The Asymptotic Estimations of the Eigen-values and Eigen-functions for the Fourth Order Boundary Value Problem with Smooth Coefficients

Karwan H. F. Jwamer1,* and Rando R. Q. Rasul2

1 Department of Mathematics, School of Science, University of Sulaimani, Kurdistan region, Iraq.
2 Department of Mathematics, School of Basic Education, University of Sulaimani, Kurdistan region, Iraq.

Received: 30 Jun. 2016, Revised: 2 Feb. 2017, Accepted: 19 Feb. 2017
Published online: 1 May 2017

Abstract: In this paper, we have an Eigen-value problem generated by a fourth order differential equation and suitable boundary conditions which contain a spectral parameter. We obtain asymptotic expressions for the fourth linearly independent solutions, and we also found new asymptotic formulas for the Eigen-values and Eigen-functions of this boundary value problem.

Keywords: Eigen-value Problem; Eigen-value; Eigen-function; Spectral Parameter; Asymptotic Formula.

1 Introduction

In this work we have a fourth order linear differential operator which is generated by the differential equation and the boundary conditions of the form:

\begin{equation}
I(y) = y^{(4)}(x) + q(x)y(x) = \lambda^4 y(x), \quad x \in [0, a] \tag{1}
\end{equation}

\begin{equation}
U_j(y) = \begin{cases}
y^{(j)}(0) = 0, & j = 0, 1 \\
\sum_{i=1}^{4} (iw_j)^{j-i}y^{(4-i)}(a, \lambda) = 0, & j = 2, 3 \tag{2}
\end{cases}
\end{equation}

Where \(\lambda \) is the spectral parameter and \(q(x) \) is an arbitrary complex-valued function such that \(q(x) \in C^2[0, a] \) and also satisfies \(q(0) = q'(0) = 0, \int_0^a q(x)dx = 0 \) and \(q(a) \neq 0 \). The spectral properties of Eigen-values and Eigen-functions of a differential equations was investigated by many authors such as, G. D. Birkhoff[1], V. M. Kurbanov[2], H. Menken [3], K. H. F. Jwamer[4, 5] and G. A. Auginov [6], V. A. Chernyatin,[7] and so forth.

We can notes that [8] studies the differential equation of order \(\sim 2n \) \(y^{(2n)}(x) + q(x)y(x) = \lambda^{2n} p(x)y(x), x \in [0, a] \) and considered, \(p(x) \neq 1 \), then they got the asymptotes formulas only for the Eigen-values. The aim of this work is to find a new expression for the fourth linearly independent solutions and asymptotic formulas for the Eigen-values and Eigen-functions of (1) and (2) with a new accurate, but before doing this we need some auxiliary results as we proved in section 2.

2 Auxiliary Results

If \(\lambda = \sigma + i\tau \), then the complex plane can be divided into 8 sectors as we see in [9], so that for each sector \(T_k \) and \(T_k, k = 0 : 3 \), different roots of 1 can be arranged as:

\begin{equation}
Re(i\lambda w'_0) \leq Re(i\lambda w'_1) \leq Re(i\lambda w'_2) \leq Re(i\lambda w'_3) \tag{3}
\end{equation}

Where \(w'_j \) is one of \(w_j \) and \(w_j \) is the root of unity of degree 4, which can be listed as:

\begin{equation}
w_0 = 1, w_1 = i, w_2 = -1, w_3 = -i \tag{4}
\end{equation}

The numbering depend of arranging \(w'_j \) so that satisfying equation (3). We introduce the sectors \(T_k \) and \(T_k, k = 0 : 3 \) of the complex plane. The numbering of the sectors depending on \(w'_j \) such that satisfy (3) as we see in the figure 1. So the sectors are:

* Corresponding author e-mail: Karwan.jwamer@univsul.edu.iq
Proof. We prove the Theorem for every sectors, first if \(\lambda \in T_0 \) and \(\lambda = \sigma + i \tau \), then \(0 \leq \arg(\lambda) \leq \frac{\pi}{4}, \sigma \geq 0, \tau \geq 0 \) and \(\sigma \geq \tau \). To arrange \(w_j' \) according to \(w_j \) such that satisfy (3), that is

\[
\text{Re}(i\lambda w_0') \leq \text{Re}(i\lambda w_1') \leq \text{Re}(i\lambda w_2') \leq \text{Re}(i\lambda w_3')
\]

And since, \(\text{Re}(i\lambda w_j') = -\text{Im}(\lambda w_j') \), then \(\text{Im}(\lambda w_0') \geq \text{Im}(\lambda w_1') \geq \text{Im}(\lambda w_2') \geq \text{Im}(\lambda w_3') \) By using the above inequalities for \(\sigma \) and \(\tau \) we get that:

\[
w_0' = i, w_1' = 1, w_2' = -1, w_3' = -i
\]

Now, \(S_2 = S_1 - 2|\lambda| \geq S_1 - 2|\lambda| \sin(\arg(\lambda)) \). Thus, \(S_2 = S_1 - 2|\lambda| \sin(\arg(\lambda)) \). And since, \(0 \leq \arg(\lambda) \leq \frac{\pi}{4} \), and \(\sin(x) \geq 0 \) for \(x \in [0, \pi] \), so \(\sin(\arg(\lambda)) \geq 0 \) and hence \(S_2 \leq S_1 \).

For \(S_3 \),

\[
S_3 = S_1 - |\lambda||\sin(\arg(i\lambda)) + \sin(\arg(\lambda))| = S_1 - |\lambda||\sin(\alpha + \frac{\pi}{2}) + \sin(\alpha)|, \text{where } \alpha = \arg(\lambda)
\]

So

\[
S_3 = S_1 - |\lambda||\sin(\alpha + \frac{\pi}{2}) + \sin(\alpha)|.
\]

To evaluate \(\sin(\alpha + \frac{\pi}{2}) + \sin(\alpha) \), for \(0 \leq \alpha \leq \frac{\pi}{4} \), we get:

\[
\sin(\pi - \frac{\pi}{4}) \leq \sin(\alpha + \frac{\pi}{2}) \leq \sin(\frac{\pi}{2}).
\]

So

\[
\sin(\frac{\pi}{4}) \leq \sin(\alpha + \frac{\pi}{2}) \leq \sin(\frac{\pi}{2})
\]

(5)

And since \(0 \leq \alpha \leq \frac{\pi}{4} \), then

\[
0 \leq \sin(\alpha) \leq \sin(\frac{\pi}{4})
\]

(6)

Then from (5) and (6) we get:

\[
\sin(\alpha + \frac{\pi}{4}) + \sin(\alpha) \geq \sin(\frac{\pi}{4})
\]

So

\[
S_3 \leq S_1 - |\lambda||\sin(\alpha + \frac{\pi}{2}) + \sin(\alpha)| \leq S_1 - |\lambda| \sin(\frac{\pi}{4}).
\]

Thus \(S_3 \leq S_1 - |\lambda| \sin(\frac{\pi}{4}) \).

For \(S_4 \),

\[
S_4 = S_1 - |\lambda||\sin(\alpha + \frac{\pi}{2}) + \sin(\alpha)| \leq S_1 - 2|\lambda| \sin(\frac{\pi}{4})
\]

as in the above case. So

\[
S_4 \leq S_1 - |\lambda| \sin(\frac{\pi}{4})
\]

For \(S_5 \),

\[
S_5 = S_1 - 2|\lambda| \sin(\alpha + \frac{\pi}{2}) \leq S_1 - 2|\lambda| \sin(\frac{\pi}{4})
\]

as in (6).

So \(S_5 \leq S_1 - |\lambda| \sin(\frac{\pi}{4}) \).

For \(S_6 \),

\[
S_6 = S_1 - 2|\lambda||\sin(\arg(i\lambda)) + \sin(\arg(\lambda))| \leq S_1 - 2|\lambda| \sin(\frac{\pi}{4}) \leq S_1 - |\lambda| \sin(\frac{\pi}{4})
\]

as in the above case. So

\[
S_6 \leq S_1 - |\lambda| \sin(\frac{\pi}{4})
\]

If \(\lambda \in T_0 \), then \(S_1 \geq S_2 \) and

\[
S_1 \geq S_j - |\lambda| \sin(\frac{\pi}{4}), \quad j = 3, 4, 5, 6.
\]

We can use a similar arguments as above for all other sectors to get the result of the lemma.

3 Expressions of Fundamental Solutions

In this section we find a new asymptotic expression for the fundamental solutions of (1).
Theorem 1. If we have the differential equation (1), where \(q(x) \in C^{(n-3)}[0,a] \), then for \(\lambda \in T_k \) or \(T_k', k' = 0 ; 3 \) and \(w_k, k = 0 ; 3 \) are fourth root of unity we can find four linearly independent solutions which it is and their derivatives can be expressed as:

\[
y_k^{(s)}(x, \lambda) = (iw_k w_k^s) e^{i\lambda w_k x} \left[A_{0k}(x) + \frac{A_{1k}(x)}{\lambda} + \frac{A_{2k}(x)}{\lambda^2} + \frac{A_{3k}(x)}{\lambda^3} + \frac{A_{4k}(x)}{\lambda^4} + \frac{A_{5k}(x)}{\lambda^5} + \frac{A_{6k}(x)}{\lambda^6} + \ldots + \frac{A_{nk}(x)}{\lambda^n} + O\left(\frac{1}{\lambda^{n+1}}\right)\right]
\]

where

\[
A_{1k} = A_{1k}(x), \quad A_{2k} = A_{2k}(x), \quad A_{3k} = A_{3k}(x)
\]

\[
A_{4k} = A_{4k}(x) - \left(\frac{s}{1}\right) iw_k^3 A_{3k}'(x),
\]

\[
A_{5k} = A_{5k}(x) - \left(\frac{s}{1}\right) iw_k^2 A_{4k}(x) + \left(\frac{s}{2}\right) w_k^2 A_{3k}''(x),
\]

\[
A_{6k} = A_{6k}(x) - \left(\frac{s}{1}\right) iw_k^2 A_{5k}(x) - \left(\frac{s}{2}\right) w_k^2 A_{4k}''(x)
\]

\[
A_{nk} = \left(\frac{s}{3}\right) iw_k A_{n-3, k}(x).
\]

And so on for \(n \geq 7 \) we have:

\[
A_{nk} = \left(\frac{s}{3}\right) iw_k A_{n-3, k}(x) + \left(\frac{s}{4}\right) A_{n-4, k}(x).
\]

And

\[
A_{0k}(x) = 1, \quad A_{1k}(x) = 0, \quad A_{2k}(x) = 0,
\]

\[
A_{3k}(x) = \frac{-iw_k}{4} \int_0^x q(t) A_{0k}(t) dt,
\]

\[
A_{4k}(x) = \frac{-iw_k}{4} \int_0^x \left(-6w_k^2 A_{3k}'(t) + q(t) A_{1k}(t)\right) dt,
\]

\[
A_{5k}(x) = \frac{-iw_k}{4} \int_0^x \left(-6w_k^2 A_{4k}'(t) + 4iw_k A_{3k}''(t) + q(t) A_{2k}(t)\right) dt,
\]

And for integer \(n \geq 6 \):

\[
A_{nk}(x) = \frac{-iw_k}{4} \int_0^x \left(-6w_k^2 A_{n-3, k}'(t) + 4iw_k A_{n-2, k}''(t) + q(t) A_{n-3, k}(t)\right) dt.
\]

Proof. As we see in [1] the solution of the differential equation can be written in a power series of the form

\[
y_k(x, \lambda) = e^{\lambda j} \sum_{j=0}^{\infty} \frac{A_j(x)}{\lambda^j}
\]

where \(\phi_k(x) = iw_k \sqrt[p]{p(x)} \), but in our problem \(p(x) = 1, \) so we can write

\[
y_k(x, \lambda) = e^{\lambda w_k x} \sum_{j=0}^{\infty} \frac{A_j(x)}{\lambda^j}
\]

We want to find \(y_k'', y_k', y_k \) and putting in the differential equation (1).

Now

\[
y_k'(x, \lambda) = iw_k w_k^s e^{i\lambda w_k x} *
\]

\[
\left[A_{0k}(x) + \frac{1}{\lambda} (A_{1k}(x) - iw_k^3 A_{0k}(x)) + \frac{1}{\lambda^2} (A_{2k}(x) - iw_k^3 A_{1k}(x)) + \frac{1}{\lambda^3} (A_{3k}(x) - iw_k^3 A_{2k}(x)) + \frac{1}{\lambda^4} (A_{4k}(x) - iw_k^3 A_{3k}(x)) + \frac{1}{\lambda^5} (A_{5k}(x) - iw_k^3 A_{4k}(x)) + \frac{1}{\lambda^6} (A_{6k}(x) - iw_k^3 A_{5k}(x)) + \ldots + \frac{1}{\lambda^n} (A_{nk}(x) - iw_k^3 A_{n-1 k}(x)) \right] + O\left(\frac{1}{\lambda^{n+1}}\right)
\]

\[
y_k''(x, \lambda) = (iw_k w_k^s) e^{i\lambda w_k x} *
\]

\[
\left[A_{0k}(x) + \frac{1}{\lambda} (A_{1k}(x) - 2iw_k^3 A_{0k}(x)) + \frac{1}{\lambda^2} (A_{2k}(x) - 2iw_k^3 A_{1k}(x)) - 2iw_k^3 A_{1k}'(x) - w_k^2 A_{0k}'(x)) + \frac{1}{\lambda^3} (A_{3k}(x) - 2iw_k^3 A_{2k}(x)) - w_k^2 A_{1k}'(x)) + \frac{1}{\lambda^4} (A_{4k}(x) - 2iw_k^3 A_{3k}(x)) - w_k^2 A_{2k}'(x)) + \frac{1}{\lambda^5} (A_{5k}(x) - 2iw_k^3 A_{4k}(x)) - w_k^2 A_{3k}'(x)) + \frac{1}{\lambda^6} (A_{6k}(x) - 2iw_k^3 A_{5k}(x)) + \ldots + \frac{1}{\lambda^n} (A_{nk}(x) - 2iw_k^3 A_{n-1 k}(x)) + O\left(\frac{1}{\lambda^{n+1}}\right) \right]
\]

\[
y_k'''(x, \lambda) = (iw_k w_k^s) e^{i\lambda w_k x} *
\]

\[
\left[A_{0k}(x) + \frac{1}{\lambda} (A_{1k}(x) - 3iw_k^3 A_{0k}(x)) + \frac{1}{\lambda^2} (A_{2k}(x) - 3iw_k^3 A_{1k}(x)) - 3iw_k^3 A_{1k}'(x) - 3iw_k^3 A_{0k}'(x)) + \frac{1}{\lambda^3} (A_{3k}(x) - 3iw_k^3 A_{2k}(x)) - 3iw_k^3 A_{1k}'(x)) + \frac{1}{\lambda^4} (A_{4k}(x) - 3iw_k^3 A_{3k}(x)) - 3iw_k^3 A_{2k}'(x)) + \frac{1}{\lambda^5} (A_{5k}(x) - 3iw_k^3 A_{4k}(x)) - 3iw_k^3 A_{3k}'(x)) + \frac{1}{\lambda^6} (A_{6k}(x) - 3iw_k^3 A_{5k}(x)) + \ldots + \frac{1}{\lambda^n} (A_{nk}(x) - 3iw_k^3 A_{n-1 k}(x)) + O\left(\frac{1}{\lambda^{n+1}}\right) \right]
\]
Putting y_k, y_4^k in (1), then we get:

$$y_k^4 (x, \lambda) = \lambda^4 e^{i \lambda w_k x} \left[A_0(x) + \frac{1}{\lambda} (A_1(x) - 4i w_k^2 A_0'(x)) + \frac{1}{\lambda^2} (A_2(x) - 4i w_k^2 A_1'(x) - 6w_k^2 A_0''(x)) + \frac{1}{\lambda^3} (A_3(x) - 4i w_k^2 A_2'(x) - 6w_k^2 A_1''(x)) + \frac{1}{\lambda^4} (A_4(x) - 4i w_k^2 A_3'(x) - 6w_k^2 A_2''(x)) + A_5^4(x) + \frac{1}{\lambda^5} (A_6(x) - 4i w_k^2 A_5'(x) - 6w_k^2 A_4''(x)) + 4iw_k A_3'''(x) + A_4^4(x) + \ldots + \frac{1}{\lambda^n} (A_n(x) - 4i w_k^2 A_{n-1}'(x) - 6w_k^2 A_{n-2}''(x)) + 4iw_k A_{n-1}'''(x) + A_{n-4}^4(x) + O\left(\frac{1}{\lambda^{n+1}}\right) \right]$$

(11)

Putting y_k, y_4^k in (1), then we get:

$$\lambda^4 e^{i \lambda w_k x} \left[\frac{1}{\lambda} (-4i w_k^2 A_0'(x)) + \frac{1}{\lambda^2} (-4i w_k^2 A_1'(x) - 6w_k^2 A_0''(x)) + \frac{1}{\lambda^3} (-4i w_k^2 A_2'(x) - 6w_k^2 A_1''(x)) + \frac{1}{\lambda^4} (-4i w_k^2 A_3'(x) - 6w_k^2 A_2''(x)) + A_4^4(x) + q(x) A_0(x) + \frac{1}{\lambda^5} (-4i w_k^2 A_4'(x)) - 6w_k^2 A_5'(x) + 4iw_k A_4''(x) + A_6^4(x) + q(x) A_2(x) + \ldots + \frac{1}{\lambda^n} (-4i w_k^2 A_{n-1}'(x)) - 6w_k^2 A_{n-2}'(x) + 4iw_k A_{n-1}''(x) + A_{n-4}^4(x) + q(x) A_{n-4}(x) + O\left(\frac{1}{\lambda^{n+1}}\right) \right] = 0$$

By equating the coefficients of the same power of $\frac{1}{\lambda}$, then we get the following relations:

$$A_{0,k}(x) = 1, \quad A_{1,k}(x) = 0, \quad A_{2,k}(x) = 0, \quad A_{3,k}(x) = -\frac{i w_k}{4} \int_0^x \left[q(t) A_{0,k}(t) + \frac{1}{\lambda} (A_{1,k}(t) - 4i w_k A_{0,k}'(t)) \right] dt,$$

$$A_{4,k}(x) = -\frac{i w_k}{4} \int_0^x \left[-6w_k^2 A_{3,k}'(t) + q(t) A_{1,k}(t) \right] dt,$$

$$A_{5,k}(x) = -\frac{i w_k}{4} \int_0^x \left[-6w_k^2 A_{4,k}'(t) + 4iw_k A_{3,k}'(t) + q(t) A_{2,k}(t) \right] dt,$$

$$A_{6,k}(x) = -\frac{i w_k}{4} \int_0^x \left[-6w_k^2 A_{5,k}'(t) + 4iw_k A_{4,k}'(t) + A_{6,k}^{(4)}(t) + q(t) A_{3,k}(t) \right] dt,$$

$$A_{7,k}(x) = -\frac{i w_k}{4} \int_0^x \left[-6w_k^2 A_{6,k}'(t) + 4iw_k A_{5,k}'(t) + A_{4,k}^{(4)}(t) \right] dt,$$

And hence for integer $n \geq 6$ we get that:

$$A_{n,k}(x) = -\frac{i w_k}{4} \int_0^x \left[-6w_k^2 A_{n-1,k}'(t) + 4iw_k A_{n-2,k}'(t) + A_{n-3,k}^{(4)}(t) + q(t) A_{n-3,k}(t) \right] dt.$$

By using the above recursion relations for A_{kl}, the derivatives of the solution of the differential equation (1) have the following forms:

$$y_k'(x, \lambda) = i \lambda w_k e^{i \lambda w_k x} * \left[\begin{array}{c} A_{0,k}(x) + \frac{1}{\lambda} (A_{1,k}(x) - 4i w_k A_{0,k}'(x)) + \frac{1}{\lambda^2} (A_{2,k}(x) - 4i w_k A_{1,k}'(x)) + \frac{1}{\lambda^3} (A_{3,k}(x) - 4i w_k A_{2,k}'(x)) + \frac{1}{\lambda^4} (A_{4,k}(x) - 4i w_k A_{3,k}'(x)) + \ldots + \frac{1}{\lambda^n} (A_{n,k}(x) - 4i w_k A_{n-1,k}'(x)) + O\left(\frac{1}{\lambda^{n+1}}\right) \end{array} \right]$$

$$y_k''(x, \lambda) = (i \lambda w_k)^2 e^{i \lambda w_k x} * \left[\begin{array}{c} A_{0,k}(x) + \frac{1}{\lambda} (A_{1,k}(x) - 2i w_k A_{0,k}'(x)) + \frac{1}{\lambda^2} (A_{2,k}(x) - 2i w_k A_{1,k}'(x) - w_k^2 A_{0,k}'(x)) + \frac{1}{\lambda^3} (A_{3,k}(x) - 2i w_k A_{1,k}'(x) - w_k^2 A_{1,k}'(x)) + \frac{1}{\lambda^4} (A_{4,k}(x) - 2i w_k A_{2,k}'(x) - w_k^2 A_{2,k}'(x)) + \frac{1}{\lambda^5} (A_{5,k}(x) - 2i w_k A_{3,k}'(x) - w_k^2 A_{3,k}'(x)) + \ldots + \frac{1}{\lambda^n} (A_{n,k}(x) - 2i w_k A_{n-1,k}'(x) - w_k^2 A_{n-2,k}(x)) + O\left(\frac{1}{\lambda^{n+1}}\right) \end{array} \right]$$

© 2017 NSP
Natural Sciences Publishing Co.
\[y''_k(x, \lambda) = (i\lambda w_k)^3 e^{i\lambda w_k x} \left[A_{0,k}(x) + \frac{1}{\lambda^2} (A_{1,k}(x) - 3iw_k A_{0,k}'(x)) \right. \\
+ \frac{1}{\lambda^3} (A_{2,k}(x) - 3iw_k^2 A_{1,k}(x) - 3w_k^2 A_{0,k}''(x)) \\
+ \frac{1}{\lambda^5} (A_{3,k}(x) - 3iw_k^3 A_{2,k}(x) - 3w_k^2 A_{1,k}''(x)) \\
\left. + iw_k A_{0,k}(x) + \frac{1}{\lambda^2} (A_{4,k}(x) - 3iw_k^3 A_{3,k}(x)) \\
- 3w_k^2 A_{1,k}'(x) + iw_k A_{1,k}(x) + \frac{1}{\lambda^2} (A_{5,k}(x)) \\
- 3iw_k^3 A_{4,k}(x) - 3w_k^2 A_{3,k}''(x) + iw_k A_{2,k}''(x)) \right] \\
+ \frac{1}{\lambda^5} (A_{6,k}(x) - 3iw_k^3 A_{5,k}(x) - 3w_k^2 A_{4,k}''(x)) \\
+ iw_k A_{3,k}(x) + \ldots + \frac{1}{\lambda^n} (A_{n,k}(x) - 3iw_k^3 A_{n-1,k}(x)) \\
- 3w_k^2 A_{n-2,k}(x) + iw_k A_{n-3,k}(x) + O\left(\frac{1}{\lambda^{n+1}}\right) \]

Since, \(\frac{m!}{(\pi k)^2} \), then we get the result of the theorem.

4 Asymptotic behavior of the Eigen-values

In this section we try to find the Eigen-values of the problem (1)-(2)

Theorem 2. Consider the boundary value problem (1)-(2), where \(q(x) \) is smooth function, for which satisfy the conditions \(q'(a) = 0, q'(0) = 0, \int_0^a q(x)dx = 0 \), and \(q(a) \neq 0 \), then for \(\lambda \in \mathcal{T}_k' \) or \(\lambda \in \mathcal{T}_k' \), \(k' = 0 \) then asymptotic of eigenvalues of the problem for sufficiently large \(|m| \), has the following forms:

\[\hat{\lambda}_{0,m} = \left(\frac{2a}{m} \right)^{\frac{1}{4}} \left(2m^2 + i^4 + 12a^4 q(a) \right) \left(\frac{8}{m^2} - \frac{12i}{(m\pi)^2} \right) \]

\[\hat{\lambda}_{0,m} = \left(\frac{2a}{m} \right)^{\frac{1}{4}} \left(2m^2 + i^4 + 12a^4 q(a) \right) \left(\frac{8}{m^2} - \frac{12i}{(m\pi)^2} \right) \]

\[\hat{\lambda}_{1,m} = \left(\frac{2a}{m} \right)^{\frac{1}{4}} \left(2m^2 + i^4 + 12a^4 q(a) \right) \left(\frac{8}{m^2} - \frac{12i}{(m\pi)^2} \right) \]

\[\hat{\lambda}_{2,m} = \left(\frac{2a}{m} \right)^{\frac{1}{4}} \left(2m^2 + i^4 + 12a^4 q(a) \right) \left(\frac{8}{m^2} - \frac{12i}{(m\pi)^2} \right) \]

\[\hat{\lambda}_{3,m} = \left(\frac{2a}{m} \right)^{\frac{1}{4}} \left(2m^2 + i^4 + 12a^4 q(a) \right) \left(\frac{8}{m^2} - \frac{12i}{(m\pi)^2} \right) \]
\[\hat{\lambda}_{m} = \left(\frac{1}{2a} \right)^{4} \left((2m\pi + (2 + 8i))^{4} \right) - \frac{8}{4} \lambda^{4} \left(\frac{2m\pi}{2} + (2 + 8i) \right) \]
\[+ \left((2m\pi + (2 + 8i))^{2} \right) \left(\frac{1}{2} \right)^{4} \lambda^{8} \]
\[+ O \left(\frac{1}{m^{6}} \right) \]

(18)

for \(m = N, N + 1, N + 2, \ldots \) Where \(N \) is a large integer.

Proof. If we choose five terms of \(y^{(s)}(x, \lambda) \) in Theorem 1 then:

\[y^{(s)}(x, \lambda) = (i\lambda w_{k}^{s})e^{\lambda w_{k}^{s}a} \left[A_{0k}(x) + \frac{A_{1k}(x)}{\lambda} + \frac{A_{2k}(x)}{\lambda^{2}} \right] \]
\[+ \frac{A_{3k}(x)}{\lambda^{3}} + \frac{A_{4k}(x)}{\lambda^{4}} + O \left(\frac{1}{\lambda^{5}} \right) \]

(19)

For, \(s = 1, 2, 3, k = 0, 1, 2, 3 \). We have:

\[A_{0k} = 1, \quad A_{1k} = A_{2k} = 0, \]
\[A_{3k} = -i \int_{0}^{x} q(t)dt, \quad A_{4k} = \frac{3}{8} \left[q(x) - q(0) \right], \]
\[A_{4k} = \left[-\frac{1}{8} q(x) - \frac{3}{8} q(0) \right], \]
\[A_{4k} = \left[-\frac{3}{8} q(x) - \frac{3}{8} q(0) \right], \]
\[A_{5k} = \frac{5i}{16} \lambda^{3} \left[q'(x) - q'(0) \right], \]
\[A_{5k} = \left[-\frac{i}{16} (w_{k}^{3} q'(x)) - \frac{5i}{16} (w_{k}^{3} q'(0)) \right], \]
\[A_{5k} = \left[-\frac{3i}{16} (w_{k}^{3} q'(x)) - \frac{5i}{16} (w_{k}^{3} q'(0)) \right], \]
\[A_{5k} = \left[-\frac{i}{16} (w_{k}^{3} q'(x)) - \frac{5i}{16} (w_{k}^{3} q'(0)) \right]. \]

Now, to find the boundary conditions \(U_{j}(y) \) for \(k, j = 0, 1, 2, 3 \). Where \(U_{0}(y) = y(0) = 0, U_{1}(y) = y'(0) = 0, U_{2}(y) = \sum_{i=1}^{3} (i\mu_{j} \lambda)^{i-1}y^{(i-1)}(a, \lambda) = 0 \) \(j = 2, 3 \), where, \(w_{k} = \sqrt{\lambda} = e^{\frac{1}{16} \lambda} = e^{\frac{1}{16} \lambda}, k = 0, 1, 2, 3 \) and \(q(x) \) is smooth function. we know that \(w_{0} = -w_{0} = 1, w_{1} = -w_{0} = 1, w_{j} = w_{j} \) are the \(w_{j} \) which numbering so that satisfy (3) We can easily find out the form of each boundary conditions up to order six in each sectors:

\[U_{0}(y) = 1 + O \left(\frac{1}{\lambda^{6}} \right) \]

(20)

\[U_{1}(y) = i\lambda w_{k}^{s} \left[1 - \frac{1}{4} \frac{q(0)}{\lambda^{4}} - \frac{1}{4} \frac{q(0)}{\lambda^{3}} + \frac{\lambda^{4}}{4} \right] + O \left(\frac{1}{\lambda^{6}} \right) \]

(21)

\[U_{2}(y) = -i\lambda^{2} \left[\left(w_{k}^{3} \right)^{3} \left(1 - \frac{i\lambda w_{k}^{s}}{4} \right) \right] + O \left(\frac{1}{\lambda^{6}} \right) \]

(22)

For \(j = 2, 3 \), If \(\lambda \in T_{0} \), then \(w_{0} = i, w_{1} = w_{0} = 1, w_{2} = -w_{0} = 1, w_{3} = -i \).

\[q(0) = 0 \quad \text{and} \quad q'(0) = 0 \quad \text{and} \quad \int_{0}^{x} q(x)dx = 0, \]

then after along computation from equations (21 and 22) we get:

\[U_{0}(y) = A, \quad U_{1}(y) = -\lambda B, \quad U_{1}(y) = i\lambda B, \quad U_{1}(y) = -i\lambda B, \quad U_{1}(y) = \lambda B \]

(23)

\[U_{2}(y) = (i + 1) \lambda^{3} e^{\lambda w_{0}a} D, \quad U_{2}(y) = i\lambda^{3} e^{\lambda w_{0}a}, \quad U_{2}(y) = (i - 1) \lambda e^{\lambda w_{0}a} C, \]

(24)

Where,

\[A = \left[1 + O \left(\frac{1}{\lambda^{6}} \right) \right], \quad B = \left[\frac{1}{\lambda^{4}} - \frac{1}{\lambda^{3}} \right] + O \left(\frac{1}{\lambda^{6}} \right), \]
\[C = \left[\frac{1}{\lambda^{4}} + O \left(\frac{1}{\lambda^{6}} \right) \right], \quad D = \left[\frac{3}{2} \lambda^{4} - \frac{1}{\lambda^{3}} + O \left(\frac{1}{\lambda^{6}} \right) \right]. \]

we form the determinant \(\Delta(\lambda) = det(U_{j}(y)) \) as was proved in [9], the eigenvalues of the problem (1)-(2) are the zeros.
of $\Delta(\lambda)$. So we will find $\Delta(\lambda)$, in T_0. Since $\Delta(\lambda) = det[U_j(y_k)]$, for $k, j = 0 : 3$, then

$$\Delta(\lambda) = \begin{vmatrix} U_0(y_0) & U_0(y_1) & U_0(y_2) & U_0(y_3) \\ U_1(y_0) & U_1(y_1) & U_1(y_2) & U_1(y_3) \\ U_2(y_0) & U_2(y_1) & U_2(y_2) & U_2(y_3) \\ U_3(y_0) & U_3(y_1) & U_3(y_2) & U_3(y_3) \end{vmatrix}$$

Substituting the expressions of (23)-(24) in $\Delta(\lambda)$ Then by Laplace expansion theorem for determinant as we see in [9], [10] and Lemma 1 we can reduce $\Delta(\lambda)$ to

$$\Delta(\lambda) = \lambda^2 Alt e^{i\lambda w_0^*} \left\{ \begin{array}{l} (1+i)C(i-1)C_{D} e^{i\lambda w_0^*} + \\
(1-i)C(i-1)C_{D} e^{i\lambda w_1^*} + \\
O(e^{-|\lambda| \sin \frac{\pi}{2}}) \end{array} \right\}$$

Calculating equation (25) leads the following form for $\Delta(\lambda)$

$$\Delta(\lambda) = -(1+i)\lambda^2 Alt e^{i\lambda w_0^*} e^{i\lambda w_1^*} \left\{ \begin{array}{l} DD - 2CC \] e^{i\lambda w_0^*} e^{i\lambda w_1^*} + \\
[iCD + 2CC] \\
+ O(e^{-|\lambda| \sin \frac{\pi}{2}}) \end{array} \right\}$$

From (26) it is clear that $\Delta(\lambda) = 0$ for sufficiently large $|\lambda|$ if and only if

$$[DD - 2CC] e^{i\lambda w_0^*} e^{i\lambda w_1^*} + [iCD + 2CC] = 0$$

We can easily obtain that

$$[DD - 2CC]^{-1} = -14 + 12 \frac{q(0)}{\lambda^2} + O(\frac{1}{\lambda^4})$$

And

$$[iCD + 2CC] = 2i \frac{q(2a)}{\lambda^2} + O(\frac{1}{\lambda^4})$$

So from (27) we find out:

$$e^{i\lambda (w_2 - w_1)} + [DD - 2CC]^{-1}[iCD + 2CC] = 0$$

Then,

$$e^{i\lambda (w_2 - w_1)} = 28i \frac{q(2a)}{\lambda^2} + O(\frac{1}{\lambda^4})$$

And since in T_0 we have $w_2 = w_0, w_1 = w_0$ then

$$e^{-2i\lambda a} - 1 = [-1 + 28i \frac{q(2a)}{\lambda^2} + O(\frac{1}{\lambda^4})]$$

Then according to [3],[13], [14] and [11] by using Rouche’s theorem we can solve it and we get:

$$\lambda_{0,m} = -\frac{1}{2a} [2m\pi - 1 + 28i \frac{q(a)}{2m\pi}] + O(\frac{1}{m^6})$$

For $m = N, N + 1, N + 2, \ldots$ Where N is a large integer. And we know that the eigen-values of the problem are $\lambda_{0,m} = (\lambda_{0,m})^3$, thus we obtained (12). By the same way we can find the eigen-values in all other sectors.

5 Asymptotic Formulas for the Eigen-Functions

In this section we find an expression for the eigen-functions of the boundary value problem (1)-(2) in each sectors T_k and T_k that we defined in section 2.

Theorem 3. Asymptotic behavior of the Eigen-function for the boundary value problem corresponding to $\lambda_{j,m}, \lambda_{j,m}^*$, for $j = 0 : 3$ has the form:

$$y_{k,m}(x, \lambda_{k,m}) = i e^{i(2m\pi x) + \frac{q(m)}{2m\pi} + O(\frac{1}{m^4})}, \lambda \in T_k.$$

$$y_{k,m}(x, \lambda_{k,m}) = e^{-w_2^* + w_1^* + \frac{q(m)}{2m\pi} + O(\frac{1}{m^4})}, \lambda \in T_k.$$

$k, j = 0 : 3$, for $m = N, N + 1, N + 2, \ldots$

Where N is a large integer.

Proof. If we choose three terms of $y_{k,m}^{(s)}(x, \lambda)$ in Theorem 1 then:

$$y_k^{(s)}(x, \lambda) = (i\lambda w_k^*)^s \left[A_{0sk}(x) + \frac{A_{1sk}(x)}{\lambda} + \frac{A_{2sk}(x)}{\lambda^2} \\
+ O(\frac{1}{\lambda^3}) \right].$$

For $s = 0, 1, 2, 3, k = 0, 1, 2, 3$, We have:

$$A_{0sk} = 1, A_{1sk} = 0, A_{2sk} = 0,$$

And to finding the boundary conditions $U_j(y_k)$ for $k = 0, 1, 2, 3, j = 1, 2, 3$ up to order $O(\frac{1}{\lambda^3})$ and $q(x)$ satisfies $\int_0^1 q(t)dt = 0$, and if $\lambda \in T_0$ then

$$w_0 = i, w_1 = w_0, w_2 = w_0, w_3 = -i, w_4 = -w_0, w_5 = -w_0, w_6 = -w_0.$$

Now we can easily find

$$U_1(y_0) = -\lambda [1 + O(\frac{1}{\lambda^3})], U_1(y_1) = i\lambda [1 + O(\frac{1}{\lambda^3})],$$

$$U_2(y_2) = -i\lambda [1 + O(\frac{1}{\lambda^3})], U_1(y_3) = \lambda [1 + O(\frac{1}{\lambda^3})],$$

$$U_2(y_2) = 4i\lambda^3 e^{-i\lambda a} [1 + O(\frac{1}{\lambda^3})], U_2(y_3) = 0,$$

$$U_5(y_0) = 0, U_5(y_1) = 0, U_5(y_2) = 0,$$

$$U_5(y_3) = 4\lambda^3 e^{i\lambda a} [1 + O(\frac{1}{\lambda^3})].$$

© 2017 NSP
Natural Sciences Publishing Cor.
According to [12], [14] we can write the Eigen-function in T_0 as follows:

\[
y_{0,m}(x, \lambda) = \frac{1}{16i\lambda^2} e^{i(1-1)\lambda x} e^{-i\lambda x} + O\left(\frac{1}{\lambda^3}\right).
\]

Substituting (31) in (32), we get

\[
y_{0,m}(x, \lambda) = \frac{1}{16i\lambda^2} e^{i(1-1)\lambda x} 16i\lambda^2 e^{-i\lambda x} - i e^{-\lambda x} - i e^{\lambda x} + 1 + O(1)\left(\frac{1}{\lambda^3}\right).
\]

Calculating this determinant leads the following form for the eigen function

\[
y_{0,m}(x, \lambda) = \left\{ e^{-\lambda x} e^{\lambda x} \left| \begin{array}{cc} -1 & 1 \\ 0 & 0 \end{array} \right| + O(1) \right\}.
\]

so we get that

\[
y_{0,m}(x, \lambda) = \left[i e^{-\lambda x} + e^{\lambda x} + O(1) \right] .
\]

Since in T_0, $\lambda = \lambda_{0,m}$

where $\lambda_{0,m} = -\frac{1}{\pi} \left[2m \pi + i + 28 g(a_{1/2}) \right] + O(1/m)$,

so

\[
y_{0,m}(x, \lambda_{0,m}) = [i e^{-\lambda x} e^{\lambda x} + O(1/m)] .
\]

Then by Lemma 1 we get:

\[
y_{0,m}(x, \lambda_{0,m}) = i e^{-\lambda x} e^{\lambda x} + e^{-i\lambda x} e^{\lambda x} + O(1/m), \quad \lambda \in T_0.
\]

for $m = N, N+1, N+2, \ldots$ Where N is a large integer.

By the same way we can find the Eigen functions in all other sectors.

6 Conclusion

As a conclusion we find the asymptotic expression for the fundamental solution of the differential equation (1), and also we find the asymptotic formulas for the Eigen values and Eigen functions of the boundary value problem (1)-(2) under a certain conditions.

References

KARWAN H. F. JWAMER

Professor of Mathematics
Department of Faculty of Science and Science Education School of Science at the Sulaimani University, Kurdistan Region, Sulaimani, Iraq. He obtained Ph.D from Dagestan State University, South of Russian in 2010. His researches interests include spectral analysis for different type boundary value problems, approximation by spline functions, He supervised Seven students two Ph.D and five M.Sc. in the field of differential equations and numerical analysis. He has
published over fifty eight papers in these areas and also five books. He is referee and editorial board for more than eighteen international mathematical journals.

Rando Rasul is an M.S.C. student at the Mathematics Department of Faculty of Science and Science Education School of Science at the Sulaimani University, Kurdistan Region, Sulaimani, Iraq. He obtained B.S. at the Mathematics Department of Faculty of Science and Science Education School of Science at the Sulaimani University, Kurdistan Region in 2013.