26-3@_ 4 o Ly, 3 1
M 2ai (tmm) mb " Us(ys) = 4231+ O(ﬁ)] (31)
(@© 2017 NSP
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