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Abstract: The S-shaped or sigmoidal models have two important menasdrsgistic model and Gompertz model. These models are
very useful in studies of medical science, actuarial s&ema biological sciences. The proposed linear models araltbrnative of
Logistic model and Gompertz model respectively. Linear el®datisfy the property of best linear unbiased estim&btJE) and
removed the problem of nonlinear least squares estimatiemtioned by Ratkowsky (1983, 1989) and Bates & Watts (1980
goodness of fit for the proposed linear models have beeneerifith the help of several published data sets.
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1 Introduction

One of the important categories of non-linear models is igen8idal or S-shaped models in which the Logistic and
Gompertz models are very important members. The Logistidehis very important among research studies relating to
the fields of medical sciences, population studies etc. Tdraiertz model is useful in actuarial studies, biologicadigts
and also in economic phenomena. These models possess agithi@ma nor maxima but have a point of inflection. They
start from a point and increase to attain maximum growth a&its inflection point and then growth rate decreases and
model approaches an asymptotic value. A sigmoidal modelbeaymmetrical or asymmetrical about its inflection point.
Ratkowsky (1983) has described deterministic componéritegistic and Gompertz models in the following form.
Logistic Model:

1
— _ 1
Gompertz Model:
Y = exp(a + Bp¥) 2)
We can also rewritel) and @) as,
Logistic Model:
7 =a+Bp" ®)
Gompertz Model:
logY = o + Bp* (4)

Equationg) is reciprocal transformation &f in equation ) defines logistic model and equatiaf) (s log transformation
of Y in equation ) describes Gompertz model. Logistic model is symmetritalud its point of inflection whereas
Gompertz model is asymmetrical about its point of inflectidierra and Hoffman (1977) have remarked that a model
having a point of inflection at a fixed point is not desirablbey advised to use models which allow degree of asymmetry
init.

Draper and Smith (1998) have classified Logistic and Gompeodels as intrinsically non-linear models. Ratkowsky
(1983, 1989) and Draper and Smith (1998) have listed seweodkls which are reparameterization of Gompertz and
Logistic models. These reparametrized models are sinmldrgir behavioural properties.
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Depending on the properties of least square estimatorsrahpers of nonlinear models, Ratkowsky (1983) has
classified nonlinear models as far-from-linear or closéirtear. If least square estimates of parameters of noaline
models are close to being unbiased having distribution gkrse to normal distribution and having variance very close
to minimum variance bound, the nonlinear models are classdis close-to-linear. On the contrary, if least square
estimators of nonlinear models are badly biased with tstion far-from-normal, having variance in large excess of
minimum variance bound, the nonlinear models are classiféefdr-from-linear. Ratkowsky (1983) has remarked that in
close-to-linear model, there is always a sure convergenadatever methods used for parameter estimation. He furthe
remarked that the convergence is not only faster but alsorenana which is a global minima. These models show
close-to-linear behaviour. The reparameterizations ainimg expected value parameters are more cumbersome in
appearance than original expressions and expected valamegers may appear more than once, even though the models
with expected value parameters are still preferred beasiusese-to-linear behaviour.

Bates and Watts (1980) developed two measures of accessifigearity, one is intrinsic nonlinearity and another is
parameter effects. They have shown that suitable repaesizegion of nonlinear model can minimize parameter effect
whereas it has no effect on intrinsic nonlinearity. Ratkow§1983) remarked that most of the nonlinear models of
interest possess low intrinsic nonlinearity. The main comgnt responsible for nonlinearity in a nonlinear model is
parameter effects and suitable reparameterization ofimeanrl model can substantially reduce it and a nonlinear inode
can be brought into a form which will be behaving as closértear model. A nonlinear model which is far-from-linear
model may have more than one minima in its residual sum ofrscgiaface and if in such a nonlinear model convergence
occurs at all, it occurs to a local minima and not to a globaiima which make inferences from parameter estimates
doubtful.

It is thus absolutely clear that the main thrust is on chapsianlinear models which are close-to-linear in their
behaviour. These facts have provided a great deal of mimtived use linear models.

A linear model is one whose parameters appear linearly indtia nonlinear model, at least one parameter appears
nonlinearly. A model is said to be linear in its parametethéffirst order partial differentials of the model with respi®
its parameters are independent of parameters. In nonlinedel at least one first order partial differential of the rlod
contains parameter(s).

2 Proposed Linear Models

Motivated by above statement, we have used two models lingheir parameters as the alternative to Logistic and
Gompertz models. Shukét al. (2011) have proposed the linear models as an alternativ&afptotic regression model.

Y=a+Bp* 0<p<1 (5)
b ¢
Y:a+¥+ﬁ,x>0 (6)

Equationp) is asymptotic regression model and equatiéni¢ alternative linear model for asymptotic regression
model proposed by Shuklet al. (2011). We have written only deterministic part of the mougloring subscripts
representing number of observation ¥rand X with parameters , b andc. All these models admit an additive error
term, which is assumed to be independently and identicafifriduted random variable with mean zero and fixed
variance having no autocorrelation, heteroscedasticity multicolliearity. If error term is assumed to be normally
distributed, the maximum likelihood estimates of paramsetan also be obtained.

Right Hand Side (RHS) of equatids)(is replacing bya+ % + 2z then we find equatiorsj.

Such as this expressiant Q + YCZ is replace in equatior8f, and then we have

1 b ¢
V—a+¥+ﬁ,x>0 (7)
This is linear model for Logistic model.
Again RHS of equatior) replacing by expressica-+ % + Ycz,then we have

IogY:aH-E+i

N XZ,X>O (8)

This is linear model for Gompertz model.
Thus models®) and @) are linear models as alternative for nonlinear Logistid @ompertz models respectively.
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We can postulate statistical models f@y &énd @) as:

1 b ¢ .

\—(=a+i+ﬁ+Ui,X>O&|:1,2,...,n (9)
| b ¢ _ ,
ogY:a+§+ﬁ+U.,X>O&|:1,2,...,n (20)

The random variable);’'s are assumed to be independently and identically norndélyibuted random variable with
mean zero and fixed variance?) with no heteroscedasticity, autocorrelation and mulliizearity. The constanta , b
andc are the unknown parameters of the mod8)sapd (0).

2.1 Goodness of fit of proposed linear models

Coefficient of Determination 4R

A way of assessing the regression model was to see how mutie adtal sum of squares had fallen in to the sum of
squares due to the regression. The Coefficient of Deterioin& is defined as,

S SSkes
R-55-1"3s
E Yi-v)? _§ B
R2: I=nl — :1_I=nl —
s (%—Y) 5 (%—Y)?
i=1 i=1

WhereSS measures the total variability in the observati¥yn$&S as the regression or model sum of squares%ds
as the residual or error sum of squares .The valuR?afery close to 1 implies that most of the variabilityYnhas been
explained by the fitted model. Thus observance of a Rghialue indicates a good fit. Oftenly it is multiplies by 100 so
as to be expressed it in percentage form.

Residual Mean Square%s

The best criterion to choose a model is the residual meanegiaThe residual mean squaséis an unbiased estimator
of a2. Its expression for our model8)(and (L0) will be,

n 02 n
2_ SRes izl (¥i—Y) izlqz

“h-3  n-3 n-3

Wheren have pairs of datay(, %) (i = 1,2, ...,n). The value of? indicate that error due to regression or model. A smaller
value ofs? reflects the appropriateness of the fitted model.

Mean Absolute Error (M.A.E.)

The mean absolute error which is average of absolute erdafised as,

n ~ n

Y=Y Y lal

MAE. ==L — =t
n

n

A smaller value oM.A.E. preferred in any data sets to which a model has been fitted.
Using statistical software SPSS 17.0 for fitting proposeddr statistical model®) and (L0) by multiple regression
analysis.
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3 Empirical Study
The models9) and (L0) are fitted for examine goodness over nonlinear Logistic@athpertz model, data were obtain

various published papers in different journals. Secondtata is more reliable for adequacy and appropriateness of
proposed model.

Table 1. Model (9)

SNo. R? & M.A.E.
1 99.394 | 6.256E —7 | 0.000643
2 98441 | 4.6442E —7 | 0.000529
3 99.605 | 7.3246& —8 | 0.000173
4 98096 | 3.763€E —7 | 0.000416
5 97.728 | 45969& — 7 | 0.000459
6 99.979 | 0.0000246 | 0.003010

Data Source: S.No.1 from H. Sing al. (1991), S.No.2 from M. Grossmaat al. (1985), S.No.3 from S. Vieira and R.
Hoffman (1977), S.No.4 from T. Sengul and S. Kiraz (2005)rfale, S.No. 5 from T. Sengul and S. Kiraz (2005) for
female, S.No. 6 from M.G. Kundu and A.K. Paul (2010)

Table 2: Model (10)
SNo. R? & M.A.E.
10 | 99.883 | 0.00108 | 0.01587
2 98.759 | 0.00839 | 0.04398
3 97.518 | 0.02332 | 0.09749
4 98.759 | 0.00839 | 0.04398
5% | 99.373 | 0.00527 | 0.04774
6~* | 99.576 | 0.00734 | 0.05520

Data Sourcex0 Kutneret al(2004) p 627 xKutneret al(2004) p 569 x+ Ratkowsky (1983) p 88 data« « Draper and
Smith (1998) p 562 of sample 8

The table-1 shows goodness of fit for mod®Itp Logistic data sets. The table-2 shows goodness of fit fateh(10)
to Gompertz data sets. The tables gives the values of ceeffiof determinationR?), the values of residual mean square
() and mean absolute errdvi(A.E.). The residuals follow the assumptions of zero mean, nodiséiibution and fixed
variance and there is no autocorrelation. Also there is niticollinearity in the data.

4 Conclusion

In the present manuscript two linear regression models haga proposed as the alternatives of Logistic and Gompertz
nonlinear regression models. The proposed linear modelspaved theoretically as well as numerically as good
alternative linear models to mentioned nonlinear modeppligations of linear models to data sets are very convénien
as famous least squares method of estimation is directliicappe and parameter estimates possess good statistical
properties. The predictions, constructions of confidentervals and test of significance procedures etc can besdarri
out very conveniently, using proposed linear regressiodetso Thus the proposed linear regression models should be
used the alternatives of Logistic and Gompertz nonlinegregsion models in practice.
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