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Abstract: Step Fixed-charge transportation problem (SFCTP) is considered to be one of the versions of Fixed-charge transportation
problem (FCTP) where the fixed cost is incurred for every route that is used in the solution. This is considered to be an NP-hard
problem since the cost structure causes the value of the objective function to behave like a step function. In this paper three formulae
are proposed to construct intermediate coefficient matrix as a base for finding an initial solution for SFCTP. The proposed formulae
overcome the drawbacks of one of the earlier proposed formulae, which fails to address the cases when load units become equal to
or greater than the minimum of the supplies and demand for particular route. In addition, the achieved initial solution for the SFCTP
is considered to be the best as compared to the initial solution achieved by the earlier proposed formulae in the literature. In order to
confirm the superiority of the proposed formulae, forty problems with different sizes have been solved to evaluate and demonstrate the
performance of the proposed formulae and to compare their performance with the earlier proposed formulae.
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1 Introduction

One of the versions of fixed charge transportation
problem (FCTP) is the Step Fixed-charge transportation
problem (SFCTP) where the fixed cost is incurred for
every route that is used in the solution. In SFCTP, the
fixed cost is proportional to the amount shipped. This cost
structure causes the value of the objective function to
behave like a step function. Unfortunately, not much
research has been carried out in this area.

The FCTP is considered to be an NP-hard problem.
After the fixed-charge problem was first formulated by
Hirsch & Dantzig in 1954 [1]. During 1961 Balinski [2]
showed that fixed-charge transportation problem is a
special case of fixed-charge problem and an approximate
solution was presented. Since then, considerable research
has been carried out on this topic. In 1988 Sandrock [3]
analyzed the source induced fixed-charge transportation
problem. FCTP is generally formulated and solved as a
mixed integer network programming problem.
Theoretically, the FCTP can be solved by using any
mixed integer programming solving technique. However,

these methods are not employed because of their
inefficient and expensive computation.

Most of the solution methods of FCTP can be
considered as either exact or heuristic. Exact methods
include the cutting planes method [4], the vertex ranking
method [5], and the branch-and-bound method [6]
amongst others. These methods are generally not very
useful when a problem reaches a certain level, because
they do not make the most use of the special network
structure of the FCTP. Therefore, heuristic methods have
been proposed, such as the adjacent extreme point search
method [2,7], the Lagrangian relaxation method [8,9] and
such other heuristic methods [10,11,12,13]. Although
these methods are usually computationally efficient, the
major disadvantage of heuristic methods is the possibility
of terminating at a local optimum that is far distant from
the global optimum.

Heuristic techniques for solving FCTP have been
proposed by Balinski [2]. These techniques start with
constructing a coefficient matrix and finding the optimal
solution based on it. After that Kowalski & Lev [14]
considered two more formulae in addition to Balinski’s
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and suggested a heuristic approach for improving the
derived local optimal solution found based on the
coefficient matrices which were arrived at using those
formulae.

In order to improve the solution quality of the SFCTP,
this paper critically analyses the erstwhile proposed
heuristic formulae by Balinski [2] and Kowalski & Lev
[14] for constructing the coefficient matrix as a base for
finding a good initial solution for SFCTPs. Further, three
superior formulae have been proposed, which will also
overcome the drawbacks of one of the earlier proposed
formulae. In addition to that, forty problems with
different dimensions have been solved to evaluate and
demonstrate the performance of the proposed formulae
and to compare their performance with the earlier
proposed ones.

The rest of the paper is organized as follows: in
section 2, SFCTP is described and its mathematical
model is presented. The proposed formulae are described
in section 3, followed by two illustrative examples in
section 4. In section 5 the parametric analysis is carried
out. Finally, the section 6 presents the conclusion and
scope for future work.

2 Description and modeling of SFCTP

In this section the description and mathematical model of
FCTP together with the modifications required to
formulate SFCTP are presented.

The FCTP can be described as a distribution problem
in which there are m suppliers and n customers. The
suppliers denote warehouses, plants or factories while
customers denote destinations or any demand points.
Each of the m suppliers can ship to any of the n customers
at a shipping cost per unit ci j (unit cost for shipping from
supplier i to customer j) plus a fixed cost fi j, assumed for
opening this route. Each supplier i =1, 2, . . ., m has
siunits of supply and each customer j =1, 2, . . ., n
demands d j units. xi j is the unknown quantity to be
transported on the route (i, j) from plant i to customer j.
The objective is to determine which routes are to be
opened and the size of the shipment, so that the total cost
of meeting demand, given the supply constraints, is
minimized. The mathematical model of FCTP can be
represented as in (1) to (4).

Min z =
m

∑
i=1

n

∑
j=1

(ci jxi j + fi jyi j) (1)

s.t
m

∑
i=1

xi j = d j f or j = 1, ...,n (2)

n

∑
j=1

xi j = si f ori = 1, ...,m (3)

xi j ≥ 0 ∀i, j
yi j = 0 i f xi j = 0
yi j = 1 i f xi j > 0

and
m

∑
i=1

si =
n

∑
j=1

d j (4)

In the SFCTP the fixed cost fi j for route (i,j) is
proportional to the transported amount through this route.
So, an additional cost is added when the transported units
exceeds a certain amount Ai j. The fixed cost fi j can be
divided into two parts. The first part is fi j,1which is the
fixed cost to open a route(i, j) as long as the transported
quantity xi j is less than or equal to a certain amount Ai j .
The second part fi j,2 which is the additional fixed cost
applied when the transported quantity xi j exceeds this
amount Ai j. Therefore the fixed cost fi j can be calculated
by (5).

fi j = yi j,1fi j,1 + yi j,2fi j,2 (5)

where

yi j,1 =

{
1 if xi j > 0
0 otherwise

yi j,2 =

{
1 if xi j > Ai j
0 otherwise

Incorporating (7) in the FCTP mathematical model,
the standard mathematical model of the SFCTP can be
represented as follows:

Min z =
m

∑
i=1

n

∑
j=1

(ci jxi j + yi j,1 fi j,1 + yi j,2 fi j,2) (6)

s.t
m

∑
i=1

xi j = d j f or j = 1, ...,n (7)

n

∑
j=1

xi j = si f ori = 1, ...,m (8)

xi j ≥ 0 ∀i, j
yi j = 0 i f xi j = 0
yi j = 1 i f xi j > 0

yi j,1 =

{
1 if xi j > 0
0 otherwise

yi j,2 =

{
1 if xi j > Ai j
0 otherwise

and ∑m
i=1 si = ∑n

j=1 d j
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It can be observed that, if the shipment values Ai jis
greater than or equal to the Min(si,d j)∀i, j the optimal
solution of SFCTP is an optimal solution of FCTP. i.e. If
the Ai j ≥ Min(si,d j)∀i, j, the optimal solution of SFCTP
is an optimal solution of FCTP. This solution will be the
lower bound of all solutions of SFCTP.

3 The Proposed Formula

Balinski [2] has provided a heuristic solution for FCTP.
Assuming the fixed cost as fi j,1 the Balinski matrix is
obtained by formulating a linear version of FCTP by
relaxing the integer restriction on yi jin (1)as follows,
where Mi j=Min(si ,d j):

yi j= xi j/Mi j
The linear version of FCTP will have the unit

transportation cost of shipping through the route (i, j) as
follows:

Ci j = fi j,1/Mi j + ci j (9)

Since there is no algorithm for SFCTP, any heuristic
method which provides a good solution is considered
useful. In this direction Kowalski & Lev [14] have put in
efforts to propose two heuristic algorithms. In both the
algorithms, the objective was to get a ”good initial
solution” and using this perturbing each load using single
stepping-stone moves. In the first algorithm, the integer
restriction considered in (9) by Balinski [2] has been
replaced by Ci j as represented in (10).

Ci j = (fi j,1+fi j,2)/Mi j + ci j (10)

In the second formula, the integer restriction
considered in (9) by Balinski has been replaced by Ci j as
represented in (11).

Ci j = fi j,2/(Mi j − Ai j)+ ci j (11)

A critical look at (11) reveals that the formulation fails
to consider the cases when Ai j = Mi jand Ai j > Mi j as the
values will be infinity when Ai j = Mi jand assumes negative
value in case Ai j > Mi j .

As illustrated in Fig. 1, [14] in the case of FCTP, for
every loaded route (i,j) the cost of the fixed-charge step
function formulation is greater than the corresponding cost
of the relaxed integer restriction function. The situation in
case of SFCTP is illustrated in Fig. 2 [14]. The total cost
(TCi j) for shipping Mi j units through route (i, j) can be
calculated as represented in (12).

TCi j = fi j,1 + ci jAi j,1 + fi j,2 + ci j(Mi j − Ai j) (12)

Further, (12) can be represented as in (13)

TCi j = fi j,1 + fi j,2 + ci jMi j (13)

The cost per unit (Ci j) can be calculated by dividing
(13) by Mi jand can be representedas in (14).

Ci j = (fi j,1 + fi j,2)/Mi j + ci j (14)

There are two cases of the shipped quantities which are
Ai j? Mi jandAi j < Mi j.Therefore (14) can be represented as
in (15).

Ci j =

{
fi j,1/Mi j + ci j i f Ai j ≥ Mi j

( fi j,1 + fi j,2)/Mi j + ci j i f Ai j < Mi j
∀i, j (15)

 

Aij=Mij 

c*A 

fij,1 

Cost 

Fixed 
Charged 
Function 

Quantity shipped  

Fig. 1. Shipping costs as function of quantity 
shipped along route (i, j) for FCTP 
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fij,2 
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c*(M- A) 

Cost 

Relaxed integer 
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Relaxed integer 
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Fig. 2. Shipping costs as function of quantity 
shipped along route (i, j) for SFCTP 

 
Alternately, by considering that only (Mi j-Ai j ) units

will be shipped through route (i, j), (14) can be represented
as (16).

Ci j =

{
fi j,1/Mi j + ci j i f Ai j ≥ Mi j

fi j,2/(Mi j −Ai j)+ ci j i f Ai j < Mi j
∀i, j (16)

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



664 :

In the situation when only (Mi j-Ai j ) units will be
shipped through route (i, j), and another (Mi j-Ai j ) units
shipped through another route, and if we consider that the
cost of shipping all units as the cost through the route (i,
j); the unit cost of this route can be represented as (17).

Ci j =

{
fi j,1/Mi j + ci j i f Ai j ≥ Mi j

fi j,2/Ai j + fi j,1/ (Mi j −Ai j)+ ci j i f Ai j < Mi j
∀i, j (17)

This paper aims to propose three formulae as in (15),
(16), and (17) for constructing intermediate coefficient
matrix as a base for finding a local solution for SFCTP.
Further a comparison of the performances and quality of
these proposed formulae is undertaken with the earlier
proposed formula (9) proposed by Balinski [2] and also
with the two formulae (10) and (11) proposed by
Kowalski & Lev [14]. However, it has been pointed out
that (11) fails to consider the cases when Ai j = Mi jand Ai j
> Mi j and hence the performance and quality comparison
is restricted against (10) only.

4 Illustrative Examples

This section represents two illustrative examples used to
compare the proposed three formulae (15), (16), and (17)
with the previously proposed two (9) and (10).

In the first illustration, a 4x5 step transportation
problem has been considered with parameters, viz.,
supplies si, demand d j, variable costs fi j,1, fixed costs
fi j,2, and step values Ai j as in Table 1.

The coefficient matrix generated using the formula (9)
is shown in Table 2. The corresponding solution using
QM for Windows Version 2.1 is presented in Table 3. The
total fixed costs f i j,1 and f i j,2 are 150 and 200
respectively, the total variable cost ∑m

i=1 ∑n
j=1 ci jxi j is 580,

and the total cost is 930.

Table 1: The parameters and variables of example 4×5
1 2 3 4 5 1 2 3 4 5
d j
40 20 70 10 60

si Variable cost ci j Fixed cost fi j,1
10 5 3 2 4 6 40 20 30 20 10
100 3 5 3 4 3 10 20 20 30 20
20 3 4 6 5 2 40 30 10 20 30
70 2 5 4 3 4 10 40 40 10 10

Fixed cost fi j,2 Step value Ai j
50 70 80 70 80 20 20 20 20 20
60 70 60 80 60 20 20 20 20 20
60 80 80 70 70 20 20 20 20 20
80 40 50 50 50 20 20 20 20 20

Table 2: The coefficient matrix using formula (9)
d1 d2 d3 d4 d5

s1 9.0 5.0 5.0 6.0 7.0
s2 3.3 6.0 3.3 7.0 3.3
s3 5.0 5.5 6.5 7.0 3.5
s4 2.3 7.0 4.6 4.0 4.2

Table 3: Optimal distribution for formula (9)
d1 d2 d3 d4 d5

s1 10
s2 70 30
s3 10 10
s4 40 10 20

Similarly, the coefficient matrix generated using the
formula (10) is shown in Table 4. The corresponding
solution is presented in Table 5. The total fixed costs f i j,1
and f i j,2 are 110 and 250 respectively, the total variable
cost is 620, and the total cost is 980.

Table 4: The coefficient matrix using formula (9)
d1 d2 d3 d4 d5

s1 14.0 12.0 13.0 13.0 15.0
s2 4.8 9.5 4.1 15.0 4.3
s3 8.0 9.5 10.5 14.0 7.0
s4 4.3 9.0 5.3 9.0 5.0

The coefficient matrix generated using the formulae (15)
and (16) are shown in Tables 6 and 7 respectively. It is
observed that using (15) and (16), we obtain the same local
optimal solution, as presented in Table 8. The total fixed
costs f i j,1 and f i j,2 are 140 and 140 respectively, the total
variable cost is 580, and the total cost is 860.

Table 5: Optimal distribution for formula (10)
d1 d2 d3 d4 d5

s1 0 10
s2 70 30
s3 20 0
s4 40 30

Table 6: The coefficient matrix using formula (15)
d1 d2 d3 d4 d5

s1 9.0 5.0 5.0 6.0 7.0
s2 4.8 6.0 4.1 7.0 4.3
s3 5.0 5.5 6.5 7.0 3.5
s4 4.3 7.0 5.3 4.0 5.0

Table 7: The coefficient matrix using formula (16)
d1 d2 d3 d4 d5

s1 9.0 5.0 5.0 6.0 7.0
s2 6.0 6.0 4.2 7.0 4.5
s3 5.0 5.5 6.5 7.0 3.5
s4 6.0 7.0 5.0 4.0 5.3
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Table 8: Optimal distribution for formula (15) and (16)
d1 d2 d3 d4 d5

s1 10
s2 10 70 20
s3 20
s4 40 10 20

The coefficient matrix generated using the formula (17) is
shown in Table 9. The corresponding solution is
presented in Table 10. The total fixed costs f i j,1 and f i j,2
are 150 and 140 respectively, the total variable cost is
590, and the total cost is 880.

Table 9: The coefficient matrix using formula (17)
d1 d2 d3 d4 d5

s1 9.0 5.0 5.0 6.0 7.0
s2 6.5 6.0 6.4 7.0 6.5
s3 5.0 5.5 6.5 7.0 3.5
s4 6.5 7.0 7.3 4.0 6.8

Table 10: Optimal distribution for formula (17)
d1 d2 d3 d4 d5

s1 10
s2 20 60 20
s3 20
s4 40 10 20

The comparative statement of the total costs for the
illustration using the different formulae is summarized in
Table 11.

Table 11: Summary of total costs using different
formulae.

Formula
f i j,1 f i j,2 ∑m

i=1 ∑n
j=1 ci jxi j Total

Cost
(10) 150 200 580 930
(11) 110 250 620 980
(14) 140 140 580 860
(15) 140 140 580 860
(16) 150 140 590 880

As summarized in Table 11, the results using the
proposed three formulae 15, 16 and 17 are superior to the
ones proposed earlier. Further, the quality of the results
using the formulae 14 and 15 are superior to the results
obtained using 16.

In the next illustration, a problem with a higher
dimension, viz., 5x10 has been considered. Table 12 gives
the parameters and variables used for the example of size
5x10.

Table 12: The parameters and variables of example 5×10
1 2 3 4 5 6 7 8 9 10
d j
40 20 50 10 10 20 30 30 50 40

si Variable cost ci j
20 4 5 5 2 2 4 4 2 8 4
40 4 4 7 5 6 5 7 6 7 5
90 4 6 3 8 4 3 3 3 5 7
60 5 6 3 6 6 4 6 8 2 2
90 3 5 5 8 3 8 5 7 4 6

Fixed cost fi j,1
100 170 190 100 170 150 190 170 150 200
110 170 170 200 180 160 180 180 170 140
120 120 170 100 120 170 130 160 110 190
130 120 130 180 160 140 170 180 190 110
110 180 160 170 130 120 110 160 160 120
Ai j
40 30 40 50 40 30 20 40 50 40
10 50 30 40 30 50 20 30 20 10
50 40 40 10 50 20 30 10 30 20
40 10 30 20 20 40 50 20 20 30
20 30 20 20 10 30 50 20 40 50
Fixed cost fi j,2
210 400 280 370 320 210 300 220 230 210
290 340 340 280 360 330 200 390 310 400
360 300 330 290 290 400 310 210 350 390
390 220 220 250 330 290 370 310 350 280
340 320 270 270 270 320 360 220 370 280

The coefficient matrix and the corresponding solution
generated using the formula (9) is shown in Tables 13 and
14. The total fixed costs f i j,1 and f i j,2 are 1790 and 1200
respectively, the total variable cost is 960, and the total
cost is 3950.

Table 13: The coefficient matrix using formula (9)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 9.0 13.5 14.5 12.0 19.0 11.5 13.5 10.5 15.5 14.0
s2 6.8 12.5 11.3 25.0 24.0 13.0 13.0 12.0 11.3 8.5
s3 7.0 12.0 6.4 18.0 16.0 11.5 7.3 8.3 7.2 11.8
s4 8.3 12.0 5.6 24.0 22.0 11.0 11.7 14.0 5.8 4.8
s5 5.8 14.0 8.2 25.0 16.0 14.0 8.7 12.3 7.2 9.0

Table 14: Optimal distribution for formula (9)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 10 10
s2 10 20 10
s3 30 30 30
s4 20 0 40
s5 30 10 50

Tables 15 and 16 give the coefficient matrix and the
corresponding solution generated using the formula (10).
The total fixed costs f i j,1 and f i j,2 are 1500 and 1640
respectively, the total variable cost is 1140, and the total
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cost is 4280.

Table 15: The coefficient matrix using formula (10)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 19.5 33.5 28.5 49.0 51.0 22.0 28.5 21.5 27.0 24.5
s2 14.0 29.5 19.8 53.0 60.0 29.5 19.7 25.0 19.0 18.5
s3 16.0 27.0 13.0 47.0 45.0 31.5 17.7 15.3 14.2 21.5
s4 18.0 23.0 10.0 49.0 55.0 25.5 24.0 24.3 12.8 11.8
s5 14.3 30.0 13.6 52.0 43.0 30.0 20.7 19.7 14.6 16.0

Tables 17 and 18 give the coefficient matrix and the
corresponding solution generated using the formula (15).
The total fixed costs f i j,1 and f i j,2 are 1770 and 220
respectively, the total variable cost is 1150, and the total
cost is 3140.

Table 16: Optimal distribution for formula (10)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 0 20
s2 40 0
s3 20 10 30 30
s4 20 0 40
s5 30 10 50

Table 17: The coefficient matrix using formula (15)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 9.0 13.5 14.5 12.0 19.0 11.5 13.5 10.5 15.5 14.0
s2 14.0 12.5 19.8 25.0 24.0 13.0 19.7 12.0 19.0 18.5
s3 7.0 12.0 13.0 18.0 16.0 11.5 7.3 15.3 14.2 21.5
s4 8.3 23.0 10.0 24.0 22.0 11.0 11.7 24.3 12.8 11.8
s5 14.3 14.0 13.6 25.0 16.0 14.0 8.7 19.7 14.6 9.0

Table 18: Optimal distribution for formula (15)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 10 0 10
s2 20 20
s3 40 20 30
s4 50 0 10
s5 10 40 40

Corresponding Tables using formula (16) are Tables 19
and 20, resulting in the total fixed costs f i j,1 and f i j,2 as
1770 and 620 respectively, the total variable cost
∑m

i=1 ∑n
j=1 ci jxi jis 1190, and the total cost is 3580.

Table 19: The coefficient matrix using formula (16)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 9.0 13.5 14.5 12.0 19.0 11.5 13.5 10.5 15.5 14.0
s2 13.7 12.5 41.0 25.0 24.0 13.0 27.0 12.0 22.5 18.3
s3 7.0 12.0 36.0 18.0 16.0 11.5 7.3 13.5 22.5 26.5
s4 8.3 28.0 14.0 24.0 22.0 11.0 11.7 39.0 13.7 30.0
s5 20.0 14.0 14.0 25.0 16.0 14.0 8.7 29.0 41.0 9.0

Table 20: Optimal distribution for formula (16)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 10 10
s2 20 20
s3 40 0 10 10 30
s4 0 10 50
s5 50 40

Corresponding Tables using formula (17) are Tables 21
and 22, resulting in the total fixed costs f i j,1 and f i j,2 as
1810 and 220 respectively, the total variable cost
∑m

i=1 ∑n
j=1 ci jxi jis 1460, and the total cost is 3490.

Table 21: The coefficient matrix using formula (17)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 9.0 13.5 14.5 12.0 19.0 11.5 13.5 10.5 15.5 14.0
s2 36.7 12.5 35.3 25.0 24.0 13.0 35.0 12.0 31.0 49.7
s3 7.0 12.0 28.3 18.0 16.0 11.5 7.3 32.0 22.2 36.0
s4 8.3 40.0 16.8 24.0 22.0 11.0 11.7 41.5 25.8 22.3
s5 25.5 14.0 23.8 25.0 16.0 14.0 8.7 34.0 29.3 9.0

Table 22: Optimal distribution for formula (17)
d1 d2 d3 d4 d5 d6 d7 d8 d9 d10

s1 20
s2 10 30
s3 40 0 10 10 30
s4 50 10
s5 10 10 30 40

The comparative statement of the total costs for the
illustration using the different formulae is summarized in
Table 23.

Table 23: Summary of total costs using different
formulae.

Formula
f i j,1 f i j,2 ∑m

i=1 ∑n
j=1 ci jxi j Total

Cost
(10) 1790 1200 960 3950
(11) 1500 1640 1140 4280
(14) 1770 220 1150 3140
(15) 1770 620 1190 3580
(16) 1810 220 1460 3490

As summarized in Table 23, the results using the
proposed three formulae 15, 16 and 17 are superior to the
ones proposed earlier. Further, the quality of the results
using the formula 15 is superior to the results obtained
using rest of the formulae.

From the above two illustrations it can be observed
that there exist formulations of the intermediate
coefficient matrix Ci j which yield superior coefficient
matrix as a base for finding a local solution for SFCTPs
as compared to the earlier proposed formulations. In order
to further explore the effectiveness of the proposed
formulae, the results based on different problems with
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eight dimensions ranging from 3x3 to 20x20 and with
different Ai j were analyzed. The values of Ai j were
considered as both fixed as well as variable values for
different problems. The details of analysis and the results
are presented in the next section.

5 Parametric analysis

In this section different illustrative examples are
considered to discover the best formulation of the
function for determining the intermediate coefficient
matrix, Ci j from among the earlier proposed two and the
newly proposed three formulations. Random numbers
were generated using Excel for determining the problem
parameters and for generating the coefficient matrix
corresponding to each formulation. The problem is solved
using the Transportation Module using QM for Windows,
Version 2.1. These solutions are taken to Excel sheet to
find the corresponding fixed costs, variable costs and total
costs for each problem. Because the scale of the functions
in each problem will be different, they cannot be
compared directly. Therefore, the Relative Percentage
Deviation (RPD) is used for each combinatioin [15]. RPD
is calculated by using (18).

RPD =
A lgsol −Minsol

Minsol
×100 (18)

where Algsol and Minsol are the obtained TCi j values for
each replication of trial for a given dimension and the
obtained best solution, respectively. After converting the
objective values to RPDs, the mean RPD is calculated for
each dimension. Problems with eight dimensions ranging
from 3x3 to 15x20 were considered for illustrations. For
each dimension, five problems with different values for
each characteristic (both fixed and variable values) have
been generated and used to calculate the average costs
and RPD values for each dimension. Thus, a sample of 40
problems have been generated and solved. The
characteristics of the test problems considered are
presented in Table 24.

Table 24: Characteristics of SFCT test problems
Pro.
size

Range
of (d j)
, (si)

Rang
of (ci j)

Rang
of(fi j,1)

Rang
of(fi j,2)

LL UL LL UL LL UL LL UL
3x3 50 100 1 3 10 20 20 50
4x5 150 250 1 9 10 40 30 70
5x10 200 500 1 9 10 50 30 90
10x10 300 500 1 9 100 200 200 400
10x15 500 1000 1 9 100 500 200 600
15x15 500 2000 1 9 100 500 200 600
15x20 1000 3000 1 9 100 500 200 700
20x20 1000 3000 1 9 100 500 200 700

All the 40 problems considered were solved to find the
total cost of the associated SFCTP and subsequently the
corresponding RPDs for each of the earlier proposed two
and the newly proposed three formulae. The values of
average RPDs, based on five illustrative examples for
each of the eight dimensions considered using the five
formulae and the overall mean RPD for each of the
formulae are presented in Table 25.

Based on the results presented in Table 25, the overall
mean RPD of formula (15) is providing the least value as
compared to the other formulae. This is followed by the
other two proposed formulae, viz., (17) and (16)
respectively. Hence, it can be concluded that the newly
proposed three formulae are superior and can be used as a
better alternative for constructing coefficient matrix as a
base for finding a local solution for SFCTPs as compared
to the earlier used formulae (9) and (10).

Table 25: The comparitive results of the averageRPD for
the proposed formulae

Form-
ulas

Average RPD of the test problems Mean
RPD

3x3 4x5 5x10 10x1010x1515x1515x2020x20
(10) 2.1 4.0 10.5 10.2 9.1 2.3 2.4 14.5 6.89
(11) 4.6 3.4 12.4 8.6 8.7 6.6 1.3 16.2 7.73
(15) 0.0 2.9 0.0 0.0 0.0 0.0 0.0 0.0 0.36
(16) 0.5 3.4 7.3 11.0 8.1 0.5 2.9 7.7 5.18
(17) 3.6 0.0 9.5 3.8 8.4 1.7 9.4 3.8 5.03

In addition to the above, in order to statistically test the
significance of effectiveness of the results using different
formulae, paired sample t-tests were used to determine
the significant differences in the RPD values obtained
using the five formulations, for each of the pairs. For the
purpose of comparisons the RPD values obtained using
all the 40 problems were used. The results of the tests are
summarized in Table 26.

Table 26: The p-values of paired sample t-tests
Formulae p-value(2-Tailed)

(17) (16) (15) (11)
(10) 0.293 0.188 0.000 0.530
(11) 0.155 0.107 0.000
(15) 0.000 0.000
(16) 0.993

As illustrated in Table 26, it can be concluded at 0.01
level of significance the quality of the results using the
proposed formula (15) provides the coefficient matrix
which yields the total cost which is significantly lower
than those provided by the rest of the formulae. Hence,
the proposed formula (15) can be considered as the best
alternative as compared to the formulae provided by
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Balinski [2] and Kowalski & Lev [14] for solving
SFCTPs.

6 Conclusion

Three formulae have been proposed in this paper for
constructing intermediate coefficient matrix as a basis for
finding a local solution for SFCTPs. In addition, a
comparison of the performances and quality of these
proposed formulae is undertaken with the earlier
proposed formulae proposed by Balinski [2] and also with
the two formulae proposed by Kowalski & Lev [14]. It is
proved that one of the formulae (11) proposed by
Kowalski & Lev [14] fails to consider the cases when Ai j
= Mi jand Ai j > Mi j as the values will be infinity when Ai j
= Mi jand assumes negative value in case Ai j > Mi j. In
order to compare the formulae for their effectiveness, the
results based on different problems with differing
dimensions and with different Ai j were analyzed. Tests of
hypotheses were performed and proved that one of the
proposed formulae (15) provides the intermediate
coefficient matrix Ci j which yields significantly lower
total costs as compared to the remaining formulae.

Further work includes more experiments with the
parameters of SFCTP and testing the proposed SFCTP on
other real life problems. In addition, investigating the
usage of metaheuristic techniques such as artificial
immune systems, tabu search, particle awarm, simulated
annealing and genetic algorithms for solving SFCTP will
be explored.
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