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Abstract: There are several methods of handling missing data in samplesurveys, which is a typical problem of non-response.
Imputation(fill-in) method is one of the methods to deal with non-response. The term Imputation refers to the process of assigning
one or more values to an item when there is no reported value for that item. Many forms of imputation are available, including mean
imputation, ratio method of imputation, hot deck imputation, cold deck imputation, regression imputation, etc. In recent past, a
number of efficient compromised imputation strategies has been proposed by several survey statisticians.This paper suggests a
one-parameter family of estimators, popularly known as Factor-Type Estimator (FTE), with compromised imputation strategy and
discusses its properties. The proposed strategy has been observed to be more precise than other compromised estimatorsunder
optimality conditions. To support the discussed results, the relative efficiencies of the estimator have been obtainedusing four sets of
empirical data.

Keywords: Compromised imputation, one-parameter family of estimators, optimum estimator, relative efficiency.

1 Introduction

Basic sampling theory assumes that the variable of interestis measured on every unit in the sample without error; but
errors may arise in many situations. Besides sampling error, which is an essential part of a sample survey, sometimes
non-sampling errors and particularly, non coverage is a quite serious problem because of the simple reason that the
sample tends to be unrepresentative of the population and the estimates are biased (Thompson,[20]). Non-response (or
non-coverage) is an inherent characteristic of any type of population and, therefore, cannot be eliminated by any means,
rather, efficient methods are to be developed for estimatingpopulation parameters with the help of missing data so
obtained.
A common technique for handling non-response is imputation, where the missing values are filled in to create a complete
data set that can be analysed with traditional analysis methods. It is important to note that usually sample surveys are
considered with the goal of making inferences about population quantities such as means, variances, correlations and
regression coefficients, and the values of individual casesin the data set are not the main interest. Thus, the objectiveof
Imputationis not to get the best possible predictions of the missing values, but to replace them by plausible values in
order to exploit the information in the recorded variables in the incomplete cases for inference about population
parameters (Little and Rubin,[4]).
Mean imputation, hot deck imputation, regression imputation, ratio imputation are all single imputation in the sense that
a single value is imputed for every missing value to produce acomplete data set. To deal with missing values effectively
Kalton et al[1] and Sande[9] suggested imputation methods that make an incomplete data set structurally complete and
its analysis. Leeet al ([2], [3]) used the information on an auxiliary variable for the purpose of imputation. Based on
auxiliary variable,recently Singh and Horn [14] and Singhet al [15] suggested some compromised methods of
imputation.
The purpose of this paper is to(i) suggest a one parameter family of estimators for populationmean using compromised
imputation strategy under the assumption of presence of non-response in the population and with the aid of information
on an ancillary characteristic,(ii) discuss some of its salient properties,(iii ) show its supremacy over some existing
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compromised estimators and(iv) apply the proposed strategy on some empirical populations for illustration purpose. The
overall study reveals that the proposed imputation strategy works efficiently in a variety of situations.

2 The problem and notations:

Let a simple random sampleSof sizen without replacement be drawn from a finite populationU = (y1,y2, ...,yN) of size
N and with study characteristicY. Let (Ȳ, X̄) be the population mean for the study variableY and auxiliary variableX
respectively. It is presumed that the sample consists of r responding units(r < n) belonging to a set R and (n-r)
non-responding units belonging to the setRc. Further, let for every uniti ∈ R, the valueyi is observed and for the unit
i ∈ Rc, the valueyi is missing for which suitable imputed value is to be derived.For this purpose, theith value of the
auxiliary variable is used as a source of imputation for missing data wheni ∈ Rc.
In what follows, we shall use the following notations:

Z: Stands for either variableY or variableX.
z̄n: Sample mean based on n observations for variableZ.
z̄r : Sample mean of the responding units based on r observationsfor the variableZ.
S2

Z: Population mean square for the variableZ.

CZ: Coefficient of variation (CV) for the variableZ ; CZ=
SZ

Z̄
.

ρ : Coefficient of correlation between variablesY andX in the population.
y.i : Imputed value for theith value ofyi (i = 1,2,3....n).
θn,N, θr,N, θr,n: Finite population corrections (fpc);(1

n −
1
N ), (

1
r −

1
N ), (

1
r −

1
n) respectively.

3 Some imputation strategies :

Before suggesting the proposed imputation strategy, we shall mention here some existing imputation strategies for
readiness of the material which has a direct relevance with the present work. We shall denote by (D,T) a sampling
strategy whereD stands for simple random sampling without replacement sampling scheme andT for an estimator for
population mean̄Y. Followings are some imputation methods and correspondingsampling strategies :

(a).(D, ȳr ): Mean method
Here

y.i =

{

yi if i ∈ R
ȳr if i ∈ Rc (1)

The corresponding point estimator and its bias, B(.) and mean square error (MSE), M(.) are derived as

ȳn =
1
n ∑

i∈s
y.i = ȳr (2)

B[ȳr ] = 0 (3)

M[ȳr ] = θr,NȲ2C2
Y. (4)

(b).(D, ȳRAT): Ratio method

y.i =

{

yi if i ∈ R
b̂xi if i ∈ Rc (5)

whereb̂=
∑i∈Ryi

∑i∈Rxi
. Then the point estimator, its bias and MSE are given by:

ȳRAT = ȳr
x̄n

x̄r
(6)

B(ȳRAT) = θr,nȲ
[

C2
X −ρCYCX

]

(7)
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M(ȳRAT) = θr,NȲ2CY
2+θr,n

¯[Y]2
[

C2
X −2ρCXCY

]

(8)

(c).(D, ȳCOMP): Compromised method( Singh and Horn, [14])

y.i =

{

α
n
r

yi +(1−α)b̂xi if i ∈ R

(1−α)b̂xi if i ∈ Rc
(9)

The point estimator is

ȳCOMP= α ȳr +(1−α)b̂x̄n (10)

α being a suitable constant with

B(ȳCOMP) = (1−α)θr,nȲ
[

C2
X −ρCYCX

]

(11)

M(ȳCOMP) = θr,NȲ2C2
Y +θr,nȲ

2[(1−α)2C2
X −2(1−α)ρCXCY

]

(12)

Some other compromised estimators are proposed by Singhet al [16] and Singhet al [15].

4 (D,Tk):Proposed imputation strategy and compromised estimator :

Based on an unknown constantk> 0, we now propose the following imputation strategy and corresponding one parameter
family of estimators,Tk as

y.i =

{

k
n
r

yi +(1− k)φk if i ∈ R

(1− k)φk if i ∈ Rc
(13)

whereφk = ȳr ψ {k, x̄r , x̄s}. Hereψ {k, x̄r , x̄s} is a function ofk, x̄r and ¯xs such that

ψ {k, x̄r , x̄s}=
η {t1(k)}
η {t2(k)}

; (14)

η (ti(k)) = ti(k)+ (1− ti(k))
x̄r

x̄s
; i = 1,2.

t1(k)=
f B

(A+ f B+C)
, t2(k)=

C
(A+ f B+C)

;

A=(k−1)(k−2), B=(k−1)(k−4),C=(k−2)(k−3)(k−4)

and f =
n
N

, x̄s = sx̄r +(1− s)X̄ , s=
r

r +n
.

The corresponding point estimator for population meanȲ, Tk is then obtained as:

Tk = ȳr [k+(1− k)ψ {k, x̄r , x̄s}] (15)

Remark 1: It is evident thatTk defines a family of estimators under compromised imputationfor missing values in the
sample; k being the parameter. In fact, a comparison ofTk with x̄0F(t), defined in Singhet al [19], reveals thatTk could be
considered a FTE, initially defined by Singh and Shukla[17] and Shukla[10], with compromised imputation in the
presence of non-response.The other contribution on FTE aredue to Shuklaet al [12] and Singh and Shukla[18].

Remark 2: Letting the value ofk= 1 and 4, it is seen thatT1= T4 = ȳr , the estimator under mean method of imputation

and fork= 2, T2= ȳr

[

2−
x̄s

x̄r

]

, an estimator equivalent to Sahai and Ray[8] estimator: ¯ySR= ȳn

[

2−

(

x̄n

X̄

)α]

c© 2015 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


108 P. Singh et. al. : On the Use of Compromised Imputation for Missing...

5 Properties of the proposed family :

5.1 Theorem 1:

The bias and MSE of the proposed strategy(D,TK) to the terms of order O(n−1) are given by

B[TK ] = Ȳθr,N (1− k)(d1−d2)
{

ρCYCX −d2C
2
X

}

(16)

M[Tk] = Ȳ2θr,N

[

C2
Y +(1− k)2 (d1−d2)

2C2
X +2(1− k)(d1−d2)ρCYCX

]

(17)

whered1=
A+ f sB+C
A+ f B+C

, d2=
A+ f B+Cs
A+ f B+C

.

The proof of the theorem is given in the Appendix.

Corollary 1: The bias and MSE of strategies(D, ȳr) and(D,T2) are given by

B[ȳr ] = 0 (18)

V [ȳr ] = θr,NȲ2C2
Y (19)

B[T2] = 2Ȳθr,Ns
{

ρCYCX −C2
X

}

(20)

M [T2] = Ȳ2θr,N

{

C2
Y +(1+2s)2C2

X +2(1+2s)ρCYCX

}

(21)

Letting k=1 and therebyd1 =1 , d2 =s andk=2 and henced1 =−2s, d2 =1 in (16) and(17), the above expressions are
straight forward.

5.2 Optimum estimator in the family:

Theorem 2: The optimum choices of the parameter k which minimizes M[Tk] are the real and positive roots of the equation

(1− k)(d1−d2) =−ρ
CY

CX
=−V(say) (22)

and minimum MSE is given by
Mmin[Tk] = θr,NȲ2C2

Y

(

1−ρ2) (23)

Proof: Re-writingM[Tk] as
M[Tk] = Ȳ2θr,N

{

C2
Y +H2C2

X +2HρCYCX
}

(24)

whereH= (1− k)(d1−d2) and realising that H is a function of k, in order to obtain optimum choices of k, we differentiate
(24) with respect to H and equate to zero. Hence we have

∂M[Tk]

∂H
= θr,NȲ2

[

2HH
′
C2

X +2H
′
ρCYCX

]

= 0 (25)

whereH
′
=

∂H
∂k

, SinceH
′
6= 0,from(25), we have;

H = (1− k)(d1−d2) =−ρ
CY

CX
=−V (26)

Thus(22) follows. Further, substituting H from(26) to (17), we obtain(23).
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Remark 3: A close look of the equation(22) reveals that it is a fourth degree equation in k. Therefore, for a given
population (known value ofV), one will get four optimum choices ofk for which M[Tk] would be minimum, having
same values. However, the equation might yield some negative and imaginary values ofk. Shukla[10] has pointed out
that the equation yields at least one optimum value ofk> 0 . On simplification of the equation(22) we have:

− (1− s)k4+ {V +(1− s)(10+ f )}k3−{V (8− f )+ (1− s)(35+6 f )}k2

+ {V (23−5 f )+ (1− s)(50+9 f )}k−{V (22−4 f )+4(1− s)(6+ f )}= 0 (27)

Remark 4: Since, for a given population, equation(27) might yield more than one real and positive root, the question
arises as to how the appropriate choice of optimum k could be done amongst these values. A criterion for selecting suitable
value may be set as follows :
“Out of all real and positive roots of the equation , select that optimum k which makes|B[Tk]| smallest. ”
Thus, using the proposed strategy, one can put control on thebias of the estimator along with minimising MSE.

6 Comparison of different strategies:

6.1 Basis of expressions of MSEs

On the basis of expressions of MSEs of different strategies,as discussed under sections 3 and 4, a comparison of the
strategies can be made under optimality conditions.

6.2 Comparison of (D,Tk) with (D, ȳr )

From expression(4) and(23), we haveMmin[Tk]<V(ȳr) when

Ȳ2θr,Nρ2C2
Y > 0, (28)

which is always true. Therefore, proposed imputation strategy is superior to mean imputation method. It is also a trivial
result, as ¯yr is a member of the proposed family.

6.3 Comparison of (D,Tk) with (D, ȳRAT)

A comparison of expressions(8) with (23) reveals that

Mmin [Tk]< M(ȳRAT) if

Ȳ2
{

θr,n (CX −ρCY)
2+θn,Nρ2C2

Y

}

> 0 (29)

which always holds, implying that the proposed strategy under optimality condition is always preferable over (D, ȳRAT).

6.4 Comparison of (D,Tk) with (D, ȳCOMP)

Before comparing (D, ȳCOMP) with (D,Tk), let us find theMmin[ȳCOMP]. It is obtained as

Mmin [ȳCOMP] = θr,NȲ2C2
Y −θr,nȲ

2C2
Yρ2 (30)

for α = 1−V. Now comparing (D, ȳCOMP) with (D,Tk) under optimality conditions, we see thatMmin [Tk]< Mmin [ȳCOMP]
if

θn,NȲ2C2
Yρ2

> 0 (31)

which is always true. Thus (D,Tk) gives more efficient strategies as compared to compromisedimputed strategy
(D, ȳCOMP) proposed by Singh and Horn [14] under the corresponding optimality conditions.
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7 Empirical Study :

We now present the comparisons of different strategies on the basis of four data sets:

Population I : (Murthy, [6])

The data gives the number of absentees (Y) and number of workers (X) for the 43 factories. For the data, we getȲ=
9.651,X̄=79.465,S2

Y = 43.137,S2
X = 1330.255,ρ=0.661. We taken=20.

Population II : (Mukhopadhyay, [5])

Here the data represents the quantity of raw materials required (in lakhs of bales)(Y) and number of labourers (in
thousands)(X) in 20 jute mills. The following set of values were obtainedȲ= 41.50, X̄=441.95, S2

Y =95.737, S2
X

=10215.21,ρ=0.6521. We taken=7.

Population III : (Singh and Chaudhary,[13])

The population is related to the area under wheat in the region during 1974,(Y) and during (1973),(X) in 34
villages. The following population values were obtained:

Ȳ= 199.441,X̄=208.882,S2
Y = 22564.557,S2

X = 22652.046,ρ=0.9801. We taken=18.

Population IV: (Shukla et al,[11])

An artificial population of size 200 containing values of main variable Y and auxiliary variable X is given with the
values:Ȳ= 42.485,X̄=18.515,S2

Y = 199.060,S2
X = 48.538,ρ=0.8652. We taken= 30.

Since in a sample of any size, the number of respondents may vary from 0 to n (and accordingly the value of s,
0 ≤ s≤ 0.5), it is not out of place to study the behaviour of MSE ofTK under optimality conditions for each of the
populations. Table 1 presents the optimum values of the parameter along with minimum MSE and bias for some selected
values of r in each population.

The table reveals the following facts:(i) For each of the populations, there exist two positive real roots of the
equation(27), (ii) with increasing number of respondents in the sample, the MSEdecreases drastically and(iii ) an
appropriate choice of optimum k can be made under the criterion given in Remark 4.

Table:2 presents a comparison of different imputation strategies:(D, ȳr), (D, ȳRAT), (D, ȳCOMP) with the proposed
strategy(D,Tk) under the optimality conditions, in terms of MSE,takingr=6, 5, 10 and 22 for populations I, II, III and IV
respectively.

8 Conclusion :

The work presented a compromised imputation strategy underthe scheme D and corresponding point estimator, utilizing
the information on an auxiliary variable on the basis of FTE.The salient features of the strategy have some extra
advantage over other existing estimators. On the basis of populations of different structures, a comparative study forthe
efficiency of the proposed strategy with some existing strategies showed that it is always preferable over other estimators.
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Table 1: Optimum k and corresponding MSE for different values of r
Population Value ofr(s) kopt |Bias| MinimumMSE

I, N=43,n=20 2(0.09) 3.1364 0.09957 11.585
5.2175 0.28508

4(0.17) 3.1125 0.03968 5.510
5.3031 0.13042

6(0.23) 3.0902 0.02082 3.485
5.3879 0.07951

II, N=20,n=7 1(0.13) 3.0978 0.5298 52.287
4.8455 0.1277

3(0.3) 3.0345 0.14251 15.595
5.0106 0.04505

5(0.42) 2.9782 0.0694 8.256
5.1726 0.02684

III, N=34,n=18 2(0.1) 3.1364 4.2433 418.327
5.2175 17.946

4(0.18) 3.1125 1.579 196.091
5.3031 8.0802

6(0.25) 3.0902 0.7543 122.012
5.3879 4.8456

10(0.36) 3.0949 0.1955 62.749
5.7358 2.3292

IV, N=200,n=30 4(0.12) 2.7224 0.0487 12.263
4.7733 0.00927

12(0.29) 2.6238 0.00212 3.921
4.9296 0.00706

20(0.4) 2.5338 0.0046 2.252
5.084 0.00615

22(0.42) 2.5132 0.0052 2.025
5.1223 0.00597

Table 2: Minimum MSE, optimum values of the parameters for the estimators ȳr , ȳRAT , ȳCOMP andTk

Estimator Population Opt. values of parameter and min MSE R.E.
ȳr I 6.186 100

II 14.3605 100
III 1592.792 100
IV 8.053 100

ȳRAT I 3.989 155.07
II 12.586 114.09
III 629.992 252.82
IV 6.419 125.45

ȳCOMP I 3.988 155.11
II 12.034 119.33
III 629.440 253.04
IV 6.247 128.90

Tk I 3.485 177.50
II 8.252 174.02
III 62.762 2537.82
IV 2.025 397.67
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Appendix

We have
Tk = ȳr [k+(1− k)ψ {k, x̄r , x̄s}] (32)

where

ψ {k, x̄r , x̄s}=
η {t1(k)}
η {t2(k)}

(33)

and
η {ti(k)} = ti(k)+ {1− ti(k)}

x̄r

x̄s
; i = 1,2. (34)

Re-writingη {ti(k)} in terms ofA, B andC and substituting in(32), Tk becomes:

Tk = ȳr

[

k+(1− k)

{

(A+C) x̄r + f Bx̄s

(A+ f B) x̄r +Cx̄s

}]

(35)

Now using the large sample approximations
ȳr= Ȳ(1+e0) , x̄r= Ȳ(1+e1)
and the concept of two-phase sampling following Rao and Sitter [7] under the mechanism of missing completely at random
(MCAR) for given r and n, we have:

E(e0) = E(e1) = 0,E(e2
0) = θr,NC2

Y,E(e
2
1) = θr,NC2

X ,E(e0e1) = θr,NρCYCX (36)

Converting the expressions(35) in terms ofe0 ande1 and lettingd1=
A+ f sB+C
A+ f B+C

andd2=
A+ f B+Cs
A+ f B+C

, we can write

Tk, retaining only up to the second power ofe0 ande1 as

Tk = Ȳ
[

1+e0+(1− k)(d1−d2)
(

e1+e0e1−d2e
2
1

)]

. (37)

The expressions (37) obtained assuming that|d2e1|< 1 . Since for any choice ofk, |d2| is always less than 1 and|e1|< 1
, hence|d2e1| < 1 is a valid assumption. Taking expectation of both the sidesof (36) and realising thatB[Tk]=E [Tk]− Ȳ,
we have the expression(16), using the results(36). Similarly, under the large sample approximations,

M [Tk] = E [Tk− Ȳ]2 = Ȳ2E [e0+(1− k)(d1−d2)e1]
2 (38)

which when solved, yields the expression(17).
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