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Abstract: The analysis of systems of gambling, in which the gambler attempts to overcome a disadvantage of unfavorable odds
in a sequence of plays by judicious choice of bet sizes, has been a recurring theme in the development of probability theory. The
impossibility of these and related systems has at times been used to formalize the notion of a random sequence of trials. A more modern
approach is to prove theorems to the effect that such systems fail with probability tending to unity as the number of trials increases.
That failure of systems is here made more precise with a strong convergence result first stated by Thorp in his book, The Mathematics
of Gambling [1] . Thorp’s proof outline [2] apparently relies on the invalid assumption that the amounts won or lost on different trials
are independent. Building on previous analyses by Doob [3] and Feller [4], we obtain a corrected proof.
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1 Introduction

1.1 Background

Suppose a gambler places bets on each of a sequence of
games of roulette. If the ball lands on his number, his
initial wager is returned to him, plus an additional 35
times that amount. Otherwise, he loses the amount he
wagered. Since there are 38 slots on the wheel (1 through
36, zero, and double zero), the gambler would need to
receive 37:1 payout odds to make the game fair. Thus on
any given trial, the gambler has a slight negative
expectation. In particular, he loses 2/38, or slightly more
than 5 cents, for every dollar bet on average [5].

Gamblers are typically aware of this disadvantage.
But many of them are convinced that by varying the size
of their wager in accordance with a strategy or “system”,
the disadvantage on any single trial can be reversed over
the course of a sequence of trials. Indeed, one frequently
finds books recommending such systems in the gaming
section of the any bookstore. Bearing such impressive
names as Martingale, LaBouchere, d’Alembert [6], the
common theme of these systems is that they are
“progressive.” That is, as long as the bettor is losing, he
chases his losses by making increasingly large wagers so

that when he finally has some good luck he recovers his
losses, plus a small amount. This will happen eventually,
it is reasoned, and then the process can be repeated.

In practice, when odds are unfavorable, such systems
may not work out precisely according to expectations.
Eventually, a string of bad luck may either bankrupt the
gambler, or require him to place a bet that exceeds the
maximum limit allowed by the casino. Since bet sizes
increase roughly exponentially in progressive systems, a
disastrous losing streak need not be very long [1].

Therefore, we shall consider only systems that have
been modified to operate between the minimum and
maximum bet limits, and therefore can no longer
guarantee a small win with probability one [2]. Before
proceeding, it is worth noting that even in the ideal case
of unlimited funds and no cap on the bet size, a gambler
following a progressive strategy faces the unlikely
(probability zero) but real possibility of an unending
sequence of exponentially increasing losses. This is not
attractive given that the gambler wins only modest sums
when the system works as advertised. In such an idealized
situation, it is not clear that the theoretically positive
expectation makes the bet “rational.”
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1.2 Plan of Paper

Having thus restricted ourselves to systems that can be
implemented in practice, we will show in Section 3 that
when minimum and maximum bet limits are imposed,
any system for choosing the size of the current bet based
on the results of previous wagers must fail in the
following sense, stated by Thorp [1]:

–First, given any initial capital, the probability that the
gambler has been ruined before the nth trial tends to
one as n increases. This result corresponds to the weak
law of large numbers.

–Second, if the player has unlimited capital and
continues to play forever, his average gain per unit
wagered will converge almost surely to the expected
value of a single unit bet, which is assumed to be
negative. This result corresponds to the strong law of
large numbers.

Surely, no system with such inevitably poor long-term
results can be properly called a “winning” system. The
most that can be said for it is that it may often result in a
small win, all the while running the risk of a huge loss.

In Section 4, we extend these results to two slightly
more advanced cases, in which the bettor gets to choose
among multiple wager options as well as their size, and
also in which the wager has more than two outcomes.

In Section 5, we discuss the similarities and differences
between these results and the more standard Strong Law of
Large Numbers theorems, drawing attention to the typical
lack of independence between amounts won on different
trials. We give examples to show that the ordinary sample
mean of the amounts won need not converge in any of the
usual senses: in probability or almost surely.

To prove these two basic results in Section 3, we will
require two elementary lemmas. They are presented in
Section 2.

2 Two Lemmas

Lemma 1. If {Xn} and {Yn} are sequences of random
variables such that Xn

a.s.−−→ 0 as n −→ ∞, and for some λ ,
|Yn| ≤ λ for all n, then we have that

XnYn
a.s.−−→ 0, as n−→ ∞. (1)

Proof. By assumption, for every ε > 0,
P({|Xn| > ε i.o.}) = 0. Then for every ε ′ > 0 we must
have:

P({|XnYn|> ε
′ i.o.}) = P({|XnYn|> ε

′ i.o.},∀n|Yn| ≤ λ )

+P({|XnYn|> ε
′ i.o.},∃n|Yn|> λ )

≤ P({|Xn|> ε
′/λ i.o.})

= 0. (2)

The result follows. ut

Lemma 2. Suppose that there are M nondecreasing
sequences

{
{n j} : 1≤ j ≤M; ∑

M
j=1 n j = n

}
of random

variables, taking natural number values, which sum to n
(and are thus indexed by n, although it is not shown
explicitly), where we also suppose that for each
j ∈ {1,2, ...,M}, we have n j −→ ∞ as n −→ ∞. Further,
suppose that there are M sequences of r.v.’s
{X jn j : 1 ≤ j ≤ M} such that X jn j

a.s.−−→ 0 as n j −→ ∞ for
each j, 1≤ j ≤M, as n−→ ∞. Then we have

M

∑
j=1

n j

n
X jn j

a.s.−−→ 0, as n−→ ∞. (3)

Proof. For each j, the sequence {Yjn} = {
n j
n } is bounded

between 0 and 1 as n−→∞. Applying Lemma 1, we get for
each j ∈ {1,2, ...,M}

n j

n
X jn j

a.s.−−→ 0, as n−→ ∞. (4)

Then the result follows from the linearity of almost
sure convergence. ut

3 Failure of Gambling Systems

Here we use the preceding lemmas together with
properties of almost sure convergence to extend the result
given in Feller [4] that a gambler restricted to a fixed bet
size cannot obtain an advantage by selecting a
sub-sequence of trials on which to bet. From this we will
obtain the two results stated in Subsection 1.2 above. We
will consider the case of unlimited capital first in
Subsection 3.1, followed by the case of finite starting
capital in Subsection 3.2.

3.1 Unlimited Capital

Feller [4, pp. 185-187] analyzed “systems” in which the
bet size is fixed, but the gambler may decline to bet on
certain trials of his choice. Feller’s analysis uses the result
of Doob [3] that sub-sequences of independent Bernoulli
trials are themselves i.i.d Bernoulli sequences. Provided
that the gambler wagers infinitely often, his long-term
results are asymptotically no different than if he had
wagered on all trials. By the SLLN for i.i.d. Bernoulli
sequences, the fraction of bets won will tend to the
success probability p. By assumption, the odds O paid on
winning bets is such that the game is unfair: pO − q < 0.
Thus the gambler will be a long-term loser almost surely.

With our two lemmas, the SLLN for Bernoulli
sequences, and Doob’s result on subsequences, we may
draw conclusions about the long-run performance of a
gambling system in which the bet size is varied from one
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trial to the next. First, we will consider that the gambler
has unlimited access to capital, and thus continues
playing forever.

Initially, we assume that the gambling system is such
that each wager size occurs infinitely often with unit
probability. Then we will show the restriction can be
relaxed.

By Doob’s result, the sub-sequences on which the
player bets j = 1,2, ...,M units are each infinite, i.i.d.
Bernoulli sequences. We are assuming that n j −→ ∞ as
n −→ ∞ for each j. Thus for each such sub-sequence, the
SLLN applies. Let S jn j = ∑

n j
i=1 I ji, where I ji = 1 if the ith

bet of the jth sequence (of j-unit bets) wins and is zero
otherwise. Then by the SLLN, for each j, 1≤ j ≤M,

S jn j

n j
− p a.s.−−→ 0, as n j −→ ∞ (and thus as n−→ ∞).

(5)

From this we obtain:

Wjn j

n j
− j[(O +1)p−1] a.s.−−→ 0, (6)

where Wjn j = j[(O + 1)Sn j − n j] is the net gain from
all bets of size j units during the first n trials. Rewriting
the above convergence relation, we get

Wjn j

n j
− j(pO−q) a.s.−−→ 0 for j ∈ {1,2, ...,M}, (7)

which, by virtue of the second lemma, results in

M

∑
j=1

n j

n

[
Wjn j

n j
− j(pO−q)

]
a.s.−−→ 0, as n−→ ∞. (8)

This is the same as Wn
n −

An
n (pO − q) a.s.−−→ 0, where

Wn = ∑ j Wjn j is the total net gain after n trials, and
An = ∑ j jn j is the total amount wagered (known as the
action). Finally, the sequence Yn = n

An
is a bounded

sequence with 1/M ≤Yn ≤ 1. Therefore, we can apply the
first lemma again to obtain our first result:

Wn

An
− (pO−q) a.s.−−→ 0, as n−→ ∞. (9)

Now we relax the requirement that all bet sizes are
used infinitely often. Since we are assuming that the
betting continues forever, at least one bet size must occur
infinitely often. Assume that, for the system S in
question, some bet size, say j = M, occurs only finitely
often with nonzero probability. Then it is easy to
construct a system S ′ with the same convergent behavior

as S , but in which wagers of size j = M occur infinitely
often. Starting with S , the idea is simply to substitute
size j = M for one of the more persistent sizes at
increasingly long intervals, in such a way that the ratio
nM/n is not affected as nM −→ ∞. This has no effect on the
long-run tendency of Wn/An. Then, since the above result
applies to the modified system S ′, it must apply to the
original system S as well. Thus we have shown the
following:

Theorem 1. For the case of unlimited starting capital, the
ratio of the net gain Wn to the total amount wagered An
converges almost surely as follows:

Wn

An

a.s.−−→ pO−q, as n−→ ∞. (10)

From this we conclude that a gambler following any
system of choosing bet sizes based on previous results will
eventually become a loser and stay a loser forever, with
probability one. And the ratio of his total losses to total
action will tend to converge to the expectation on a single
unit wager.

3.2 Finite Starting Capital

Since almost sure convergence implies convergence in
probability, we immediately have that for any ε > 0,

P(Wn > An(ε + pO−q))≤ P
(∣∣∣∣Wn

An
− (pO−q)

∣∣∣∣> ε

)
−→ 0, (11)

as n−→∞. Since pO−q< 0 by assumption, for small ε

we have ε +(pO−q)< 0 as well. Given any initial capital
C, however large, for sufficiently large n we will have

An(ε + pO−q)<−C. (12)

Therefore, we have as our second result,

Theorem 2. Given finite starting capital C, the net gain
Wn satisfies:

P(Wn >−C)≤ P(Wn > An(ε + pO−q))−→ 0. (13)

Thus the probability that the gambler has any capital
remaining after n trials tends to zero.

4 Two Extensions

The above result can be extended in two different
directions.
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4.1 Extension I

The first is to assume that, at the start of each new play, one
may choose among L different binary wagers. Each wager
has its own success probability pi and odds Oi paid out on
wins. Following the previous analysis, the net gain after n
plays becomes

Wn =
M

∑
j=1

L

∑
i=1

j
[
(Oi +1)Si jni j −ni j

]
, (14)

where ni j is the number of times a bet of size j was
placed on wager option i during the first n plays. Thus
∑i ∑ j ni j = n.

Similarly, the total amount wagered An is the sum of
all the amounts wagered on each of the L options: An =
∑

L
i=1 Ain = ∑

L
i=1 ∑

M
j=1 jni j = ∑

M
j=1 jn j. Here n j is simply

the number of bets of size j placed in the first n plays,
regardless of which option they were placed on.

Using the two lemmas as before, we obtain,

Wn

An
− ∑

L
i=1 Ain(piOi−qi)

An

a.s.−−→ 0. (15)

This result agrees with our intuition that the average
gain per unit bet should tend to converge to a weighted
average of the expectations for each of the L wager
options, where the weights are the total amounts wagered
on each option.

4.2 Extension II

A second extension is to consider that, instead of multiple
wager options to choose from at each play, there is a
single option that is non-binary. Specifically, there are
K + 1 possible outcomes for each trial:
Ω = {ω0,ω1,ω2, ...,ωK}. If outcome ω0 occurs, the
amount wagered is lost. This happens with probability
p0 = q. For k = 1,2, ...,K, if outcome ωk occurs, the
bettor wins Ok times the amount wagered. This happens
with probability pk, and we have that q+∑

K
k=1 pk = 1.

An analysis entirely analagous to the ones above gives
the result

Wn

An

a.s.−−→−q+
K

∑
k=1

pkOk. (16)

The average gain per unit wagered converges almost
surely to the expectation of a unit wager, which was to be
expected.

5 Discussion

There are a couple of observations to be made. First of all,
while the sequence of Bernoulli trials {Xk} that the player
wagers on is assumed to consist of independent trials, the
actual sequence of gains and losses are not generally
independent. Suppose that the amount wagered, Yk on a
given trial is determined by the outcomes of previous
trials. Then the amount Bk won on the kth trial is a
random variable:

Bk = Yk[(O +1)Xk−1]. (17)

To see that the gains on different trials are not in
general independent, consider this simplistic gambling
system: Bet one unit on the first trial. If it is a success, bet
the maximum of M units thereafter. If it is a failure,
continue betting the minimum of one unit thereafter.
Assuming the wager pays even money (that is, O = 1), it
can be shown that the covariance of B1 and Bk is
proportional to p−q:

Cov(B1,Bk) = (p−q)[pM−q− (p−q)(pM+q)]
= 2pq(p−q)(M−1). (18)

In Thorp’s treatment of this problem, the Bk’s are
considered to be independent [2, p. 85]. This assumption
appears to be a necessary part of the derivation, thus
invalidating the proof.

A second observation is that the strong convergence
result proved here concerns the ratio of two random
variables, rather than an ordinary sample mean. The total
amount wagered An is random because bet sizes depend
on the outcomes of previous trials. Further, while the
result could be rearranged into a format more
recognizable for SLLN-type results, i.e.

Wn

n
− An

n
(pO−q) a.s.−−→ 0, (19)

which refers to the sample mean of the winnings per
bet, it is not merely an immediate result of any of the
standard laws of large numbers. For example, it is not
possible to conclude that

Wn

n
− E[An]

n
(pO−q) a.s.−−→ 0, (20)

as we could if the gains on different trials were
independent (though not identically distributed). In other
words, we cannot conclude that the sample mean of the
gain from a wager converges almost surely to average
expected gain per trial. Although the restrictions on bet
sizes guarantees that the individual wagers have finite

c© 2020 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett. 9, No. 2, 31-36 (2020) / www.naturalspublishing.com/Journals.asp 35

mean and variance, the possible long-range dependence
between bet sizes and previous outcomes prevents us
from saying that the sample mean will converge in the
above sense. Thus Kolmogorov’s SLLN for independent
r.v.’s with variance restrictions does not apply [7, p. 94].

To see this, consider once more the strategy in which
all bets on trials k = 2,3,4, ... are the same size: the
minimum (one unit) if the first trial was a failure, or the
maximum (M units) if it was a success. For all trials after
the first, the expected size of a bet is thus pM + q, and
therefore E[An]/n −→ pM + q as n −→ ∞. However, the
sample mean Wn/n converges either to M(pO − q) or
pO − q according as the first trial was a success or a
failure.

It is even easier to see that the most well known
versions of the SLLN, in which the sample mean
converges to a contant value, cannot apply here. A betting
scheme which is completely deterministic can result in
the non-convergence of the sample mean. For example,
by simply alternating between betting the minimum, the
maximum, and an intermediate value for periods of
exponentially increasing length, the sample mean will
continually bounce between three values.

Below we simulate a Bernoulli sequence where the
success probability is p = 1/3. The odds paid out are only
O = 1.5, less than the 2:1 odds required to make the game
fair. The bettor makes wagers of 1 unit on the first 100
trials, 100 units on the next 1000 trials, and 50 units on
the next 10000 trials.

Fig. 1: Plot of sample mean for 100 Bernoulli trials with
p = 1/3 and O = 1.5

. Bet size is 1 unit.

In Figure 1, we plot the sample mean of the gain over
100 trials of unit bets. We see that the bettor starts off on a
losing streak, but soon recovers. The sample mean
approaches the expected value of -1/6.

During the next 1000 trials, the bettor wagers 100
units each trial. In Figure 2 we see that the sample mean
now starts to approach the expectation of a single wager,

Fig. 2: Plot of sample mean for 1100 trials with p = 1/3
and O = 1.5. Bet size increases to 100 units for the last
1000 trials.

−100/6 ≈ −16.67. The fluctuation about that value is
still considerable, since the number trials is not yet large.
The influence of the first 100 small bets is negligible.

Fig. 3: Plot of sample mean for 11100 trials with p = 1/3
and O = 1.5. Bet size decreases to 50 for last 10000 trials.

The next 10000 trials involve bets of 50 units each. In
Figure 3, the sample mean starts to approach the
theoretical expectation of −50/6 ≈ −8.33 quite closely
after around 6000 trials. From these three plots, we see
that during each stage of constant bet size, the sample
mean starts to converge before changing abruptly when
the bet size suddenly changes. Thus there is no long-run
convergence.

However, in Figure 4 we see that the sample average
winnings per unit wagered, Wn/An, converges to the
expected value of a unit bet, which is −1/6 in this
simulation.
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Fig. 4: Plot of sample gain per unit wagered for 11100
trials with p = 1/3 and O = 1.5.

6 Conclusion

In this paper we have confirmed Thorp’s results on the
failure of gambling systems, offering a corrected proof
that does not assume that the amounts won on different
trials are independent. In particular, we have shown

–Given any initial capital, the probability that the
gambler has been ruined before the nth trial tends to
one as n increases.

–Second, if the player has unlimited capital and
continues to play forever, his average gain per unit
wagered will converge almost surely to the expected
value of a single unit bet, which is assumed to be
negative.

Our approach for dealing with the potential
dependence between amounts won followed that of
Feller’s analysis [4, pp. 185-187] of systems where the
bet size is fixed, but the bettor has the option to wager or
not on any trial (provided he wagers infinitely often). This
analysis uses Doob’s result [3] that a sub-sequence of a
sequence of i.i.d. Bernoulli trials, in which a trial is
selected or not based only on the outcomes of previous
trials, is itself an i.i.d Bernoulli sequence. That result
effectively allows us to consider the sequence of trials and
wagers as M separate sequences running concurrently.
Since each of these concurrent sequences is an i.i.d
Bernoulli sequence on which bets of constant size are
made, the ordinary SLLN for Bernoulli sequences
provides the convergence behavior. Then the linearity
property of strong convergence, together with two
elementary lemmas, led to the conclusion that the ratio of
the net gain to the total amount wagered converges almost
surely to the expectation of a single unit wager.

We have extended this result to sequences of trials in
which there are more than two outcomes, and also to
sequences in which the bettor has a choice among several
different wagers.

Finally, we noted that the strong convergence result,
while very similar to the statement of the strong law of
large numbers, does not appear to be a direct application
of any of the more well-known versions of it. Of course,
the SLLN plays a crucial role in the proof, and it is
satisfying that the most elementary version of it (for
Bernoulli sequences) is sufficient.
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