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Abstract: Many earlier studies dealing with the two-warehouse inmgnmodel assumed that the direct cost of the product was
irrelevant and that production processes are perfect atidrsary. However, in the real world, the purchase cost mseséunction of

the quantity purchased and the production processes megatate and thus defective items will occur. This papesrefore, aims at
developing a new inventory model under an imperfect pradogirocess. Three considerations are included in this nedein(1) The
supplier may offer quantity discounts to stimulate theitetanto ordering greater lot sizes; (2) The maintenand®as are employed

to restore the production process back to the in-contrté sthen the process is out-of-control; (3) A two-warehousiep is adopted

to hold a large amount of stock when a single warehouse waildensufficient. The unique optimal lot size property andcéredidate
optimal solution boundaries are derived. An efficient attyon is developed to help the manager in accurately and buitkermining

the order policy. Some numerical examples are given totilitis the proposed model and algorithm. Some interestihguers are
also observed.

Keywords: Lot sizing; EOQ and EPQ models; Quantity discounts; Immrfgoduction system; Maintenance; Two-Warehouse
inventory model; Markov chain.

2010 Mathematics Subject ClassificationPrimary 91B24, 93C15; Secondary 90B30.

1 Introduction items produced are defective once the production process
is out-of-control. An interesting variant has been regentl

In recent years, the issue of economic order quantityProPosed by Salameh and Jabét][who investigated an
(EOQ) or economic production quantity (EPQ) with EOQ modgl with |mp¢rfect quality in which |dent|W|ng
imperfect quality has received considerable attentiondefective items requires a screening process initiated
from academicians and practitioners because the classic#Pon the receipt of an order. Ever since the above model
EOQ/EPQ models assume that the production processe¥as developed, which is more reasonable than the
are perfect and stationary. Numerous studies havérgdltlonal EOQ}modeI, many extensions Were_developed.
demonstrated that production processes may deteriorafe@rdenas-Barrorf] corrected an error appearing in the
and thus defective items may occur. For exampleWork of Salameh and Jaber4]. Goyal and
Rosenblatt and Leet]] and Porteus39 are among the Cardenas-Barrorlp] reconsidered the task perf_orme_d in
first pioneers who explicitly contributed to a significant S@lameh and Jaberd]] and presented a simplified
relationship between quality imperfection and lot size, Method to determine the optimal lot size. Cretral. [7]

and showed that the optimal order lot size is smaller tharProPosed a non-shortage model similar to that in Salameh
that in the classical EOQ models. Porte§][considered ~and Jaber41], wherein products can be classified as good
an EOQ model and assumed that all items produced ar8Y@lity, good quality after reworking, imperfect quality
defective when the system is out-of-control. However,nd scrap. With respect to the inventory model proposed
Rosenblatt and Leet[] assumed that a proportion of the I Salameh and Jabea]], Huang P2 investigated a

* Corresponding author e-maflarimsri@math.uvic.ca

(@© 2015 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.12785/amis/090533

2494 NS 2 T.-Y. Lin and H. M. Srivastava: A Two-Warehouse Inventory débwith Quantity ...

single-vendor single-buyer integrated constructed model under the imperfect production system.
production-inventory problem, where the buyer’s
inventory policy follows Salameh and Jabers model. It is recognized that quantity discounts can provide

Papachristos and Konstantara88][ questioned the economic advantages including lower per-unit purchase
validity of the assumption appearing in Salameh andcost, lower ordering costs and the decreased likelihood of
Jaler’s work 1], but failed to provide a solution for this shortages for both the buyer and vendor (Burvetlial.
defect. Eroglu and Ozdemirl§], Wee et al. [47], and  [4], Ji and Shao 6], Lin [31], Chunget al. [12]). The
Chang and HoY] further extended Salameh and Jaber’s supplier usually offers quantity discountise(, the unit
work to the case in which shortage backordering ispurchase cost is the function of the order quantities) to
permitted. Building upon the work of Salameh and Jaberstimulate the retailer into ordering larger lot sizes. The
Maddah and Jaber3P] employed renewal theory to retailer may then order larger lot sizes than usual when
correct the flaw in their work and extended the analysishe/she receives an attractive price discount for
by allowing several batches of defectives to bepurchasing. In this case a single warehouse would not
consolidated and shipped in a single lot. Jadteal. [23)] always be sufficient and thus the retailer may employ
assumed the percentage defective in a shipment reducextra storage space to hold a large stock. Therefore,
in conformance with a learning curve and thus developedwo-levels of storage, owned warehouse (OW) and rented
two models subject to learning effects. Maddxlal. [33] warehouse (RW) are explored by researchers. Hartley
developed two models for news vendor and EOQ-type[20] was one of the pioneers in discussing the two
inventory systems under random yield and items ofwarehouse inventory model. Sarmég] later considered
different quality. A review of the modified EOQ model a deterministic inventory model with two levels of storage
extensions for imperfect quality items can be found in theand infinite production rate. Sarma4] further extended
work of Khanet al. [28]. Following this review, several Hartleys model to explore the deterioration effects in both
papers in the literature showed extension or modification®wned and rented warehouses. Pakkala and Aclt8gly [
of the work of Salameh and Jabetl]; for example, proposed a two-warehouse model for deteriorating items
Yassineet al. [48], Lin [31], Jaberet al. [24], and Dey  with shortages and finite replenishment, in which the rates
and Giri [17]. of item deterioration in the two warehouses are different.
A two-warehouse inventory model for items with
different deterioration rates, linearly increasing dethan
More recently, Cardenas-Barrong][ proposed a and shortages during the finite period was proposed by
production system with backorders in which the defectiveBhunia and Maiti £]. Kar et al. [27] further consider the
items could be reworked. SanaZ established an replenishment cost is dependent on the lot size of the
economic production lot size model assuming that acurrent replenishment and thus established a
certain percent of the total product is defective in thetwo-warehouse model for non-perishable items with a
out-of-control state for the imperfect production system.linear trend in demand and shortages over a fixed and
Yoo et al. [49] considered an imperfect production and finite time horizon. Zhou 0] extended the existing
inspection system with customer return and defectivetwo-warehouse models to the case with multiple
disposal. Ouyang and Chang4] involved the ideas of warehouses, in which a type of partial lost sale was taken
trade credit and complete backlogging into the EOQinto an inventory system by assuming it to be a function
model with imperfect production processes. &zl. [36] of shortages already backlogged. Chagl. [10] further
further developed an EOQ buffer for random demandtook the idea of imperfect quality into the existing two
during preventive maintenance or repair of awarehouse model to generalize Salameh and Jaber's
manufacturing facility with a deteriorating production model B1] in which the storage of rented warehouse was
system. Palet al. [37] explored an EOQ model in an assumed unlimited. Lin30] studied the economic order
imperfect production system in which the production quantity mode with imperfect quality and all-unit quantity
system may undergo imut-of-control state from the discounts under two-warehouse consideration and
in-control state after a certain time following a probability developed two algorithms to determine the optimal lot
density function. This reveals that the deterioratingsize and purchasing cost. Dem and Sing [developed
process follows a two-state discrete-time Markov chaina two-warehouse manufacturing model for deteriorating
(see, for details,45]) during production of a lot with a items following a time dependent demand pattern in
transition occurring with each unit produced. Note that allwhich the systems shift from the in-control state to the
of the above researchers assumed that it is free to adjustut-of-control state, leading to the production of
the deteriorating process into the in-control state.imperfect quality items. Agrawagt al. [1] explored an
However, this assumption may not be true because th@ventory model for deteriorating items following
maintenance actions that restore the process back to themp-type demand with flexibility to operate as a two or
in-control state require additional costs including labor single warehouse system depending on the model
material and overhead costs. The work of Hxal. [21] parameters. Some researchers developed a two-warehouse
provides a good example. Therefore, it is reasonable thahventory model considering trade credit financing, for
the maintenance costs should be included in theexample, Liacet al.[29], Bhuniaet al. [3], and Jaggiet
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al. [25]. Several other related works on the subject of thisFurthermore, this paper assumes that quantity discounts

paper include (for example) the recent papdis [11],
[13], [14] and [15].

are offered by the supplier to stimulate the buyer into
ordering larger lot sizes. In all-unit quantity discourtkse

discount price applies to all units in the order quantity.
Based on the above discussions, this study develops ket ¢j be the unit price of thgth level andQ; be thejth
cost minimization two-warehouse inventory model with lowest quantity Q;—1 < Qj ). If

quantity discounts and maintenance actions under
imperfect production processes to explicitly obtain the
optimal lot sizing. The main purpose of this paper is four
fold:

Qj-1=Q<Q;j,

then the unit price ig;j . The price discount schedule is

shown in Table ). That is, the purchasing cost is a
(1) This paper develops a two-warehouse inventoryfunction of the ordering quantity, which also influences

model with quantity discounts and

imperfect the holding cost stored at different warehouses (that is,

production process in which maintenance actions werghe owned warehouse and the rented warehouse).

employed to restore the process back to the in-control
state when the process is out-of-control.

(2) This study proves that the expected total cost
function has convexity. The closed forms based upon
the upper and lower bounds for the candidate optimal
solutions are further derived.

(3) An efficient algorithm is provided to help the
manager in determining order policy accurately and
quickly. Some numerical examples are given to
illustrate the proposed model and algorithm.

(4) Managerial insights are drawn.

2 Problem, Definitions and Notations

Consider a deteriorating production system for a product
manufactured on a single machine in which the
production system operating condition at any time can be
classified into one of two states, that is, in-control and

Table 1: Price discount structure

I Qj12Q<Qj ¢
1 0<Q<Q1
2 Qi20<Q ¢
N 1SQ<Qn o
7 Q15Q<Q o

To establish a two-warehouse inventory model with

out-of-control. While initially producing a lot in the quantity discounts and an imperfect production process
in-control state, a process can go out-of-control with aunder maintenance actions, the following notations
certain probabilityq or stay in the in-control state with similar to those in Porteu$§] are used.

alternative probability of - g. Once the system is Notations:

out-of-control it remains in this state until the entire iot
produced. This assumption has been employed by ma
researchers (see,g, Hou et al.[21], Maddahet al.[33],
Porteus 89], and Rosenblatt and Led(). That is, the W
deteriorating process follows a two-state discrete—timér
Markov chain during lot production. At the end of a lot
produced, the production process is then checked 11(’9’
confirm the state of the process. If the process is
out-of-control, it is then restored back to the in-control
state with maintenance cost for the production run. Unlike"
the works of Porteus30] and Maddahet al. [33], this
paper assumes that the production system may produce
imperfect-quality items with probabilityq if the ¢
production process is out of control. Thec;
imperfect-quality items will eventually be reworked at a
cost of R such that the production system capacity isR
completely identical. The ordering cost can be found
similar to that of the classical EOQ model. A ¢
two-warehouse inventory policy is employed in which the
owned warehouse storage capacity is limited and the
rented warehouse storage capacity is unlimited.

demand rate

setup cost for each production run

the storage capacity of the owned warehouse

the holding cost per unit time for the rented warehouse,
expressed as a fraction of dollar value.

the holding cost per unit time for the owned
warehouse, expressed as a fraction of dollar value,
lw < It

the nth price break for OW in the price schedule in
which

n={j|Qj_1=w<Q;j}

rework cost for a defective item

unit cost ofjth level corresponding to the cost discount
structure

maintenance cost for restoring the process from out-
of-control back to in-control

the probability that the system from in-control state
shifts to out-of-control state

the probability that the system stays in-control state
during the production of an itemang=1—q
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6 the percentage of defective items produced when the (i) The order quantity is equal to or greater than the
process is in the out-of-control state capacity of the owned warehouse (that@sz w)
lot size for each production run and thus additional warehouse capacity is rented.
number of defective items produced in a lot of size Therefore, the inventory holding cost in a
the expected total cost function per unit time production cycle is given by

for a lot of sizeQ

EAC(Q) expected annual total cost Hoi — |er{(Q—W)2}
for a lot of sizeQ 2= 2m
lwCi { 2W(Q — W)2 + w2
e {2Q W v} g

3 Formulation of the Proposed Model
(j=nn+1n+2,---,2).

In thi§ se(_:tion, a Mo-wgrehouse inventory model With (3) Purchasing cost:
quantity discounts and imperfect production process is
developed where maintenance actions were employed to This paper assumes that the supplier offers the
restore the production system back to the in-control state. all-units-discount method to stimulate the buyer into
The following results are explored before the model is ordering more quantities. This implies that the
developed. purchase price is some function of the quantity

purchased. The purchasing cost corresponding to the
Lemma. The expected number of imperfect-quality items  unit invoice costcj in a production run is given as

in a lot of size Q is given by follows:
Purchasing cost c;Q. 4)

E(N)=#6 {Q — @} : (1) (4) Maintenance cost:

a The maintenance cost occurs only when the production
Proof. The proof of the above Lemma is given in process is out-of-control at the end of a production
Appendix A. cycle for a lot of sizeQ. Therefore, the expected

maintenance cost per production run is given by
Given that the lot size i, the expected annual total

cost per production cycle is composed of setup cost, Maintenance cost R(1_qQ), (5)
inventory holding cost stored at owned and rented
warehouses, purchasing cost, maintenance cost an@®) Rework cost:

rework cost, which are derived as follows. Because the expected number of imperfect-quality

(1) Setup cost: items in a lot sizeQ is E(N) given in Equation 1), the
. . L expected total rework cost per production run is given
The setup cost in a production cycle is given by as follows:
Setup cost K. (2) a(1—aoR
crE(N):ch{Q—W}. 6)

(2) Inventory holding cost stored at owned warehouse
(GW) and rented warehouse (RW): Combining the above costs, we know that the expected

It is recognized that the inventory holding cost per unit total cost of a production run becomes the sum of the
time at owned and rented warehouses, denoteti,by Setup cost, inventory holding cost stored at owned and
and I;, respectively, is different andl, < I,. Based rented warehouses, purchasing cost, maintenance cost and
upon this assumption, it is economical to store in OW rework cost. The following two cases may now occur:

first and after it is filled, RW is used. RW storage is Casel. Q<w

used first followed by OW. This implies that the The orger ot size is equal to or less than the capacity of
following two cases may occur: the owned warehouse. Thus there is no need to rent
additional warehouse capacity. Therefore, the total cbst o
() The order quantity is equal to or less than the a production cycle in this case is given by
capacity of the owned warehouse (that@s w) 5
and thus no additional rented warehouse is needed. TC,(Q) =K+ lwe;jQ +¢Q+RI-TR)

Therefore, the inventory holding cost in a 2m
roduction cycle is given b a(1—aoR
p ycle is given by +Cr9{Q_q( g )} )
Hy =9 (12 @ !
1j = 2m J_ )& s 1) (jzl’z’...’n)_
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Furthermore, the time duration of a production rliris
equal toQ/m. When the lot size i€, the expected total

Combining Equationsg) and (L0), we have

cost corresponding to the purchasing agss given by ATG;(Q) (11a)
<wi=12..
ATGy () = T2 T
0
G(1— o°
ebm= % ® o AT Gin(W) = AT Gon(W). (12)
(i=12,---,n). Therefore, ATG(Q) is continuous onQ; > 0 for

We note that Equatior8f reduces to the model shownin 1 =1,2,3,---,2

Porteus B9 when the following holds true: (1) We do not

take the purchasing cost into account (thatci€Q = 0);

(2) The supplier does not offer a quantity discount andgq The Optimal Solution and Algorithm
thush = lycj; (3) The maintenance cost is not considered

(thatis,R=0); (4) All items produced are defective when In order to minimize the expected total cost per unit time,

the process is in the out-of-control state (thatfs= 1).
Furthermore,

(that is, g = 0), then Equation 8§) reduces to the
traditional EOQ model.

if the production system does not

deteriorate and thus items produced are all perfeCtqua"%orresponding to different purchasing costs should be

let us take the first-order derivatives T Cj(Q) and
ATG;(Q), respectively. We note that the order quantity

different. Therefore, in order to clarify this illustratip
we takeQ); to replaceQ in the following statement.

Case2. Q@w MKAR e,

This case indicates that the order lot size is equal to or To? T2 (138)
greater than the owned warehouse capacity. The rented (@=1;j=12---,n)
warehouse is employed to store the additional inventory.
i H H i mK lyci ma : )
;Rz;e{)c;re, the total cost of a production run in this case is ATG Q) = git L QTZ(1,1:1(:, +QgIng)  (13b)
¢ 07 .
=R—-——;0 1, j=212--,
T (a=R- &% 0cqenij=12...0)
TG(Q =K+ ——F——— MKl
m STl (@=0j=12m)  (130)
N lwCj {2w(Q —w) +w?} Q
2m and
+¢Q+R(1-T0) ( o
mK +R)+cw? g
1— —_z (14a)
+Cr9{Q_LqQ)} 9) Q°
q (=1, j=j=nn+1n+2--,2)
N (j=nn+1n42.---,2). mKrowl
Similar to Casel, we have Q2 2
L (0,) = ma . .
ATCZI (Q) _ TCZ_I]-(Q) ATCZI (QZ]) = 7Q7j2<17qQJ +quQJ |nq> (14b)
_R_ &oT. il
_@+|rcj{(Q—W)2} (afR q ;0<g<1; j=nn+1n+2, ,z)
Q 2Q i)
mK+ w2 oW e
N lwCj{2w(Q —w) +w?} rem+ RM1-79) 7Q7122+7 (14c)
2Q Q (9=0; j=nn+1n+2.---,2).
crmBg(1 - . :
+Crm9—$7 (10) Unfortunately, it is not easy to determine whether the

second derivatives oATCj(Q1j) and ATG;(Q2j) are
positive or negative. Therefore, we employ such results as
Theorem1 below in order to show that a uniqu@;*
exists such that

(j=nn+1n+2---.2).
We note that, when

hW = Cj |W7
then Equation0) reduces to the Hartley’s model iaQ).

hr =c;jlr, =0, R=0, ¢im=0 and ¢ =0,

ATG (Q)=0 (j=1.2--.n).
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This implies thatATG;(Q1j) is convex onQqj > 0.
Alternatively, Theorenm? illustrates that a uniqu€y;*
exists satisfying the following condition:

ATGj(Q3) =0 (j=nn+1ln+2-.-.2).

This indicates the fact tha®TG;(Qzj) is convex on

(j=nn+1n+2---,2

In view of Equations (B2) and (C2) given in Appendix
B and Appendix C, respectively, we have the same term

(1-9° +Q;g%Inq)
presented as B(Qj) in the bracket. Before determining

Q2j > 0. Furthermore, Equations (11a) and (11b) imply the bounds for the candidate optimal solutions for

thatAT G (Q;) is piecewise convex on
Qj>0forj=1,23,---,z

Theorem 1. The optimal lot size Q of ATG;(Qj)
exists and is unique for 1,2,--- ,n.

Proof.

Theorem 2. The optimal lot size Q of ATG;(Q;j)
exists and is unique forgn,n+1,n+2,---,z.

The proof of Theoren is given in Appendix B.

Proof.
the reader to Appendix C.

For the proof of Theoren2, we choose to refer

ATG;(Q1j) and ATG;j(Qzj), we need Theoren8 in
order to obtain th&(Q;) property.

Theorem 3. The following assertion holds true

0<B(Q)=(1-g¥+Qg%¥Ing) <1
(QJ >01 J :1727 ,Z).
Proof. The proof of Theorer3 is given in Appendix D.

From Theoren8, we readily obtain

0<B(Qj)=(1-7g% +Q;g%Ing) < 1.

In this paper, we treat both of the domains Furthermore, by employing Equations (15a), (15b), (16a)

and (16b), we have Theorem and Theorem5 for

ATG;(Q1j) and ATGj(Qzj) as (0,). Theorem 1
indicates thatATG;j(Qy;) is a convex function and thus

ATG; (Qqj) increases orf0,w]. Alternatively, Theorem
2 indicates thaAT G;j(Qo;) is a convex function and thus  Theorem 4.

determining the optimal solutions fo&TG;;(Qy;) and
AT G;(Qy;), respectively.

ATG;' (Qj) increases orjw,»). Although Theoreml  (A) If a <0, then

and Theoren® show that the optimal lot sizes exist for . _

ATG;(Q) and ATG;(Q) and are unique, we cannot 0<Qy"=Quo=Qyn  (j=12---,n).
easily find the closed-form expressions tOL- and Q3 (B) If a >0, then

for these two cases. Fortunately, however, we can derive )

the closed forms for the upper and the lower bounds on 0<Quo<Q" <Qup (=12 ,n).

the candidate optimal lot size. In order to find the boundsproof_

for the candidate optimal solutior@jj and Q3; when
0 < g< 1, we introduce the following notations:
(a) The bounds fo@1; when 0< q < 1 are denoted by

2mK .
Ql]O: W (J = 17 27 vn) (15a)
jlw
and
2m(K+R .
Qui= /IR 1) asb)
Cjlw

(b) The bounds foQ,; when 0< g < 1 are denoted by

\/me+ ciw2(l; — ly)
Q2jo =

Cjly

(16a)

(j=nn+1n+2,---,2
and

AN _
szl:\/2m(r<+R)+ch (I — ly) (16b)

Cjly

For the proof of Theorem, we refer the reader to
Appendix E.

Theorem 5.
(A) Ifa<0,then

0< Q2" = Q2j0= Qyj1
(B) Ifa>0,then
0 < Q2jo < Q2j" < Q2j1

The proof of Theorem is given in Appendix F.

(j=nn+1,n+2,---,2).

(J :n7n+17n+27"' ,Z).
Proof.

Theorems4 and5 indicate that the bisection method
based upon théntermediate Value Theorerfsee,e.g.,
Varberget al. [46]) is appropriately employed in order to
find Q7; andQj;, respectively.

As we mentioned above, botiATCy;(Qq;) and
ATG;j(Qzj) are concave oQj > 0. However, we cannot
directly determine the overall optimal solution from the
above discussion because each unit purchasing cost
corresponds to a different total cost curve. This implies
that the optimal order quantity may occur at the break
point for the total cost curve (see Hartley2Q]).
Therefore, in order to find the overall optimal solution, an
algorithm is developed as follows to help the manager in
making his decision quickly and correctly.
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Step1 Computea from Equation (13b) or Equation 5 Numerical Examples
(14b).

Each of the following examples are presented in order to
Step 2 ComputeQ1jo and Qyj; from Equations (15a) illustrate the proposed algorithm and model.
and (15b) if j < n and computeQzjo and Qpj1 from
Equations (16a) and (16b) if = n for the unit cost
associated with each discount category.

Example 1. The parameters needed for analyzing the
models developed in this paper are given below:

Demand raten = 10000 units/year;

Step3 If a =0, set Ordering cosK = $600/cycle;
QujL =0 and  Quu = Qijo (j<n) Rework cost; = $5/unit;
Maintenance codR = $300/cycle.
and Furthermore, we havé = 0.85 andq = 0.04. In addition,
we assume that the holding cost is 20% of the purchase
QjL =0 and  Quu = Qjo (j=n). price per year in RW and 10% of the purchase price per
- year in OW. The owned warehouse storage capacity is
Alternatively, ifa > 0, set 2600 units. The rented warehouse storage capacity is
unlimited. The supplier offers the price discount schedule
Qi =Qtj0 and Quu=Qiz (j=n) as in Table2.
and set

. Table 2: Price discount structure in Examplel
QjL=Qj0 and Qu=Qj (j=n).

i Qj1=0Q<Qj Cj
2  600<£Q<1500 cp=2015
f1;(Q1j) =0 3 1500 Q<2700 ¢, =20.10
4 2700< Q< 4200 cp=2005
by using the bisection method suggested by Varle¢wa. 5 Q=4200 cp,=2000
[4€]. Similarly, find Q’gj € [Q2jL,Q2ju] such that
f2j(Q%5) =0 According to the proposed algorithm developed in
Section 4, we obtain the optimal order quantity and the
by using the aforecited bisection method again. minimum cost as follows:

Step5 If Qj is less than the minimum for discount or SteP 1 Computinga from Equation (13b), we hawe =

Q3; is less than the minimum for discount, adjust the

quantity toQ = the minimum for discount. Alternatively, Step 2 ComputingQ1jo andQy 1 from Equations (15a)
if ij is greater than the minimum for discount(@ﬁj is and (15b) ifj < n, we have

greater than the minimum for discount, the optimal

solution would not occur in this range and no additional

computational procedures corresponding to the discount

category are needed. Q110= 24373 and  Qi11=29851;

Step 6 Compute the expected total cost by means of
Equation @) or Equation (10) for eacIQ’{j and Q3 or
adjust Q. These are associated with the order quantity
belonging to the discount category.

Q120= 24404 and Q121 = 29888;

Step 7 The lowest expected total cost in Step 6 gives the Qiz0=24434 and Q3 = 29925.
optimal solution.
Alternatively, from Equations (16a) and (16b), we have
We note that, as already mentioned in Section 3,Q2j0 andQj1 whenj = n as follows:
Porteus’s work in 39|, Hartley’s model in 0], and the
traditional EOQ model are all special cases of the
proposed model when certain specified conditions are
satisfied. This helps for validating our model. Q230= 25229 and Q231 =28031;
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Step 6 The expected total cost is computed by using

0 25244 and  Q 28051+ Equation (10) in this example, and we thus have
240 = 241 = ;

AT CG4(2713 = 248666 and ATGs5(4200 = 249210
Q250= 25259 and Q51 =28071. Step 7 Since
Step 3 Sincea = 198> 0, we have AT Goa(2713) < AT Gp5(4200),

an order quantity of 2713 units associated with a unit
_ _ . purchasing cost of $205, minimizing the total expected
Quu=24373  and  Quu =2988L cost $248666, which is obtained from Equation (10).

Example 2. If the holding cost is 15% of the purchase
Qia =24404  and Qi =29888; price per year in OW and the supplier offers another price
discount schedule as shown in TaBlbelow:

Q13|_ = 24434 and QlaJ = 29925.

and Table 3: Price discount structure in Example2
o Qjm1=Q<Q; Cj
_ _ . 1 0< Q<1000 c3=2020
=2522 n =2 1
Qe =25229  and Qe =2803%; 2 1000< Q< 2200 cp=20.15
3 2200< Q<3400 cp=20.10
4 3400 Q<4600 cp=2005

Qo5 =25259  and  Qpmy = 28071 The same procedure can be performed by using the
Step4 Employing the bisection method, we obtain Proposed algorithm. Thus, clearly, an order quantity of

Q€ [Q1jL,Quju] such that 2301 units associated with a unit purchasing cost of
$20.1minimizes the total expected cost $250437, which is
f1j(Qyj) =0 obtained from Equatior®j. Thus, in this case, there is no
as follows: need to rent another warehouse.
. . . Example 3. If the parameters are the same as in
Q11 =2799; Q,=2814; Qi3=2818 Example2 except that the demand rate increases to 20000
Similarly, we have units, then we employ the proposed algorithm again in
order to find optimal solution. Therefore, an order
Q53 =2711; Q5,=2713; Q55=2715 quantity of 4600 units (adjusted quantity) minimizes the

total expected cost $495804, which is obtained from
Equation (10). This reveals that the unit purchasing cost is
20.

Step 5 SinceQj4, Qj, and Qi obtained in Step 4 are
greater than the allowable range for discount schedul
corresponding tg = 1, 2 and 3 in Table 2, the optimal
solution would not occur at this range and additional
computational procedures are not needed. Focusing o . .
Qs Q3 and Qi obtained in Step 4, we have the 6 Concluding Remarks and Observations
following results: . .

This paper incorporates the two warehouses OW and RW,
The Q33 value is above the allowable discount range quantity discounts and maintenance actions incurred for
corresponding to Table 2 fgr= 3, so there is no need to jmperfect production system concepts in order to
adjust and no optimal solution occurs; TRg, value is  generalize a Markovian EOQ model which was proposed
between 2700 and 4200 and does not have to be adjustegy Porteus 39. We have shown that the expected total
The Q55 value is below the value of 4200 and must be cost function per unit time is piecewise convex and a

adjusted to 4200 units. . N unique optimal order lot size exists such that the expected
After this step, we test the adjusted quantities: total cost is minimized. The candidate optimal lot size
boundaries have been explored to help develop solution
5,=2713  and  Qj=4200 e .
Q24 Q2s procedures. An efficient algorithm was developed to help
for the total expected cost equation. the manager in accurately and quickly determining the
(@© 2015 NSP
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order policy. Some numerical examples were given insincef;j(Q1]) is a continuous function with
order to illustrate the proposed model and algorithm. Our

numerical results have demonstrated the following lim f1;(Q1j) = —mky <0
assertions: Q0"

(1) The lowest unit purchasing cost corresponding to theand
cost discount schedule may not guarantee that the buyer _ .
could obtain the minimum expected total cost. Q“_TEOO f1j(Qij) =0 >0  (j=1,2,..,n).

(2) The lower the holding cost rate for the owned !
warehouse, the larger the optimal order quantity and
the lower the expected total cost.

(3) As the annual demand increases, the order lot size / .
and the expected total cost also increase. fij (Quj) = Qujllwej — ma(ng)*g] (B2)

(4) The higher the storage capacity of the owned

Furthermore, the first derivative ¢f;(Qq;) is given by

warehouse, the larger the order lot size and the lower (1=12,--,n).
the expected total cost. In order to illustrative the uniqueness property of the
optimal lot size forATC;j(Qq;), two cases are discussed

We have also observed that Porteuss work &9],[
Hartleys model in20] and the traditional EOQ model are
special cases of the proposed model under certaifi) If a <0, then we have
established conditions.

as follows:

f1; (Q1j) >0

Appendix A for Qij >0 andj = 1,2,---,n. In this case,f1;(Qyj) is
strictly increasing onQ; > 0. This implies that

Proof of the Lemma. Letg=1—qand, in alot of size  ATG;(Qy;) is a convex function. Therefore, if
Q, the probability distribution of the number of items

produced in the in-control staeis a<o0 and f1j(Qqj) =0,
qo (j=1,2,---,Q—1) we have a unique optimal soluti@j; such that
P{IX=j}= {
. ATC;(Qqj) =0.
°  (i=9. :

(i) If o >0, we have
Then the first moment of is given by

Q-1 g(1—1oR ! N < .<_.:i lwCj
E(X)=q Z o + Qo = w f1j (Quj) =0 for Quj = Qj Ing In ma (Ing)2
=

. L . (j=21,2,---,n).
Furthermore, the number of imperfect-quality items in a
lot of size Q becomesN = 8(Q — X) . Therefore, the This indicates thafy;(Qy;) is decreasing first and then is

expected value d¥l is given by increasing to infinity as Qi; increases for all
j=1,2,---,n. In this casef;(Qy;) is strictly increasing
E(N)=6{0Q— q1-99 on (Qqj,»). This implies thatATGj(Qy;) is a convex
q ' function given
This completes the proof of the Lemma. Qi) > Q_1J for ji=12---.n
Appendix B Therefore, if
Proof of Theorem 1.From Equations (13a) to (13c), we a>0 and f.:(01:) =0
know that Theoren holds true whem = 0 orq = 1. For 1(Q1j) =0,
the case when & g< 1, let we have a unique optimal squti@L- of ATG(Qq;) with

) ) respect t@Qj; > Qij, and thus
f1j(Quj) = Quj°AT G (Qy;) )
ks MeeiQu? ATGj (Quj) =0.

o Based upon the above discussions, we now know that

—ma(1—g +Qugiing) (Bl Theoreml holds true. We have thus completed the proof
of Theoreml.

(J :1727"' 7n)7
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Appendix C Appendix E

Proof of Theorem 2.From Equations (14a) to (14c), just Proof of Theorem 4.We consider the following cases:
as in Appendix B, Theorer holds true wherg = 0 or .
Case (i):a <0

g= 1. For the case when@q< 1, let
In view of Equation (B2) given in Appendix B, we have

f2;(Qzj) = Q2 AT Gy (Q3)) f1j(Qu)>0 and Q>0
B 1rcjQ2j% — cjW2(Ir — lw) for j=1,2,---,n. We also note that;; (Qy;) is increasing
= —mk+
2 on [0,) and
—ma(1-g% 4 Qg% Ing) (C1) f1j(0) = —mK.

(=nntint2,--.2). According to Theoren3, we have

Sincef,j(Qzj) is a continuous function with | |
f1j(Qujo) = —mar[1—g1° + Qo0 (Ing))]

0= f1;(Q4))
. CW2(|r — |W) > 1J lJ
lim  f,i(Qj) = —mlky— ——~——* <0
oam,. 2 (Q2j) ko 2 and
and
O] — o2 0 f1j(Quj1) = MR- ma[1—gPu + Qq;1g%i (InT)]
Q) o 2 (Qzy) = o0 > > 0= f1j(Q1)).
(j=nn+1Ln+2---,2). This implies that
Furthermore, the first-order derivative tf (Qy;) is given . .
by A Qi >Quo and Qi <Qu
faj (Qzj) = Qz;[lrcj — ma(Ing) %] (C2)  when a < 0. Furthermore, from Equations (15a) and
(i=nn+1Ln+2,,2). (15b), we know that
Now, in light of Equation (B2) given in Appendix B, we 0 < Q1jo = Quj1.

know that Equation (C2) is similar to Equation (B2).
Therefore, by employing the same procedure as inTherefore, we have
Appendix B, we deduce that Theoreznholds true and

thus complete the proof of Theorein 0<Qjj = Qujo = Qijn

Appendix D forj=1,2,---,n.
Proof of Theorem 3.When 0< q < 1, let Case (ii):a >0

o 0 Substituting from Equation (15b) into Equation (B1) given
B(Qj) =1-97 +QjaInT. in Appendix B for this case, we have

ThenB(Qj) is a continuous function d@; with B(0) =0 ¢ 69
and f1j(Quj1) = m[R (1_B(Q1jl)+—B(Qlj1))]

lim B(Q) = 1. q

Qj—o0

Thus, from Theoren3, we know that
Furthermore, we have

B(Q)=Q@¥(ng)?>0 for Q>0 (j=12-,2).

This implies thatB(Qj) is strictly increasing asQ;
increases, and thus Q1 = Quj

f1j(Quj1) > 0= f1j(Qy)).
This implies that

0<B(Qj) <1 whena > 0. Furthermore, from Equation (B1) given in
Appendix B and Equation (15a), we know that
forQj >0andj=1,2,---,z Therefore, we have
f1j(Q1jo) = —maB(Qujo).

0<B(Q)=1-7¥ +Qg¥Ing<1 ,
In this case, we have

forQj >0andj=1,2,---,z This evidently completes the
proof of Theorens. f1j(Qujo) < 0= f1(Qy;)
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whena > 0. This implies that Therefore, from Theorer®, we know that
Qij > Qujo. f2 (Q2j1) > 0= 2j(Qz)).

TherEfore, we have This shows that

0<Qjo<Q1<Qiz  (j=12--.n). Q5 < Qi

By combining Case (i) and Case (ii), we have completedwhen a > 0. Furthermore, from Equation (C1) given in

the proof of Theoremd. Appendix C and Equation (15b), we know that
Appendix F 25 (Qzj0) = —maB(Qyj0).

Proof of Theorem 5.We consider the following cases: In this case, we have

Case (i):a £0 .

In light of Equation (C2) given in Appendix C, we have f2j(Qzj0) < 0= 12j(Qz)

) whena > 0. This implies that
f2; (Q2j) >0 and Q>0

: : Qzj > Qzjo
forj=nn+1n+2,---,z We also note thaty; (Q;) is
increasing orf0, ) and Consequently, we have
j - 0 < Qzjo < Q3 < Q21 j=nn+in+2.---.2).
fj(0) = —mKk — 2L —w) Wz(lzr hw) o < Q2 < Qair )
) Finally, by combining Case (i) and Case (ii), we complete
Thus, according to Theore® we have the proof of Theorers.

f2; (Qzj0) = —mar [1 — G20 + Q002 (InT) |
> 0= f2;(Q5) Acknowledgements
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