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Abstract: This article discusses the maximum likelihood, least segiaweighted least squares, and percentiles estimateseef th
parameters of an exponentiated Gompertz distributiondbaseomplete sample. By using the mean square error throwgiteMCarlo
simulation, this study compares the performances of egtgn&eal data set is used as an example of the methods o&gstisnfor
the three parameters of exponentiated Gompertz distoituti
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1 Introduction (shape parameters). Therefore, the probability density
function is
In analyzing lifetime data, one often uses the exponential,

Gompertz, Weibull, and generalized exponential (GE) 01
distributions. One interesting aim of statistics is to skar (1) = gapefte (¢ ~1) (1_ e—a(e‘“—l)) )
for distributions with certain properties that facilitate
descriptions of some devices’ lifetimes. PrOpertieS of theDiﬁerent properties of this distribution have been
exponentia‘ged Weib'ull (EW) family are discussedir?] discussed by1[2,13] whena = /8. In addition, [L4] has
3,4]. Classical estimators of parameters of the EW giscussed the maximum likelihood estimator and other
distribution are discussed in 5[6,7,8]. Different  methods estimator of the shape parameteof EGpz
estimators of the parameters of the exponentiated gammgjstribution. In addition, 15] derived the Bayes estimates
distribution are considered i®] and their performances of shape parametel of EGpz distribution. Moreover,
are compared through Monte Carlo simulations. The 16] discussed goodness-of-fit tests for the three
different methods used for estimating the parameters oparameter& G pzdistribution based on different types of
the eXponentiated Pareto diStribution are diSCUSSBﬂO,ﬂ[ Samp'es, inc|uding Comp|ete and type 1 Censored
11]. _ ~ sampling.

The exponentiated Gompertz (EGpz) distribution  The main aims of this paper are to study the different
which may have bathtub shaped HF has generalized manystimators of the unknown three-parameter of an EGpz
well-known distributions including the traditional djstribution and to examine how the different estimators

Gompertz distribution. This distribution function is behave for different Samp'e sizes. In addition, the
' 0 maximum likelihood (ML) estimator is compared with
G(t) = (l—e*“(ea *1)) . (1) percentiles (PC), least squares (LS), and weighted least
squares (WLS) estimators based on complete sample.
Let T ~ EGpZ0,a,B) to denote the random variable The remaining sections are organized as follows. In

which follows an exponentiated Gompertz distribution Section 2, the ML estimator is discussed. Sections 3 to 5
with three parameterl (scale parameter) anél and a present other methods. In Section 6, the performances of
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the estimates are compared by using the mean squargaoposed by 17]. A random sample of sizenis Ty, ...,
errors (MSEs) through Monte Carlo (MC) simulation T from a distribution functior(.) andT) < T, ... <
study based on different sample sizes. ConcludingT(y, denotes the order statistics of the observed sample.
remarks are presented in Section 7. Finally, Section 8 use$h|s technique uses the distribution Bf(Tj,). For m

a real data set as an example to find the differentsample size,

estimators for the three parameterd&@® pzdistribution. k
E(F(Tw)) = 1
k
. S . V(E(T _ ’
2 Maximum Likelihood Estimators (F(Tw)) TR

Maximum likelihood (ML) estimation is a very popular and
technique used for estimating the parameters of k(m—j+1)

continuous  distributions. In this section the ML COV(F(Ty),F(T(j))) = ——5 ——; fork<|.
estimators ofEGpZ40,a,3) are considered. Lety, To, (m+1)*(m+2)°
., Tmis arandom sample froGpZ 6, a, 3), when the For more specifics, seel§]. The estimators are
8, a and B are unknown, then the likelihood function, obtained by minimizing
((6,a,pIt), is . N2
> (F(T<k>) m+1> ,

m k=1
— Bt
08,a,Bt) = (Gaﬁ)me{ aél( 1)} with respect to the unknown parameters. Therefore, for

o B_zti} . (i) o 1 3) Esz distribution the LS estimator 0,a and 3, say
xe =10 (1— e ) , f.se, GLse and BLSE respectively, can be determined via
i=1 minimizing

the log-likelihood functi t), i
and the log-likelihood functiori, (6, a,B|t), is m —a(eﬂ‘<k>_1) 0 c 2
2 (1 “mri) @
K=1

m
L(6,a,Blt) =mlog(BaB)+B S t—a y (efi—1 .
( v ( n ) iz " 2 ( ) with respect to8, a and 3. The 6. sg can be found by
+(6-1)  log (1 e (eB' l)) differentiating (8) with respect t6:
i=1

4
The ML estimators of paramete6s a, and, sayséu. m _a(eﬁt<k>_1) 0 w(eft(kLl) ° ‘
,GmL, and By, can be found by setting the first partialy k§1 (1_ € ) 1-e T mH
derivatives of the-loglikelihood to zero with respect to \
6,a, andB respectily. The next non-linear equations can x log (1— e_a(eﬁ (k)_l>> =0.
be solved by using iterative procedure:

9)
m, & —a(ePli-1)) _ The a.sg can be found by differentiating (8) with
CHl _Zlog (1_ € ) =0 ®) respect tax:
m m ] e—a(eati —1) m Et(k) eﬁt(k
—+5y (fi-1)|(6-1)——————— —1| =0, tw_ 1) e (¢ —1)
a I;( ) [( ) 1_ e—a(emi—l) ekgl (ep 1) e
6 Lk
and © X[<1 e (eﬁ )> _mil 0.
) e a(efi-1 (10)
Zt' Zteﬁ ' [ (6-1) o a@ 1 1] =0. The fLse can be found by differentiating (8) with
) respect tg3:
The equations (5), (6), and (7) are nonlinear and do not
have closed form; therefore, a numerical technique is m o a1 ﬁ‘ () —
required. eakglt k)ep K e ( >
t
[(1 e (@ >> —- 5 =0
3 Least Squares Estimators 1)

The method of least squares is often used to generat€hen, theéLSE, a1 sk, andBLSE can be found numerically
estimators and other statistics in regression analysis, asy solving (9), (10), and (11) with respectéo o andp.
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4 Weighted Least Squares Estimators successfully for Weibull distribution, generalized
exponential  distribution,  exponentiated = gamma

Weighted least squares (WLS) are a special case Ofjistribution, and exponentiated Pareto distributi2h 2,
generalized least squares. This estimator can bag,11].

determined by minimizing Assume the unknown parametefs a, and B of

m K \2 EGpz distribution can be estimated via the percentile
Z Wi (F(T(k)) — —1) , method of equating the sample percentile points with the
k=1 m-+ population percentile points. iy means an estimate of

with respect to the unknown parameters, where G(t(; 0. a,p), then the percentile estimators@fa, and
B can be determined via minimizing

- 1 ~ (m+1)%(m+2)
““V(F(Tw)  km—k+1)

Thus, forEGpzdistribution the WLS estimators &, a,
andg3, sayséWLSE, awi se, andBw. s respectively, can be
found by minimizing with respect tof, a, and B. Here t's are ordered

0 2 samples and the maximization must be completed
il 1 7a(em(k)—l> k 12 iteratively. Some estimators ofy’s can be used. As
Z W —€ T m=+1] (12) P« = —X= is the most used estimator, it is an unbiased

m t 2
S {Iog P — Blog (1—ea<ep <k)1))] : (16)
r=

k=1 m-1
. estimator ofG(t(; 8, a,3). Some other selections pf’s
with respect tod, a, andf. The By.se can be found by k=3 k-3 . ok .
differentiating (12) with respect t6: are ot and —*. In this paperp = 7 is used in

4
which the expected value is Gf(ty)).
m (B )\ @ t 6 The percentile estimator & denoted bydpce can be
S (1o ) {(-epla (47 -2)])" obanedty
- t
~thiog (1Y) o

(13) E {log pc— 6log (1_ ea(eﬁt(k)l>> }
k=1

The awise can be found by differentiating (12) with

. ‘ (17)
respect tax: x log (1 — e—d(ep <k>_1)) _o

m _a(W_1 a(0-1)\ Ot
9k§1Wk (eﬁt“‘) —1) e a( ) l1-e a< )> The percentile estimator af denoted byépce can be

[(1 a(eﬁt(k)1>)0 . ]_0 obtained by
X —e - X1 =0

i (14) m Pl 4 Ll g
The Bwise can be found by differentiating (12) with @ 5 (eﬁt<k> _1) e“’(e -1) 1_e“’( -1)
k=1

respect tq3: '
X [Iog px — Blog (1— efa(eﬂ Ml))} =0.

Bt t 6-1
0a Ewqu)ept(k)efa(e (0-1) (1_ea(ef‘<k>1)> (18)
K=1

0 The percentile estimator ¢ denoted b)ﬁpCE can be
X l(l_e“’(eﬂt<k)‘1)) __k|l_g obtained by

-1

m+1

A ) (15)
Then, the Byise, Gwise, and Bwise can be found m t _a(eﬁt(k)_]_) _a(eﬁt(k) _1)
numerically by solving (13), (14), and (15) with respectto @6 kzlt(k)ep e 1-e

0, a, andp. '
@ andp X [Iogpk—elog (1—ea<ep(k)l))] =0.

(19)

Then, theépCE, OpcE, andﬁPCE can be determined by
The percentile estimation method was primarily solving the three non-linear equations of (17), (18), and
discovered by19,20]. This method has been applied very (19) with respect t®, a, andf.

-1

5 Percentile Estimation
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6 Monte Carlo Simulation Study and 7 Concluding Remarks

Conclusions A complete sample from the three-parameter EGpz

distribution was considered for obtaining ML LS, WLS,
Monte Carlo simulation study is performed to compareand PC estimators for parameters. For given values of
the methods of ML, LS, WLS, and PC estimators. All §=2.13668, a=1.78059, and3=0.2968, a complete
calculations are executed using Mathematica 9.0. sample of size m was generated from EGpz distribution.
The next subsections define the steps for obtainingrhe ML LS, WLS, and PC estimators were obtained by
ML, LS, WLS, and PC estimators for three-parameterysing Mathematica 9.0. The performances of the
numerically. estimates were conducted by using the MSE.
Monte Carlo simulation studies were carried out in
different sample sizes. From the results in (Table 1), the

6.1 Maximum Likelihood Estimators following were observed:

1.The MSEs of the estimates decreased as the sample size
increased.

2.The parametefS was overestimated for all estimates
with the exception of LS and WLS estimators, which

Step 1For given values of the parametefs2.13668, were underestimated. , ,

a=1.78059, andf=0.2968, generate a complete 3.Th§ parameten was overesnmayed for all estimates
with the exception of PC estimators, which were

estimators foB, a, and are obtained numerically by the
following steps.

sample of size m from the generation random

variables underestimated.
4.The paramete@ was underestimated for all estimates
1 1 1 with the exception of ML estimator which was
T= B log {1— p log (1— U y)} ; overestimated.
5.The ML estimators generally had smaller MSEs
whereT is EGpZ6,a,8) andU is a uniform (0,1) compared to the other estimators.
distribution.

Step 2The ML estimator of the parametérsa, andf are 8 Real Dat
calculated by solving nonlinear equations (5), (6), and eal Dala

(7), respectively. We provided a real data set to illustrate all of the
estimation methods described in the preceding sections.
All of the computations were performed using
6.2 Least Squares, Weighted Least Squares, anMa(}hdema:iC?hCCﬂet-_ The d?;% zavg bee;lhtaléert\ frash
: : and denote the lifetimes o evices. The data are given
Percentile Estimators. as follows: 0.1,0.2,1,1,1,1,1,2,3,6,7,11, 12,18, 18,
) 18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63,
The least squares, weighted least squares, and percentigy 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85,
estimators forf, a, and3 are obtained numerically by g5 g5 g5 86, 86. This set was investigated b to
completing Step 1 outlined above followed by Step 2,fing the different estimators for the shape parameter of
which follows. EGpzdistribution. TheEGpZ6,a,3) distribution was
) fitted to this set. We applied the model selection using the
Step 3Step2. The LS estimator of the paramefers, and  Ajc (Akaike information criterion), the BIC (Bayesian
B are calculated by solving nonlinear equations (9),information criterion), the CAIC (consistent Akaike
(10), and (11), respectively. The WLS estimator of the jnformation criteria), and the HQIC (Hannan-Quinn
parametersd, a, and  are computed by solving information criterion) to verify which methods estimator

nonlinear equations (13), (14), and (15), respectively,sf g o, andp made theE Gpzdistribution be a better fit
and the PC estimator of the parametérsa, and 3 to this data. For more details, see [24].

are calculated by solving nonlinear equations (17),

(18), and (19), respectively. AIC= 2L (2) 197

All of the above steps for the estimations of BIC=-2L (2’) +zlogm 20
parameterdd, a, and 3 using ML, LS, WLS, and PC HOIC = —2L (V) + 2zlog (logm) (20)
estimators were repeated 1000 times to evaluate the mean =
square error (MSE). The simulations were carried out for CAIC=-2L (Y) + &
complete samples frork G pz distribution for different
sample sizen. The outcomes are shown in (Table 1). wherelL (2/) denotes the log-likelihood functiom,is the

number of parameters, andis the sample size. Hefeis
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Table 1: Estimators and MSEs (between parentheses) of ML, LS, WL®]| P estimates for three parameters of EGpz distribution

n Par ML LS WLS PC
10 B 0.41790 0.28087 0.32231 0.41225
(0.18196) (0.04131) (0.07486) (0.15583)

a 2.03532 2.43619 2.33409 1.89123
(2.41412) (2.51097) (2.69431) (2.08982)

] 2.56907 1.96225 1.85752 1.73829
(1.83416) (1.61074) (1.53421) (1.42442)

30 B 0.32760 0.26235 0.27491 0.44856
(0.05072) (0.02985) (0.03859) (0.12351)

a 2.09118 2.46079 2.47657 1.53301
(1.75776) (2.23459) (2.25372) (1.64381)

] 2.37608 1.85609 1.95153 1.74065
(0.78159) (1.08687) (0.78190) (0.83733)

50 p 0.31693 0.24217 0.25971 0.46893
(0.01520) (0.02493) (0.02164) (0.10316)

a 2.06829 2.53094 2.51784 1.34362
(1.34259) (2.19784) (2.24837) (1.49417)

2] 2.31435 1.76811 1.93627 1.76056
(0.39526) (0.96091) (0.56430) (0.39039)

Table 2 ML, PC, LS, and WLS estimations and AIC, BIC, CAIC, and HQIC
measures for three parameters of EGpz distribution.
Estimates Measures

a ] B AIC BIC CAIC  HQIC
ML | 0.021004 0.345465 0.614046464.716 463.813 460.097 465.238
LS | 0.018603 0.541985 1.2008% 487.938 487.035 483.319 488.459
PC | 0.055813 0.010494 0.328076 452.28 451.377 447.661 452.802

WLS| 0.024557 0.121182 0.424100 467.57 466.667 462.951 468.092

assumed to represent the unknown parameters, i.e. application, Communications in Statistics-Theory and

y=(6,a,B). The log-likelihood function given by (4) was Methods, 25(12), 3059-3083 (1996).
calculated and relation (20) was applied fdt, PC, LS, [4] G. S. Mudholkar, D. K. Srivastava, and M. Freimer, The
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WLS estimations of the three parameters and M€ Weibull distribution, Communications in Statistics-Tingo
BIC, CAIC, and HQIC value for EGpzdistribution are and Methods, 32(7), 1317-1336 (2003). o
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> [7] U. Singh, P. K. Gupta, and S. Upadhyay, Estimation oféhre
the parameter®), a, and 3, thereby making th&Gpz parameter exponentiated-Weibull distribution under type
distribution fit better to this data.
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