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Abstract: To solve identification of nonlinear dynamic systems, a memt wavelet neural network (RWNN) model is proposed in
this paper. The proposed RWNN model has four-layer stracfiemporal relations embedded in the network by adding $eetback
connections representing the memory units in the secor. I&y online learning algorithm, which consists of struetlearning and
parameter learning, is proposed and is able to construaévelet neural network dynamically. The structure leagrisibased on
the input partitions to determine the number of wavelet §asrd the parameter learning is based on the supervisei@mnrddscent
method to adjust the shape of wavelet functions, feedbadhige and the connection weights. Computer simulationgwenducted

to illustrate the performance and applicability of the meed model.
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1 Introduction localizability, and converge slowly. A suitable local
approximation approach is proposed to overcoming the
Artificial neural networks are powerful empirical disadvantages of global approximation networks. That is,
modeling tools that can be trained to represent complexhe global activation function is substituted by localized
multi-input multi-output nonlinear systems. There are two basis functions. For the local approximation method, only
major classes of neural networks that have become mora small subset of the network parameters is engaged at
important in recent years, namely, feedforward neuraleach point in the input space. The network transparency
networks (NN) []-[3] and recurrent neural networks may be improved by adopting the wavelet decomposition
(RNN) [4]-[7]. It is known that a three-layer feedforward technique from the field of adaptive signal processing.
NN is capable of approximating any continuous mapDue to the local properties of wavelets, arbitrary
arbitrarily closely. Since for a dynamic systeri],[the  functions can be approximated by the truncated discrete
output is a function of past output or past input or both, wavelet transform.
identification and control of this system is not as Recently, many researches proposed wavelet neural
straightforward as a static system. Due to the feedforwardhetworks for identification and control 8JF[14].
NN is a static mapping and is without the aid of tappedlkonomopoulos and Endow8] proposed the analytical
delays. The feedforward NN is unable to represent aability of the discrete wavelet decomposition with the
dynamic system mapping. On the other hand, the RNNcomputational power of radial basis function networks.
has superior capabilities than NN, such as dynamic andembers of a wavelet family were chosen through a
the ability to store information for later use. Therefore, statistical selection criterion that constructs the gtrue
the RNN have the vantage of dealing with temporal of the network. Ho et al.9] used the orthogonal least
problems, which have been found to be difficult for squares (OLS) algorithm to purify the wavelets from their
feedforward NN. Regardless of their type, however,candidates, which avoided using more wavelets than
neural networks are generally disadvantaged by theirequired and often resulted in an overfitting of the data
"black box” format, and lack a systematic way to and a poor situation in10]. Lin et al. [11] proposed a
determine the appropriate model structure, have navavelet neural network to control the moving table of a
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linear ultrasonic motor (LUSM) drive system. They chose where||x(s)||? = x"x. Therefore, the activation function of

an initialization for the mother wavelet based on the inputthe jth wavelet node connected with tité input data is

domains defined by the examples of the trainingrepresented as:

sequence. Huang and HuanglZ] proposed an

evolutionary algorithm for optimally adjusted wavelet ., ‘()(i(s)):Zdij/z(l_”Zdini(S)_ti.||2)e_H2dini(s)—tijHz/z

networks. However, the selections of wavelet bases were '™ J (3)’

based on practical experimentation or trial-and-errdstes \herej = 1,....n, j = 1,...,m, n is the number of
The objective of this paper is to introduce a reCUfre”tinput-dimensions, and is the number of the wavelets.

wavelet neural network (RWNN) model with online The wavelet functions of Eq:3) with various dilations

learning algorithm. The architecture of RWNN model 54 translations are presented in Fig. Equation 8)

enables them to preserve past states of the network$sgicated that the enforcementsttic mapping
Therefore, the RWNN model has the capability to deal

with temporal problems. An online learning algorithm, 15

which consists of structure learning and parameter e =8
learning, is proposed and is able to construct the wavelet 1t

neural network dynamically. The structure learning is d=01=-5 d=04=5
based on the input partitions to determine the number of osf

wavelet bases, and the parameter learning is based on the
supervised gradient descent method to adjust the shape of
wavelet functions, feedback weights, and the connection
weights. In the initial form, there are no wavelet bases
and wavelet functions. They are created and begin to
grow as the first training input data arrives. Thus, the user L
need not be given any a priori knowledge or initial ho e e w2 o0 2 4 & &
information on the wavelet bases and functions. Finally,
the RWNN model is applied in several identification rig 1: wavelet bases with various dilations and translations.
problems. The advantages of the proposed RWNN model
are summarized as follows: 1) it converges quickly; 2) it
is constructed automatically; 3) it requires much lower  The structure of the RWNN model is shown in F2j.
adjustable parameters; and 4) it has much lower rms €eIToIMhe proposed RWNN model is designed as a four-|ayer
The rest of this paper is organized as follows. Sectionstructure, which is comprised of an input layer, wavelet
2 presents the proposed structure of the RWNN, while thaayer, product layer, and output layer. Temporal relations
online learning algorithm is exhibited in section 3. After embedded in the network by adding some feedback
the illustrative example is shown in section 4, section 5¢onnections representing the memory units in the second
concludes this paper. layer. In RWNN model, to store information for later use,
thedynamic mappings adopted as follows:

Wiltfx)

.
=
=
<

o5t

2 Structure of the Recurrent Wavelet Neural @1, (Z;(9)
Network _ Zdij/Z(l_ |‘2dij;7jl(3) _tinZ)e*HZUij Zﬁl(S)*tinZ/Z’ (4)

In the static wavelet-base neural network (WNN), the
input data in the input layer of the network at tiraés
X(s) = [X1(8),%2(9),...,%(S),...,%(S)]", whereT is the ~1(0) — % (S) 4+ B - @+ (71 (s— 1 5
transpose and is the number of dimensions. Noted that 2 (9) = %i(8)+ 6 - . (37 ) ©)
in ordinary wavelet neural network model applications, it 6: i . . s .
. ; ; . hj is the feedback weighx; (s) is theith input variable at
is often useful to normalize the input vectoa(s) into the times,i=1,..n andj=1,..,m Itis clear that the
interval [0, 1]. Then, the activation functions of the

wavelet nodes in the wavelet layer are derived from themp.Ut of this layer contf':uns the.memory terun#(s— b,
mother waveletp(x(s)), with a dilation of d and a which store the past information of the network. Then,

; . each wavelet in the product layer is labelgd i.e., the
translation ot [10: product of the jth multi-dimensional wavelet with
@1 (X(3)) = 292¢(2%(s) —1). Q) Z;jY9 =1z} .7,] can be defined as

where

The mother wavelet is selected so that it constitutes an n
orthonormal basis inL?(0"). The derivation of a i (Zijl(s)) = ”%i-‘i (zi]l(s)). (6)
differentiable Mexican-hat function is adopted as a i=

mother wavelet herein, . . ) .
According to the theory of multi-resolution analysis

P(x(9)) = (1— ||x(s)|[2)e IXN?/2, (2) (MRA) [10,14], any f € L(0) can be regarded as a
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linear combination of wavelets at different resolution wavelet base. An input datum(s) with a higher firing
levels. For this reason, the functidris expressed as strength means that its spatial location is nearer to the
center of the wavelet basg than those with smaller
e (71 firing strength. Based on this concept, the firing strength
Yi(s)=f~ glwlj Wi(Z; (), () obtained from Eq.§) in the product layer can be used as
the degree measure

whereY;(s) = [Yi(s),...,Yp(s)] means thdth output of

the RWNN model at times. If j = [, ..., Pm] is used Fi = [wil, (8)

as a nonlinear transformation function of hidden nodes ) ] o

and weight vectors ana/ = [Wllv"'vwlm] defines the Wherej = 1,....,q, g is the number of existing yvavelet

connection weights, then Eq7)(can be considered the bases, andiy;| is the absolute value af;j. According to

functional expression of the RWNN modeling function the degree measure, the criterion of a new wavelet base

Yi(9). generated for new incoming data is described as follows:
Find the maximum degrdénax

Fmax= 12%); FJ" 9

(;:'y';:t If Fnax < F, then a new wavelet base is generated, where
F is a pre-specified threshold that should decay during the
learning process, limiting the size of the RWNN model.

Product

Layer tq+1 =X (S), (10)
‘Wavelet

Layer dq+1 = 07 (11)
ot and

Lal;er Wgt1 = g1 = random value (12)

where x(s) is the new incoming data at timg the
connection weightvg 1 of the output layer and feedback
weight 84,1 are selected from the range betweeh and
Fig. 2: The architecture of the RWNN model. 1 randomly; and the dilatiodq+1 is set to zero to obtain a
higher firing strength for the input valug(s) (see Fig2).
The concise online degree measure method of the
RWNN model is shown as follows:

Initialization;
dof

In this section, the degree measure method and the
well-known back propagation (BP) algorithm are used
concurrently for constructing and adjusting the RWNN
controller. The degree measure method is used to decide
the number of wavelet bases in the wavelet layer and the
product layer. On the other hand, the BP algorithm is used
to adjust the parameters of the wavelet bases, feedback
weights, and connection weights. The details of the
algorithm are presented below.

3 An On-line Learning Algorithm

IF xi(s) is the first incoming pattern, do
Generate a new wavelet base;
with translation ;1 = xi(s);
dilation dyy1 = 0;
connection weight y.1 € [—1,1];
feedback weightiy1 € [—1,1];

ELSE for each newly incoming pattern,{do
Executing the degree measure method;
IF Fmax < F, dof
Generate a new wavelet base;
with translation g1 = xi(s);

3.1 The Structure Learning Scheme dilation d; 1 = O:
iy _ connection weight y1 € [—1,1];
Initially, there are no wavelet bases in the RWNN model. feedback weightiy. 1 € [—1,1];

The first task is to decide when a new wavelet base is

generated. For each incoming pattexis), the firing

strength of a wavelet base can be regarded as the degree

of the incoming pattern belonging to the corresponding} until the task is finished.
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JE

3.2 The Parameter Learning Scheme Adjj = —Nagg- =
i

1P
SR
After the network structure has been adjusted according =
to the current training pattern, the network then enters the .} "2 _ 291 .z Y(s)-In2- (2% 27 (s) —t;))
second learning step to adjust the parameters of the | 2 ) ) N
wavelet base, feedback weight and the connection weight
(t, d, 6, and w) with the same training pattern. The
parameter-learning algorithm is based on a set of MIMO

2
+1—Q“4%$—mﬁ1}

pairs{x(s),Y\9es)}. If the Ith error functiong is defined (23)
& = (Yi(9) - ¥*%s)), (13) . b
whereY;(s) is thelth model output and?e¥s) is thelth A6 = —neﬁ =—Neo- b z a 'Wjj ]
] =1

desired output at tims, then the cost functio& can be
defined as ) 2dijzﬁl(s) —1jj
1 . .
E=——-5¢ (14) 1— (2iz;(s) —tij)?
2p 5
and can be minimized by all adjustable parameters using od; (/odij~1/a) .12
an iterative computational scheme. 2 ((2 278~ ) 3) ’

Assuming thatW is the adjustable parameter in the (24)
wavelet layer and the output layer, the general learning
rule used is

W(s+1) =W(s)+AW =W(s) + n(g—vlf/), (15) 4 lllustrative Examples

wheren ands represent the learning rate and the iterationTo certify the performance of the RWNN model for
number, respectively. The gradient of the cost funcion temporal problems, several examples and performance
in Eq. (14) with respect to the vector of arbitrarily contrasts with some other recurrent networks are

adjustable paramet® is defined as presented in this section. These parametgysq, Ne.
JE 1P 9y Nw, dinit, F) are set in advance, and the number of training
W p > aSW (16)  epochs for the RWNN model in each example is
I=1 determined based on the desired accuracy.

With the above equation defined, we can infer that theExample 1: Prediction of Time Sequence
free parameters adjusted in the RWNN is as follows: To clearly verify if the proposed RWNN model can
The connection weight of the output layer is updated by learn the temporal relationship, a simple time sequence
prediction problem found ing] is used for test in the

WJJ (s+1)= WIJ' () + Aw;, (17) following example.
where The test bed used is shown in Fgfa). This is an "8”
W= JE 1 shape made up of a series with 12 points which are to be
AW, = —ny (18)

dV\/J nW p LIJJ
Similarly, the updated laws ¢f, dij, andg;; are shown
as follows:

presented to the network in the order as shown. The
RWNN model is asked to predict the succeeding point for
every presented point. Obviously, a static network cannot
accomplish this task, since the point at coordinate (0, 0)
has two successors: point 5 and point 11. The RWNN
model must decide the successor of (0, 0) based on its
dij(s+1) = dij (s) + Adij, (20)  predecessor; if the predecessor is 3, then the successor is
and 5, whereas if the predecessor is 9, the successor is 11.
6j(s+1) = 6(s)+A8;, (21) ~In this example, the RWNN model contains only two
h input nodes, which are activated with the two dimensional
where coordinate of the current point, and two output nodes,
Aty = _,hd_E which represent the two dimensional coordinate of the
! otjj predicted point. The initial parameters are set as
1P odij zi—‘l ) —ti; M=Nd="Ne="n"Nw= O._05, dinit = 0, andF = 0.6. The
= n--Se W e il ! training process is continued for 1000 epochs. Starting at
p I; ! 1— (2% ;*jl(s) —tjj)? zero, the number of wavelet nodes grows dynamically for
incoming training data. The final root-mean-square (rms)

tij (s+1) = tij (s) + Atij, (29)

a1 2 error of 0.000014 is achieved. The free parameters are
: [2+ (1— (2%Z;%(s) — tij) )} ’ obtained at end of learning as follows:
(22) di - —0.284 Q118 Q019 -0.11 016 -0.143 -0.046 Q002 -0.01 -0.1 —-0.01 002
1 7{ 0.435 0211 -0.121 0599 -0.215 Q405 0525 -0.009 Q144 Q02 0003 006}’
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- | S s o oms omn e g oo s om0k points cannot be matched exactly. Figde) shows that
a feedforward FNN model cannot predict successfully,

wlj:h?%“ 0189 005 Q017 —0.342 0765 ~0.185 001 0221 0205 0499 000512676] because of its static mapping. Figu#c) shows the
and learning curves of the RWNN model, the RFNN
model [L5] and the FNN modelJ6]. The learning curve
of the RWNN appears to have an oscillation at the
beginning of learning. This situation reflects the struetur
changing in the early stage of learning. In this figure, our
: : model converges quickly and obtains a small rms error.
RWNN model. Simulation results show that we can t, gie g clgear qunde>;standing of this performance
obtain perfect prediction capability. comparison with the RFNN model and the FNN model on

“ the same problem is made in Table Computer
e simulations were conducted to illustrate the performance
and applicability of the proposed model.

6 — 0.247 Q111 -0.399 -0.328 —0.464 0197 0263 —0.306 —0.04 —0.389 —0.126 Q3
1] 7] -0.598 ~0.118 Q003 Q172 -0.347 0233 052 0105 -0.521 Q111 Q099 -0.525|°

Figure 3(b) shows the prediction results by the trained

Table 1: Performance comparison of various existing models on
ot . time sequence prediction, with 1000 epochs.
Rules/nodes  Parameters RMS error
v RWNN 12 96 0.000014
3 RFNN [15] 12 96 0.0072
FNN [16] 12 108 0.148

2 : : : : : ‘ ‘ Example 2: Identification of Nonlinear Dynamic
System

Consider the following dynamic plant with longer
input delays:

s ol 1 Yp(s+1) = 0.72yp(s) +0.025yp(s— L)u(s— 1)
05t ] +0.01u%(s— 2) + 0.2u(s— 3) (25)

This plant is the same as that used in Kim et alf]] In
our model, only with two input valuegp(s) andu(s), are
e L T fed to the RWNN model to determine the outpyl(s).

><1 The training input are independent and identically

distributed (i.i.d.) uniform sequence over-2, 2] for

Fig. 3: Simulation results of time sequence prediction. (a) Testabout half of the training time and a single sinusoid signal
bed for the sample prediction experiment in Example 1. (b)given by 105 sin(rts/45) for the remaining training time.
Results of predlCtlon USIng the RWNN model after 1000 tl'ajnl There is no repetmon on these 900 tra|n|ng data i. e.,
epochs. different training sets for each epoch. The checking input
signalu(s) as the following equation is used to determine
the identification results

Recently, Lee and Tend §] proposed a model, called
recurrent fuzzy neural network (RFNN) architecture, for

learning and tuning a fuzzy predictor. They adopted sin(%2), 0<s<250
standard zero-order TSK-type fuzzy model. For 106, 250= s< 500
initializing parameters of the RFNN model, the rule U(8)=1¢ —10. - - 500=<s< 750
number should be given in advance. But, the users need 0.3sin(%£) +0.1sin(33)

not give it anya priori knowledge or even any initial +0.6sin(75) , 750<s< 1000
information for our proposed model. The RFNN (26)

model [L5 and a traditional (non-recurrent) fuzzy neural During the training, only 10 epochs be used, where
network (FNN) [L6] are also applied to this time are 900 time steps in each epoch. The initial parameters
prediction problem. Figured(a) shows the prediction are set as; = ng = ng = Nw = 0.05, diniy = 0, and
results using the RFNN model. In this figure, the RFNN F = 0.07. After training, the final rms error is 0.00028,
also obtain prediction capability, but some time predittio and two wavelet nodes are generated. These obtained free
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Fig. 4: (a) Results of prediction using the RFNIH after 1000
training epochs. (b) Results of prediction using the FNI§] [
after 1000 training epochs. (c) Learning curves of the RWNN
model, the RFNN modell5] and the FNN model1§].

parameters are

|

Figure 5(a) shows the outputs of the plant and the
RWNN model. The results show the perfect identification
capability of the RWNN model. Figurg(b) illustrates the

0.437 Q446

. _[0.946 —0.9
~0.862-0.455|" 'l —

0.535 —0.628} ’

—0.281 0329

044 0465} . Wj =[122-0.957].

of our model with that of other existing recurrent methods
(RFNN [15, ERNN [18, RSONFIN [19, and
TRFEN-S PR0Q]). The comparison results are tabulated in
Table2. As shown in Table, the numbers of adjustable
parameters and rms error in our model are rather smaller
than other recurrent methods under the same training
epochs.

Table 2: Performance comparison of various recurrent methods
on the identification problem, with 10 epochs.

Parameters RMSerr. RMS err.
(train) (test)
RWNN 14 0.00028 0.0012
TRFN-S R0] 33 0.0067 0.0313
RFNN [15] 21 0.00181 0.00402
RSONFIN [19] 49 0.03 0.06

—— Desired Output

— - Model Output ||

Output

7oo s00 Soo0 1000

Error

1] 100 200 300 400 500 GO0
Time Step

700 800 900 1000

=)

— - RFNN
—— RWHNN

RMS ermor

Fig. 5: Simulation results of the RWNN model for dynamic
system identification in Example2. (a) The outputs of thewpla
and the RWNN. (b) The error between the RWNN output and the
desired output. (c) Learning curves of the RWNN model and the
RFNN model [L5].

error between the desired output and the RWNN output.

The learning curves of the WRFNN model and the RFNN
model [L5] are shown in Fig5(c). In this figure, we also

obtain a smaller rms error and converge quickly than the

RFNN model 5. Finally, we compare the performance

Example 3: Identification of Chaotic System
The discrete time Henon system is repeatedly used in
the study of chaotic dynamics and is not exceedingly
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simple in the sense that it is of second order with one . : : : < : : :
delay and two parameter®]]. This chaotic system is i
described by |+

y(s+1)=—H-y*(s)+Q-y(s— 1)+ 1.0, (27)

fors=12,..., which, withH=1.4 andQ=0.3, produces a
chaotic strange attractor as shown in Figa). For this

training, the input of the RWNN model i§s— 1) and the ‘ ‘ ‘ ‘
output isy(s). Now, the training input patterns sampled S
randomly (1000 pairs) from system over the interval

y(s—1) € [-1.5, 1.5]. Then, the RWNN model is used to
approximate the chaotic system. 1 —
In applying the RWNN model to this example, only N, T
100 epochs are used. Here the initial point is | \/.
[y(1),y(0)]" = [0.4,0.4]". The initial parameters are set - ~
asn = Ng = Ng = Nw = 0.05, dint = 0, andF = 0.36. T
After training, there are six wavelet nodes are generated - —
The obtained free parameters are: B ‘ ‘
dj = [~0.211—0.226 —1.936 —1.996 —0.05 0.186],
tij =[—0.321-0.453-0.72 0494 2184 106], T ——
6; = [0.081—0.083 ~1.556 —2.24 0022 —0.0189], o \3\
and s =
wj; = [1.592 1551 —4.555 —-2.196 —1.408 1164. O —
The phase plane of this chaotic system after training I N B

for the FNN model 16] and the RWNN are shown in

Fig. 6(b) and Fig.6(c). In Fig. 6(b), the FNN model is Fig. 6: (@) Check data of this chaotic system. (b) Result of
inappropriate for chaotic dynamics system because of itsdentification using the FNN model§] for the chaotic system.
static mapping. To give a clear understanding of this(©) Rfesult of identification using the RWNN model for the
performance comparison with the RENN model and thechaotic system.

FNN model on the same problem is made in Tebl&he

proposed RWNN model needs fewer wavelet nodes and

obtains a smaller rms error than the RFNN model and the | . .
ENN model. nonlinear behavior of systems. Adding feedback

connections in the second layer, where the feedback units
act as memory elements, develop the temporal relations
) ) ~ . embedded in the RWNN. An online learning algorithm is
Table_3: Perforl_nance comparison of various methods in this proposed to construct model and tune parameters
chaotic system in Example 3, with 100 epochs. automatically. The experimental results strongly
Rules/nodes ~ Parameters  RMSerr.  RMSerr.  gemgnstrate that the learning scheme is very effective for
(rain) ___ (tesy identification of dynamic systems.

RWNN 6 24 0.0017  0.0017
RFNN [15] 8 32 0.0141  0.0145
FNN [16] 8 24 0.1338  0.1557
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