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Abstract: This article discusses the maximum likelihood, least squares, weighted least squares, and percentiles estimates of three
parameters of an exponentiated Gompertz distribution based on complete sample. By using the mean square error through Monte Carlo
simulation, this study compares the performances of estimates. Real data set is used as an example of the methods of estimations for
the three parameters of exponentiated Gompertz distribution.
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1 Introduction

In analyzing lifetime data, one often uses the exponential,
Gompertz, Weibull, and generalized exponential (GE)
distributions. One interesting aim of statistics is to search
for distributions with certain properties that facilitate
descriptions of some devices’ lifetimes. Properties of the
exponentiated Weibull (EW) family are discussed in [1,2,
3,4]. Classical estimators of parameters of the EW
distribution are discussed in [5,6,7,8]. Different
estimators of the parameters of the exponentiated gamma
distribution are considered in [9] and their performances
are compared through Monte Carlo simulations. The
different methods used for estimating the parameters of
the exponentiated Pareto distribution are discussed in [10,
11].

The exponentiated Gompertz (EGpz) distribution
which may have bathtub shaped HF has generalized many
well-known distributions including the traditional
Gompertz distribution. This distribution function is

G(t) =
(

1−e−α(eβ t−1)
)θ

. (1)

Let T ∼ EGpz(θ ,α,β ) to denote the random variableT
which follows an exponentiated Gompertz distribution
with three parameters:β (scale parameter) andθ andα

(shape parameters). Therefore, the probability density
function is

g(t) = θαβeβ te−α(eβ t−1)
(

1−e−α(eβ t−1)
)θ−1

. (2)

Different properties of this distribution have been
discussed by [12,13] whenα = δ /β . In addition, [14] has
discussed the maximum likelihood estimator and other
methods estimator of the shape parameterθ of EGpz
distribution. In addition, [15] derived the Bayes estimates
of shape parameterθ of EGpz distribution. Moreover,
[16] discussed goodness-of-fit tests for the three
parametersEGpzdistribution based on different types of
samples, including complete and type II censored
sampling.

The main aims of this paper are to study the different
estimators of the unknown three-parameter of an EGpz
distribution and to examine how the different estimators
behave for different sample sizes. In addition, the
maximum likelihood (ML) estimator is compared with
percentiles (PC), least squares (LS), and weighted least
squares (WLS) estimators based on complete sample.

The remaining sections are organized as follows. In
Section 2, the ML estimator is discussed. Sections 3 to 5
present other methods. In Section 6, the performances of
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the estimates are compared by using the mean squared
errors (MSEs) through Monte Carlo (MC) simulation
study based on different sample sizes. Concluding
remarks are presented in Section 7. Finally, Section 8 uses
a real data set as an example to find the different
estimators for the three parameters ofEGpzdistribution.

2 Maximum Likelihood Estimators

Maximum likelihood (ML) estimation is a very popular
technique used for estimating the parameters of
continuous distributions. In this section the ML
estimators ofEGpz(θ ,α,β ) are considered. LetT1, T2,
. . . , Tm is a random sample fromEGpz(θ ,α,β ), when the
θ , α and β are unknown, then the likelihood function,
ℓ(θ ,α,β |t), is

ℓ(θ ,α,β |t) = (θαβ )me

{

−α
m
∑

i=1
(eβ ti−1)

}

×e
exp

{

β
m
∑

i=1
ti

}

m
∏
i=1

(

1−e−α(eβ ti−1)
)θ−1

,

(3)

and the log-likelihood function,L(θ ,α,β |t), is

L(θ ,α,β |t) = mlog(θαβ )+β
m
∑

i=1
ti −α

m
∑

i=1

(

eβ ti −1
)

+(θ −1)
m
∑

i=1
log
(

1−e−α(eβ ti −1)
)

.

(4)
The ML estimators of parametersθ , α, andβ , saysθ̂ML

,α̂ML , andβ̂ML , can be found by setting the first partialy
derivatives of the-loglikelihood to zero with respect to
θ ,α, andβ respectily. The next non-linear equations can
be solved by using iterative procedure:

m
θ
+

m

∑
i=1

log
(

1−e−α(eβ ti −1)
)

= 0, (5)

m
α
+

m

∑
i=1

(

eβ ti −1
)

[

(θ −1)
e−α(eβ ti −1)

1−e−α(eβ ti−1)
−1

]

= 0,

(6)
and

m
β
+

m

∑
i=1

ti +
m

∑
i=1

tie
β ti

[

(θ −1)
e−α(eβ ti −1)

1−e−α(eβ ti−1)
−1

]

= 0.

(7)
The equations (5), (6), and (7) are nonlinear and do not
have closed form; therefore, a numerical technique is
required.

3 Least Squares Estimators

The method of least squares is often used to generate
estimators and other statistics in regression analysis, as

proposed by [17]. A random sample of sizem is T1, . . . ,
Tm from a distribution functionF(.) andT(1) < T(2), . . . <
T(m) denotes the order statistics of the observed sample.
This technique uses the distribution ofF(T(k)). For m
sample size,

E
(

F(T(k))
)

=
k

m+1
,

V
(

F(T(k))
)

=
k

(m+1)2 (m+2)
,

and

Cov
(

F(T(k)),F(T( j))
)

=
k(m− j +1)

(m+1)2 (m+2)
; for k< j.

For more specifics, see [18]. The estimators are
obtained by minimizing

m

∑
k=1

(

F(T(k))−
k

m+1

)2

,

with respect to the unknown parameters. Therefore, for
EGpz distribution the LS estimator ofθ ,α and β , say
θ̂LSE, α̂LSE and β̂LSE respectively, can be determined via
minimizing

m

∑
k=1

(

(

1−e
−α
(

e
β t(k)−1

))θ

−
k

m+1

)2

, (8)

with respect toθ , α and β . The θ̂LSE can be found by
differentiating (8) with respect toθ :

m
∑

k=1

(

1−e
−α
(

e
β t(k)−1

))θ




(

1−e
−α
(

e
β t(k)
i −1

)

)θ

− k
m+1





× log

(

1−e
−α
(

e
β t(k)−1

))

= 0.

(9)
The α̂LSE can be found by differentiating (8) with

respect toα:

θ
m
∑

k=1

(

eβ t(k) −1
)

e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))θ−1

×

[

(

1−e
−α
(

e
β t(k)−1

))θ

− k
m+1

]

= 0.

(10)
The β̂LSE can be found by differentiating (8) with

respect toβ :

θα
m
∑

k=1
t(k)e

β t(k)e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))θ−1

×

[

(

1−e
−α
(

e
β t(k)−1

))θ

− k
m+1

]

= 0.

(11)
Then, theθ̂LSE, α̂LSE, andβ̂LSE can be found numerically
by solving (9), (10), and (11) with respect toθ , α andβ .
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4 Weighted Least Squares Estimators

Weighted least squares (WLS) are a special case of
generalized least squares. This estimator can be
determined by minimizing

m

∑
k=1

wk

(

F(T(k))−
k

m+1

)2

,

with respect to the unknown parameters, where

wk =
1

V
(

F(T(k))
) =

(m+1)2 (m+2)
k(m− k+1)

.

Thus, forEGpzdistribution the WLS estimators ofθ , α,
andβ , saysθ̂WLSE, α̂WLSE, andβ̂WLSE respectively, can be
found by minimizing

m

∑
k=1

wk

(

(

1−e
−α
(

e
β t(k)−1

))θ
−

k
m+1

)2

, (12)

with respect toθ , α, andβ . The θ̂WLSE can be found by
differentiating (12) with respect toθ :

m
∑

k=1
wk

(

1−e
−α
(

e
β t(k)−1

))θ {
(

1−exp
[

−α
(

e
β t(k)
i −1

)])θ

− k
m+1

}

log

(

1−e
−α
(

e
β t(k)−1

))

= 0.

(13)
The α̂WLSE can be found by differentiating (12) with
respect toα:

θ
m
∑

k=1
wk

(

eβ t(k) −1
)

e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))θ−1

×

[

(

1−e
−α
(

e
β t(k)−1

))θ
− k

m+1

]

= 0.

(14)
The β̂WLSE can be found by differentiating (12) with
respect toβ :

θα
m
∑

k=1
wkt(k)e

β t(k)e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))θ−1

×

[

(

1−e
−α
(

e
β t(k)−1

))θ
− k

m+1

]

= 0.

(15)
Then, the θ̂WLSE, α̂WLSE, and β̂WLSE can be found
numerically by solving (13), (14), and (15) with respect to
θ , α, andβ .

5 Percentile Estimation

The percentile estimation method was primarily
discovered by [19,20]. This method has been applied very

successfully for Weibull distribution, generalized
exponential distribution, exponentiated gamma
distribution, and exponentiated Pareto distribution [21,22,
10,11].

Assume the unknown parametersθ , α, and β of
EGpz distribution can be estimated via the percentile
method of equating the sample percentile points with the
population percentile points. Ifpk means an estimate of
G(t(k);θ ,α,β ), then the percentile estimators ofθ , α, and
β can be determined via minimizing

m

∑
k=1

[

logpk−θ log

(

1−e
−α
(

e
β t(k)−1

))]2

, (16)

with respect toθ , α, and β . Here t(k)’s are ordered
samples and the maximization must be completed
iteratively. Some estimators ofpk’s can be used. As
pk = k

m+1 is the most used estimator, it is an unbiased
estimator ofG(t(k);θ ,α,β ). Some other selections ofpk’s

are
k− 3

8
m+ 1

4
and

k− 1
2

m . In this paperpk = k
m+1 is used in

which the expected value is ofG(t(k)).

The percentile estimator ofθ denoted byθ̂PCE can be
obtained by

m
∑

k=1

{

logpk−θ log

(

1−e
−α
(

e
β t(k)−1

))}

× log

(

1−e
−α
(

e
β t(k)−1

))

= 0.
(17)

The percentile estimator ofα denoted byα̂PCE can be
obtained by

θ
m
∑

k=1

(

eβ t(k) −1
)

e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))−1

×

[

logpk−θ log

(

1−e
−α
(

e
β t(k)−1

))]

= 0.

(18)

The percentile estimator ofβ denoted byβ̂PCE can be
obtained by

αθ
m
∑

k=1
t(k)e

β t(k)e
−α
(

e
β t(k)−1

)(

1−e
−α
(

e
β t(k)−1

))−1

×

[

logpk−θ log

(

1−e
−α
(

e
β t(k)−1

))]

= 0.

(19)

Then, theθ̂PCE, α̂PCE, andβ̂PCE can be determined by
solving the three non-linear equations of (17), (18), and
(19) with respect toθ , α, andβ .
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6 Monte Carlo Simulation Study and
Conclusions

Monte Carlo simulation study is performed to compare
the methods of ML, LS, WLS, and PC estimators. All
calculations are executed using Mathematica 9.0.

The next subsections define the steps for obtaining
ML, LS, WLS, and PC estimators for three-parameter
numerically.

6.1 Maximum Likelihood Estimators

estimators forθ , α, andβ are obtained numerically by the
following steps.

Step 1For given values of the parametersθ=2.13668,
α=1.78059, andβ=0.2968, generate a complete
sample of size m from the generation random
variables

T =
1
β

log

[

1−
1
α

log
(

1−U
1
θ
)

]

,

whereT is EGpz(θ ,α,β ) andU is a uniform (0,1)
distribution.

Step 2The ML estimator of the parametersθ , α, andβ are
calculated by solving nonlinear equations (5), (6), and
(7), respectively.

6.2 Least Squares, Weighted Least Squares, and
Percentile Estimators.

The least squares, weighted least squares, and percentile
estimators forθ , α, and β are obtained numerically by
completing Step 1 outlined above followed by Step 2,
which follows.

Step 3Step2. The LS estimator of the parametersθ , α, and
β are calculated by solving nonlinear equations (9),
(10), and (11), respectively. The WLS estimator of the
parametersθ , α, and β are computed by solving
nonlinear equations (13), (14), and (15), respectively,
and the PC estimator of the parametersθ , α, andβ
are calculated by solving nonlinear equations (17),
(18), and (19), respectively.

All of the above steps for the estimations of
parametersθ , α, and β using ML, LS, WLS, and PC
estimators were repeated 1000 times to evaluate the mean
square error (MSE). The simulations were carried out for
complete samples fromEGpz distribution for different
sample sizem. The outcomes are shown in (Table 1).

7 Concluding Remarks

A complete sample from the three-parameter EGpz
distribution was considered for obtaining ML LS, WLS,
and PC estimators for parameters. For given values of
θ=2.13668, α=1.78059, and β=0.2968, a complete
sample of size m was generated from EGpz distribution.
The ML LS, WLS, and PC estimators were obtained by
using Mathematica 9.0. The performances of the
estimates were conducted by using the MSE.

Monte Carlo simulation studies were carried out in
different sample sizes. From the results in (Table 1), the
following were observed:

1.The MSEs of the estimates decreased as the sample size
increased.

2.The parameterβ was overestimated for all estimates
with the exception of LS and WLS estimators, which
were underestimated.

3.The parameterα was overestimated for all estimates
with the exception of PC estimators, which were
underestimated.

4.The parameterθ was underestimated for all estimates
with the exception of ML estimator which was
overestimated.

5.The ML estimators generally had smaller MSEs
compared to the other estimators.

8 Real Data

We provided a real data set to illustrate all of the
estimation methods described in the preceding sections.
All of the computations were performed using
Mathematica code. The data have been taken from [23],
and denote the lifetimes of 50 devices. The data are given
as follows: 0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18,
18, 18, 18, 21, 32, 36, 40, 45, 46, 47, 50, 55, 60, 63, 63,
67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85, 85,
85, 85, 85, 86, 86. This set was investigated by [15] to
find the different estimators for the shape parameter of
EGpz distribution. TheEGpz(θ ,α,β ) distribution was
fitted to this set. We applied the model selection using the
AIC (Akaike information criterion), the BIC (Bayesian
information criterion), the CAIC (consistent Akaike
information criteria), and the HQIC (Hannan-Quinn
information criterion) to verify which methods estimator
of θ , α, andβ made theEGpzdistribution be a better fit
to this data. For more details, see [24].

AIC=−2L
(

γ̂
)

+2z

BIC=−2L
(

γ̂
)

+ zlogm

HQIC=−2L
(

γ̂
)

+2zlog(logm)

CAIC=−2L
(

γ̂
)

+ 2zm
m−z−1































(20)

whereL
(

γ̂
)

denotes the log-likelihood function,z is the

number of parameters, andm is the sample size. Herêγ is
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Table 1: Estimators and MSEs (between parentheses) of ML, LS, WLS, and PC estimates for three parameters of EGpz distribution
n Par ML LS WLS PC
10 β̂ 0.41790 0.28087 0.32231 0.41225

(0.18196) (0.04131) (0.07486) (0.15583)
α̂ 2.03532 2.43619 2.33409 1.89123

(2.41412) (2.51097) (2.69431) (2.08982)
θ̂ 2.56907 1.96225 1.85752 1.73829

(1.83416) (1.61074) (1.53421) (1.42442)
30 β̂ 0.32760 0.26235 0.27491 0.44856

(0.05072) (0.02985) (0.03859) (0.12351)
α̂ 2.09118 2.46079 2.47657 1.53301

(1.75776) (2.23459) (2.25372) (1.64381)
θ̂ 2.37608 1.85609 1.95153 1.74065

(0.78159) (1.08687) (0.78190) (0.83733)
50 β̂ 0.31693 0.24217 0.25971 0.46893

(0.01520) (0.02493) (0.02164) (0.10316)
α̂ 2.06829 2.53094 2.51784 1.34362

(1.34259) (2.19784) (2.24837) (1.49417)
θ̂ 2.31435 1.76811 1.93627 1.76056

(0.39526) (0.96091) (0.56430) (0.39039)

Table 2: ML, PC, LS, and WLS estimations and AIC, BIC, CAIC, and HQIC
measures for three parameters of EGpz distribution.

Estimates Measures
α̂ θ̂ β̂ AIC BIC CAIC HQIC

ML 0.021004 0.345465 0.614046464.716 463.813 460.097 465.238
LS 0.018603 0.541985 1.20088 487.938 487.035 483.319 488.459
PC 0.055813 0.010494 0.328076 452.28 451.377 447.661 452.802

WLS 0.024557 0.121182 0.424109 467.57 466.667 462.951 468.092

assumed to represent the unknown parameters, i.e.
γ=(θ ,α,β ). The log-likelihood function given by (4) was
calculated and relation (20) was applied forML, PC, LS,
and WLS estimations. The method by smallestAIC or
BIC, CAIC, and HQIC value was selected as the best
methods estimator to fit the data. TheML, PC, LS, and
WLS estimations of the three parameters and theAIC,
BIC, CAIC, and HQIC value for EGpz distribution are
given in (Table 2). From (Table 2) it is concluded that the
WLS estimation has the minimum value ofAIC, BIC,
CAIC, and HQIC in comparison withML, PC, and LS
estimations. TheWLSestimation is the best estimation of
the parametersθ , α, and β , thereby making theEGpz
distribution fit better to this data.
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