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Abstract: ANOVA is a classical test statistics for testing the equality of groups. However this test is very sensitive to nonnormality as
well as variance heterogeneity. To overcome the problem of nonnormality, robust method such as Ft test statistic can be used but the
test statistic can only perform well when the assumption of homoscedasticity is met. This is due to the biasness of mean as a central
tendency measure. This study proposed a robust procedure known as modified Ft method which combines the Ft statistics with one of
the popular robust scale estimators, MADn, Tn and LMSn. A simulation study was conducted to compare the robustness (Type I error)
of the method with respect to its counterpart from the parametric and non parametric aspects, ANOVA and Kruskal Wallis respectively.
This innovation enhances the ability of modified Ft statistic to provide good control of Type I error rates. The findings were in favor of
the modified Ft method especially for skewed data. The performance of the method was demonstrated on real education data
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1 Introduction

Classical statistical methods such as ANOVA which are
frequently used by researchers to test their work are
confined to certain assumptions. One of the assumptions
is that the population under study is normally distributed.
The uninformed usage of this method under violations of
their assumption eventually will result in unreliable
findings. Can we imagine the degree of the damage done
to the research due to this mistake? However, most
researchers are not aware of the seriousness of the error
because they are only the users of the statistical methods.
Most quantitative researchers, especially in the field of
business, economics, and social sciences, rely heavily on
the classical methods to solve their problems. Continuous
use of the classical methods without considering the
assumptions will most probably generate erroneous
results.

The emergence of alternatives such as robust methods
could help to reduce the error and improve the statistical
testing regardless of the sample sizes. The need and
effectiveness of robust methods have been described in
many papers and books since decades ago (e.g. [5], [4]
and [13]. Departures from normality originate from two
problems, i.e. skewness and the existence of outliers.

These problems could be remedied by using
transformation such as exponential, logarithm and others
but sometimes, even after the transformation, problems
with non normal data still occur. Simple transformations
of the data such as by taking logarithm can reduce
skewness but not for complex transformations such as the
class of Box-Cox transformations [18]. However,
problems due to outliers still exist. According to [18], a
simple transformation can alter skewed distributions to
make them more symmetrical, but the approach does
directly eliminate outliers.

In our study, we would like to suggest a statistical
procedure that is known to be able to handle the problems
of nonnormality. Known as the modified Ft statistics, this
procedure is categorized under robust statistics. Robust
statistics combine the virtues of both parametric and
nonparametric approaches. In nonparametric inference,
few assumptions are made regarding the distribution from
which the observations are drawn. In contrast, the
approach in robust inference is different wherein there is a
working assumption about the form of the distribution,
but we are not entirely convinced that the assumption is
true. Robustness theories can be viewed as stability
theories of statistical inference and signify insensitivity to
small deviations from the assumptions [5]. What is
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desired is an inference procedure, which in some sense
does almost as well as if the assumption is true, but does
not perform much worse within a range of alternatives to
the assumption. The theories of robustness consider
neighborhoods of parametric models and thus belong to
parametric statistics. A robust procedure usually adopts
what might be called an ”applied parametric viewpoint”,
which according to [5] uses a parametric model. This
model is hopefully a good approximation to the true
underlying situation, but we cannot assume that it is
exactly correct. Frequently in discussions of robustness,
the assumed distribution (probability density function) is
normal; therefore, the type of robustness of interest is
”robustness to non-normality”.

The proposed procedure of modified Ft to be adopted
in this study is among the latest procedures in robust
statistics, was proposed by [10]. This procedure is for
testing the equality of the central tendency measures for J
groups with H0 : θ1 = θ2 = . . . = θJ , where θJ is the
central tendency parameter corresponding to distribution
FJ : J = 1,2, . . . ,J. Modified Ft uses trimmed mean as the
central tendency measures.

2 Methods

In this section, we discussed on the modified Ft method,
which combines Ft statistics with scale estimators
suggested by [14].

2.1 Ft Statistics

The original Ft statistic or trimmed F statistic was
introduced by [8]. This statistical procedure is able to
handle problems with sample locations when non
normality occurs but the assumption of homogeneity of
variances still applies. This new statistic is easy to
compute and is used as an alternative to the classical F
method involving one-way independent group design.

To further understand the Ft method, let

X(1) j,X(2) j, . . . ,X(n j) j

be an ordered sample of group j with size n j.
We calculate the trimmed mean of group j by using:

X t j =
1

n j −g1 j −g2 j
[

n j−g2 j

∑
i=gi j+1

X(i) j]

where
= number of observations X(i) j such that gi j that
(X(i) j − M̂ j)<−2.24(scale estimator),
where
number of observations X(i) j such that g2 j that
(X(i) j − M̂ j)> 2.24(scale estimator),
M̂ j = median of group j, and
scale estimator = MADn, Tn or LMSn.

For the equal amounts of trimming in each tail of the
distribution, the Winsorized sum of squared deviations is
defined as

SSDt j = (g j +1)(X(g j+1) j −X t j)
2 +(X(g j+2) j −X t j)

2 + . . .

+(X(n j−g j−1) j −X t j)
2 +(X(n j−g j) j −X t j)

2

When allowing different amounts of trimming in each
tail of the distribution, the Winsorized sum of squared
deviations is then defined as,

SSDt j = (g1 j +1)(X(g1 j+1) j −X t j)
2 +(X(g1 j+2) j −X t j)

2 + . . .

+(X(n j−g2 j−1) j −X t j)
2 +(g2 j +1)(X(n j−g2 j+1) j −X t j)

2

−
{(g1 j)[X(g1 j+1) j −X t j]+ (g2 j)(X(n j−g2 j) j −X t j)}2

n j

Note that we used trimmed means in the SSDt j formula
instead of Winsorized means.

Hence the trimmed F is defined as

Ft( j) =

J

∑
j=1

(X t j −X j)
2

(J−1)
J

∑
j=1

SSDt j

(H − j)

where J = number of groups,
h j = n j −g1 jg2 j

H =
J

∑
j=1

h j

and X t =
J

∑
j=1

h jHt j

H
Ft(g) will follow approximately an F distribution with

(J−1,H − J) degree of freedom.

2.2 Scale Estimator

Let X = (x1,x2, . . . ,xn) be a random sample from any
distribution and let the sample median be denoted by
medixi.

2.2.1 MADn

MADn is median absolute deviation about the median.
Given by

MADn = bmed|xi −medxi|
with b as a constant, this scale estimator is very robust
with best possible breakdown point and bounded
influence function. MADn is identified as the single most
useful ancillary estimate of scale due to its high
breakdown property [5]. This scale estimator is simple
and easy to compute.
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The constant b is needed to make the estimator
consistent for the parameter of interest. For example if the
observations are randomly sampled from a normal
distribution, by including b = 1.4826, the MADn will
estimate σ , the standard deviation. With constant b = 1,
MADn will estimate 0.75 , and this is known as MAD.

2.2.2 Tn

Suitable for asymmetric distribution, [14] proposed Tn, a
scale known for its highest breakdown point like MADn.
However, this estimator has more plus points compared
to MADn. It has 52% efficiency, making it more efficient
thanMADn. It also has a continuous and bounded influence
function. Furthermore, the calculation of Tn is much easier
than the other scale estimators.

Given as

Tn = 1.3800
1
h

h

∑
k=1

{med
i̸= j

|xi − x j|}(k)

where h = [ n
2 +1]

Tn has a simple and explicit formula that guarantees
uniqueness. This estimator also has 50% breakdown point.

2.2.3 LMSn

LMSn is also a scale estimator with 50% breakdown point
which is based on the length of the shortest half sample as
shown below:

LMSn = c′{min
i
|x(i+h−1)− x(i)|}

given x(1) ≤ x(2) ≤ . . . ≤ x(n) are the ordered data and
h = [ n

2 + 1] . The default value of c′ is 0.7413 which
achieves consistency at Gaussian distributions. LMSn has
influence function which is similar to MAD [13] and its
efficiency equals to that of the MAD as well [2].

3 Empirical Investigations

Since this paper deals with robust method where
sensitivity to small changes is the main concern,
manipulating variables could help in identifying the
robustness of each method. Four variables (listed below)
were manipulated to create conditions which are known
to highlight the strengths and weaknesses of the
procedure.

(1)Number of Groups: Investigations were done on four
unbalanced completely randomized groups design
since previous researches have looked into these
designs ([9]; [12]; [19]).

(2)Distributional Shape: In investigating the effects of
distributional shape on Type I error and power, two
types of distribution representing different level of
skewness were being considered. The distributions are
the standard normal distribution, and the g-and-h
distribution with g = 0.5 and h = 0.5, representing
zero and extreme skewness respectively. The
skewness for the g-and-h distribution with g = 0.5 and
h = 0.5 are undefined.

(3)Variance heterogeneity: Variance heterogeneity is one
of the general problems in testing the equality of
location measures. Therefore, in looking at the effects
of this condition to the test, the variances with ratio
1:1:1:36 were assigned to the groups. Although this
ratio may seem extreme, ratios similar to this case,
and even larger, have been reported in the literature
[7].

Pairings of unequal variances and group sizes:
Variances and group sizes were positively and negatively
paired for comparison. For positive pairings, the group
having the largest group observations was paired with the
population having the largest group variance, while the
group having the smallest number of observations was
paired with the population having the smallest group
variance. For negative pairings, the group with the largest
number of observations was paired with the smallest
group variance and the group with the smallest number of
observations was paired with largest group variance.
These conditions were chosen since they typically
produce conservative results for the positive pairings and
liberal results for the negative pairings [11].

The random samples were generated using SAS
generator RANNOR [15]. The variates were standardized
and transformed to g-and-h variates having mean µ j and
variance σ2

j . The design specification for four groups is
shown in Table 1.

Table 1 Design specification for four groups

Group sizes Population variances
1 2 3 4 1 2 3 4

+ve 10 15 20 25 1 1 1 36
-ve 10 15 20 25 36 1 1 1

To test the Type I error, the group means were set as
(0, 0, 0, and 0) for the four groups and 5000 data sets were
simulated for each design.

4 Simulation results

The robustness of a method is determined by its ability in
controlling the Type I error. By adopting Bradley’s liberal
criterion of robustness [1], a test can be considered robust
if its empirical rate of Type I error,α , is within the
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interval 0.5α and 1.5α . If the nominal level is α = 0.05,
the empirical Type I error rate should be between 0.025
and 0.075. Correspondingly, a procedure is considered to
be non-robust if, for any particular condition, its Type I
error rate is not within this interval. We chose this
criterion since it was widely used by many robust statistic
researchers (e.g. [6]; [12]; [16]; [17]) to judge robustness.
Nevertheless, for Guo and Luh (2000), if the empirical
Type I error rates do not exceed the 0.075 level, the
procedure can be considered robust. The best procedure is
the one that can produce Type I error rate closest to the
nominal (significance) level.

Table 2 Type I error rates

Dist. Pair. Methods
Ft Ft Ft ANOVA Kruskall

with with with Wallis
MADn T n LMSn

Normal +ve 0.0774 0.0780 0.0498 0.0336 0.0448
-ve 0.3542 0.3196 0.2868 0.2850 0.1158
Ave 0.2158 0.1988 0.1683 0.1593 0.0803

g = 0.5, +ve 0.0370 0.0366 0.1542 0.1492 0.0498
h = 0.5

-ve 0.2814 0.2638 0.3000 0.3554 0.1022
Ave 0.1592 0.1502 0.2271 0.2523 0.0760

For positive pairing, the Ft with LMSn, ANOVA and
Kruskall Wallis showed robust Type I error rates. The best
procedure is Ft with LMSn which produce the nearest
Type I error rate to the nominal level. As can be observed
in Table 2, under normal distribution, the average Type I
error rates for Ft with MADn, Ft with Tn, Ft with LMSn
and ANOVA inflate above the 0.1 level. This is due to the
large values of Type I error rates when the pairings are
negative.

Under extremely skewed distribution, again, the
average results for Ft with MADn, Ft with Tn, Ft with
LMSn and ANOVA show inflated average Type I error
rates due to the negative pairings. In contrast, the Type I
error for Ft with MADn, Ft with Tn and Kruskall Wallis
improved under positive pairing, indicating robustness.
But not in the case of Ft with LMSn and ANOVA which
produced the worst result with Type I error for both
pairings are above the 0.1 level.

5 Analysis on Real Data

The performance of the modified Ft method was then
demonstrated on real data. Four classes (groups) of
Decision Analysis course of the 2nd Semester 2010/2011
taught by 4 different lecturers were chosen at random.
The final marks were recorded and tested for the equality
between the classes. The sample sizes for Class 1, 2, 3

and 4 were 33, 19, 24 and 20 respectively. The result for
the descriptive statistics is given in Table 3.

Table 3 Descriptive statistics for each group

Group n Mean of Std. Std 95% Confidence Min Max
the marks Deviation Error Interval

for Mean
Lower Upper
Bound Bound

1 33 72.07 15.65 2.72 66.53 77.62 7 94
2 19 70.13 9.13 2.10 65.73 74.53 56 90
3 24 73.38 10.75 2.20 68.84 77.91 60 96
4 20 79.21 6.11 1.37 76.35 82.06 68 93

Table 4 : Results of the test statistics using different methods

Methods p-value
ANOVA 0.0870

Kruskall Wallis 0.0160
Ft with MADn 0.0021

Ft with Tn 0.0020
Ft with LMSn 0.0407

Table 4 shows the results in the form of p-values for
each group tested in this study. For comparison purpose,
the data were tested using all the five procedures
mentioned in this study namely ANOVA, Kruskal Wallis
and the modified Ft with robust scale estimator, MADn, Tn
and LMSn. As can be observed in Table 4, when testing
using ANOVA, the result fails to reject the null hypothesis
that the performance for all groups is equal. On the
contrary, when using Kruskall Wallis and modified Ft
method, the tests show significant results (reject the null
hypothesis).

The result indicates that ANOVA fails to detect the
difference which exists between the groups. Both the non
parametric (Kruskall Wallis) and robust methods
(modified Ft ) show better detection. Ft with Tn shows the
strongest significance (p = 0.0020) as compared to the
other methods. As shown in the simulation results in
Table 2, modified Ft in general produced robust Type I
error rates for extremely skewed distribution.

6 Conclusion

goal of this paper is to find alternative procedures in
testing location parameter for skewed distribution.
Classical method such as ANOVA is not robust to non
normality and heteroscedasticity. When the problems of
nonnormality and heteroscedasticity occur
simultaneously, the Type I error rate will inflate, causing
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spurious rejections of the null hypotheses and the power
of test can be substantially reduced from theoretical
values, resulting in undetected differences. Realizing the
need for a good statistic in addressing these problems, we
integrate the Ft statistic [8] with the highest breakdown
scale estimators [14] and these new methods are known as
the modified Ft methods.

This paper has shown some improvement in the
statistical solution for detecting differences between
location parameters. The findings showed that the
modified robust procedures, Ft with MADn, Ft with Tn, Ft
with LMSn are comparable with Kruskall Wallis in
controlling Type I error rates under most conditions. In
the analysis on real data, Ft with Tn (p = 0.0020) and Ft
with MADn (p = 0.0021) showed stronger significance
than Kruskall Wallis (p = 0.0160). Even though Ft with
LMSn (p = 0.0407) showed weaker significance than the
aforementioned procedures, its performance was proven
to be much better than the parametric ANOVA (p =
0.0870) in both simulation study and real data analysis.
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