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Abstract: In this paper, we study a general time-fractional diffusion equation involving the Atangana-Baleanu derivative of Caputo

sense. First, we derive weak maximum-minimum principles to the associated fractional differential operators of the parabolic type, then

we apply these principles to establish uniqueness and stability results to initial-boundary value problem and to obtain a norm estimate of

the solution. For the existence of solution to the problem, we apply the eigenfunction expansion method to construct a formal solution,

which under certain conditions proved to be a weak solution.
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1 Introduction, motivation and preliminaries

Fractional diffusion models have been implemented to model various problems in several fields, such as physical sciences
[1,2,3,4,5], engineering [5,6], medicine [7,8,9] and biology [4]. Recently, many studies devoted to develop the theory
of fractional diffusion equations. For instance, Luchko in [10] considered a class of time-fractional diffusion equation
with Caputo fractional derivative. He established uniqueness and stability results by a maximum-principle technique.
The existence of solutions was proved using the eigenfunction expansion method. Analogous results were obtained in
[11] for the generalized time-fractional diffusion problem where the fractional derivative is of distributed order. The
applicability of maximum principle to linear and nonlinear fractional diffusion equations with the Riemann-Liouville
fractional derivative, multi-term and distributed order fractional derivatives of Riemann-Liouville type was first discussed
and proved by Al-Refai and Luchko in [12,13,14]. In [15], maximum-minimum principles were used to analyze a class
of fractional diffusion equations which generalizes the single and the multi-term time-fractional diffusion equations.

Fractional calculus is a branch of mathematical analysis that has wide applications in different fields in engineering
and science [16,17,18,19,20]. In these fields, various analytical and numerical methods including their applications have
been proposed in recent years [21,22,23,24,25]. Recently, two new types of non-local fractional derivatives with non
singular kernels have been developed, the Atangana-Baleanu derivative [26] and, the Caputo-Fabrizio derivative [27].
Many researchers have studied these new types and their applications [25,28,29,30,31,32]. In [33] Al-Refai and
Abdeljawad extended the results presented in [12] for a class of the time-fractional diffusion equations involving the
Caputo fractional derivative with exponential kernel, and recently Al-Refai in [34] analyzed the solutions of a class of
fractional differential equations involving Atangana-Baleanu fractional derivative of Caputo sense (ABC-fractional
derivative).

In this paper, we extend the results obtained in [33] for the general time-fractional diffusion operator involving the
ABC-fractional derivative. First, we derive new maximum-minimum principles for general time-fractional diffusion
operators over an open bounded domain Ω × (0,T ],Ω ⊂ R

n, then we use these principles to prove uniqueness and
stability of the solutions to the initial-boundary value problems associated with the general time-fractional operators.
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Furthermore we derive some a priori norm estimates of these solutions. Finally, we propose a definition for the weak
solution and prove the existence of solutions for this class of general time-fractional diffusion problems.

The paper is organized as follows. First, we present some fundamental definitions and results about ABC-fractional
derivative. In Section 2, we derive new weak maximum-minimum principles for time-fractional diffusion operator of
parabolic type. In Section 3, we analyze the solutions of linear time-fractional diffusion equations using the obtained
maximum-minimum principles. The notion of the weak solution of the initial-boundary value problem for the general
time-fractional diffusion equation is introduced in Section 4 and some existence results are given. Finally, in Section 5 we
present some illustrated examples and concluding remarks.

Definition 1.Let u ∈ H1(0,T ),T > 0, the Atangana-Baleanu fractional derivative of Caputo sense of order α ∈ (0,1) is

defined by

(ABC
0 Dα

t u)(t) = γα
M (α)

α

∫ t

0
u′(s)Eα [−γα(t − s)α ]ds, (1)

where

γα =
α

1−α
,

M (α) is a normalization function satisfying

M (α) = (1−α)+
α

Γ (α)
, M (0) = M (1) = 1,

and Eα(·) is the Mittag-Leffler function.

Now we present the main properties of AB-fractional derivative of Caputo sense, then using these results we derive
new maximum-minimum principles for some general linear fractional operators based on this derivative.

Lemma 1.[34] Let u ∈ H1(0,T ) attain its maximum at a point t0 ∈ [0,T ]. Then for 0 < α < 1 we have

(ABC
0 Dα

t u)(t0)≥ γα
M (α)

α
Eα [−γα tα

0 ] (u(t0)− u(0))≥ 0. (2)

Lemma 2.[34] Let λ ∈R and 0 < α < 1. The fractional initial value problem

{

(ABC
0 Dα

t u)(t) = λ u(t)+ g(t), 0 < t ≤ T,

u(0) = u0,
(3)

has the unique solution in the fractional space H1(0,T )∩C [0,T ], if and only if λ u0 + g(0) = 0. The solution of the

fractional initial value problem (3) is given in the form

u(t) =
M (α)

M (α)−λ (1−α)
u0Eα [µα tα ]+

(1−α)

M (α)−λ (1−α)
(r(t)∗ g′(t)+ g(0)r(t)), (4)

where

µα =
λ α

M (α)−λ (1−α)
, r(t) = Eα [µα tα ]+

α

1−αΓ (α)

(

tα−1 ∗Eα [µα tα ]
)

.

Lemma 3.[34] Let p ∈ C [0,T ] where p(t)> 0, t ∈ [0,T ], and g(t) is piecewise continuous function. If u ∈ H1(0,T ) is a

solution of

(ABC
0 Dα

t u)(t)+ p(t)u(t) = g(t), t > 0, 0 < α < 1,

then

‖ u ‖C [0,T ]= max
0≤t≤T

| u(t) |≤

∥

∥

∥

∥

g

p

∥

∥

∥

∥

C [0,T ]

. (5)
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2 Weak maximum-minimum principles

In this section, we derive weak maximum and minimum principles to the following general fractional differential operator

Pα(u) = (ABC
0Dα

t )u−L(u)+ q(x)u, 0 < α < 1, t ∈ (0,T ],x ∈ Ω ,

where Ω ⊂R
n is a bounded open domain with smooth boundary ∂Ω ,q(x)≥ c > 0,x ∈ Ω̄ , and L is the uniformly elliptic

operator defined by

L(u) =
n

∑
i=1

n

∑
j=1

ai, j(x, t)
∂ 2u

∂xi∂x j

+
n

∑
i=1

bi(x, t)
∂u

∂xi

.

The coefficients ai, j,bi, satisfy the following conditions

a)ai, j(·, t) ∈ C 1(Ω̄), bi(·, t) ∈ C (Ω̄ ), ∀i, j = 1,2, ...,n, ∀t ∈ (0,T ].
b)ai j(x, t) = a ji(x, t) ∀i, j = 1,2, ...,n, ∀(x, t) ∈ Ω × (0,T ].
c)There exist a positive constant µ > 0 which is independent of x and t such that

n

∑
i, j=1

ai, j(x, t)ξiξ j ≥ µ
n

∑
i=1

| ξi |
2 ∀(x, t) ∈ Ω × [0,T ] and (ξ1, ...,ξn) ∈ R

n
.

Theorem 1.[Weak maximum principle]

Let u ∈C2(Ω̄)∩H1(0,T ] satisfy Pα(u)≤ 0 in R = Ω × (0,T ], then

max
(x,t)∈R̄

u(x, t)≤ max
(x,t)∈∂R

{u(x, t),0}. (6)

Proof Assume by contradiction that the result (6) is not true. Since u is continuous, then u attains a positive maximum
at a point (x0, t0) ∈ R with u(x0, t0) = M > 0. We have

∂u

∂xi

|(x0,t0) = 0,
∂ 2u

∂xi∂x j

|(x0,t0)≤ 0, i, j = 1, ...,n,

and by virtue of the result in [36] we have
(

n

∑
i=1

n

∑
j=1

ai, j(x, t)
∂ 2u

∂xi∂x j

)

|(x,t)=(x0 ,t0)

≤ 0, (7)

and hence

L(u) |(x0,t0)=

(

n

∑
i=1

n

∑
j=1

ai, j(x, t)
∂ 2u

∂xi∂x j

)

|(x0 ,t0)

+

(

n

∑
i=1

bi(x, t)
∂u

∂xi

)

|(x0,t0)

≤ 0.

From Lemma 1, we have

(

ABC
0Dα

t (u(x0, t))
)

(t0) ≥
M(α)

1−α
Eα [−γαtα

0 ] (u(x0, t0)− u(x0,0))

=
M(α)

1−α
Eα [−γαtα

0 ] (M− u(x0,0))> 0,

which together with
q(x0)u(x0, t0) = q(x0)M ≥ 0,

implies that
Pα(u) |(x,t)=(x0,t0)> 0,

which is a contradiction to the assumption that Pα(u)≤ 0.

Theorem 2(Weak minimum principle).
Let u ∈C2(Ω̄)∩H1(0,T ] satisfy Pα(u)≥ 0 in R = Ω × (0,T ], then

min
(x,t)∈R̄

u(x, t)≥ min
(x,t)∈∂R

{u(x, t),0}. (8)

Proof By applying Theorem 1 to −u, we obtain the result (8).
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3 Linear fractional diffusion problem

We consider the initial-boundary value problem

(ABC
0Dα

t )u = L(u)− q(x)u+ g(x, t), (x, t) ∈ R = Ω × (0,T ], (9)

u(x,0) = f (x), x ∈ Ω̄ , (10)

u(x, t) = h(x, t), (x, t) ∈ ∂Ω × [0,T ]. (11)

Where g(x, t), f (x),h(x, t) are continues on R̄,Ω̄ and ∂Ω × [0,T ], respectively.

Definition 2.A classical solution to the problem (9-11) is a function u∈C (R̄)∩C 2(Ω)∩Ht (0,T ) that satisfy the equation

(9) and the conditions (10-11), where

Ht(0,T ) = {u(x, ·) ∈ C
1[0,T ],u(x, ·) ∈ H1(0,T )}.

In the following we present uniqueness and stability results and norm estimate of solution to the problem (9-11).

Theorem 3.(Uniqueness) The fractional initial-boundary value problem (9-11) posses at most one classical solution .

Proof Assume that the problem (9-11) has two solutions u1,u2, and let w = u1 − u2. Then it holds that







(ABC
0Dα

t )w = L(w)− q(x)w, (x, t) ∈ R,

w(x,0) = 0, x ∈ Ω̄ ,

w(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ].

Applying the weak maximum principle in Theorem 1 we have

w(x, t)≤ 0, (x, t) ∈ R̄.

The above statements hold true for −w(x, t), and thus

−w(x, t)≤ 0, (x, t) ∈ R̄.

Hence w(x, t) = 0, ∀(x, t) ∈ R̄, which complete the proof.

Theorem 4.(Stability) Let u1(x, t) and u2(x, t) be two classical solutions to the initial-boundary value problem (9) that

satisfy the boundary conditions (11) and the initial conditions

u1(x,0) = f1(x), u2(x,0) = f2(x), ∀x ∈ Ω̄ .

Then

‖ u1 − u2 ‖C (R̄)= max
R̄

|u(x, t)| ≤‖ f1 − f2 ‖C (Ω̄) .

Proof Let w(x, t) = u1(x, t)− u2(x, t). Then w(x, t) satisfies







ABC
0Dα

t w = L(w)− q(x)w, (x, t) ∈ R,

w(x,0) = f1(x)− f2(x), x ∈ Ω̄
w(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ].

By virtue of the weak maximum principle, we have

max
R̄

w(x, t)≤ max
∂R

{ f1(x)− f2(x),0}.

Applying analogue statements for −w(x, t), we have

max
R̄

{−w(x, t)} ≤ max
∂R

{ f2(x)− f1(x),0}.

Thus
‖w‖C (R̄) = max

R̄
|w(x, t)| ≤ max

Ω̄
| f2(x)− f1(x)|= ‖ f1 − f2‖C (Ω̄).�
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Theorem 5.Let u(x, t) be a classical solution to the time-fractional initial boundary value problem (9-11) with g(x,0) = 0.
Let v(t) ∈C[0,T ] be such that

|g(x, t)| ≤ v(t), (x, t) ∈ R̄, v(0) = 0,

and y(t) be the unique solution of

(ABC
0Dα

t y)(t) = −q(x)y(t)+ v(t), t > 0, 0 < α < 1,q(x)≥ c > 0, (12)

y(0) = 0. (13)

Then it holds that

‖ u ‖C (R̄)≤
1

c
‖ v ‖C ([0,T ]) + max

{

‖ f ‖C (Ω̄),‖ h ‖C (∂Ω×[0,T ]) +
1

c
‖ v ‖C ([0,T ]),0

}

. (14)

Proof From Lemma 2 the initial-value problem (12) has a unique solution y(t), and from the inequality (5) the solution
y(t) is bounded.
Let w(x, t) = u(x, t)− y(t), then

Pα(w(x, t)) = −L(w(x, t))+ q(x)w(x, t)+ ABC
0Dα

t w(x, t)

= −L(u(x, t))+ q(x)u(x, t)+ ABC
0Dα

t u− ABC
0Dα

t y(t)− q(x)y(t)

= g(x, t)− v(t)≤ 0.

The initial and boundary conditions of w(x, t) are

w(x,0) = f (x)− y(0) = f (x), ∀x ∈ Ω̄ ,

w(x, t) = h(x, t)− y(t), ∀(x, t) ∈ ∂Ω × [0,T ].

Using the weak maximum principle, we have

w(x, t)≤ max
(x,t)∈∂R

{ f (x),h(x, t)− y(t),0},

thus
u(x, t)≤ y(t)+ max

(x,t)∈∂R
{ f (x),h(x, t)− y(t),0}. (15)

Let w(x, t) =−u(x, t)− y(t), then w(x, t) satisfies

Pα(w(x, t)) = −L(w(x, t))+ q(x)w+ ABC
0Dα

t w

= L(u(x, t))− q(x)u(x, t)− ABC
0Dα

t u− ABC
0Dα

t y(t)− q(x)y(t)

= −g(x, t)− v(t)≤ 0,

and it holds that
w(x,0) =− f (x)− y(0) =− f (x), ∀x ∈ Ω̄ ,

w(x, t) =−h(x, t)− y(t), ∀(x, t) ∈ ∂Ω × [0,T ].

Applying the weak maximum principle, we have

w(x, t) ≤ max
(x,t)∈∂R

{− f (x),−h(x, t)− y(t),0},

thus
− u(x, t)≤ y(t)+ max

(x,t)∈∂R
{− f (x),−h(x, t)− y(t),0}. (16)

Combining equations (15) and (16) we get

| u |≤‖ y ‖C ([0,T ]) +max{‖ f ‖C (Ω̄),‖ h ‖C (∂Ω×[0,T ]) + ‖ y ‖C ([0,T ]),0}.

By inequality (5), we have

‖ y ‖C ([0,T ])≤ max
t∈[0,T ]

{
| v(t) |

| q(x) |
}=

1

q(x)
max

t∈[0,T ]
| v(t) |≤

1

c
‖ v ‖C ([0,T ]), (17)

which implies that

‖ u ‖C (R̄)≤
1

c
‖ v ‖C ([0,T ]) +max

{

‖ f ‖C (Ω̄),‖ h ‖C (∂Ω×[0,T ]) +
1

c
‖ v ‖C ([0,T ]),0

}

,

and this completes the proof.�
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Corollary 1.Let u be a classical solution to the fractional initial value problem (9-11) with g(x, t) = 0. Then it hold that

‖ u ‖C (R̄)≤ max
{

‖ f ‖C (Ω̄),‖ h ‖C (∂Ω×[0,T ]),0
}

. (18)

Proof Since g(x, t) = 0, we can choose v(t) = 0, and thus by virtue of the result in (14), we obtain the result in
inequality (18).

4 Weak solution

In this section, we prove the existence of the unique solution to the initial-boundary value problem (9-11) under certain
conditions. First, we define the concept of the weak solution in the sense of Vladimirov [35].

Definition 3.Let gn ∈ C (R̄T ), fn ∈ C (Ω̄ ) and hn ∈ C (∂Ω × [0,T ]),n = 1,2, .... and let vn ∈ C ([0,T ]) be such that

|gn(x, t)| ≤ vn(t), ∀(x, t) ∈ R̄ and suppose that these sequences of functions satisfy the following conditions:

1.

‖ gn − g ‖C (R̄T )
−→ 0 as n → ∞, ‖ fn − f ‖C (Ω̄)−→ 0 as n → ∞,

‖ hn − h ‖C (∂Ω×[0,T ])−→ 0 as n → ∞, ‖ vn − v ‖C ([0,T ])−→ 0 as n → ∞,

and let yn(t) be the unique solution of

(ABC
0Dα

t yn)(t) = −q(x)yn(t)+ vn(t), t > 0, 0 < α < 1,

yn(0) = 0,

for all n = 1,2, ..., such that yn(t) satisfy

‖ yn − y ‖C ([0,T ])−→ 0 as n → ∞.

2.For any n = 1,2, ... there exist a classical solution un = un(x, t) to the initial-boundary value problem







ABC
0Dα

t un = L(un)− q(x)un + gn(x, t), (x, t) ∈ R,

un(x,0) = fn(x), x ∈ Ω̄ ,

un(x, t) = hn(x, t), (x, t) ∈ ∂Ω × [0,T ],
(19)

then the function u ∈ C (R̄) defined by

‖ un − u ‖C (R̄)−→ 0 as n → ∞, (20)

is called a weak solution to the initial-boundary value problem (9-11).

In the following we prove that there always exist a function u ∈ C (R̄) that satisfies the property (20). To do this, we show
that the sequences un,n = 1,2, ... is uniformly convergent in R̄. Applying the estimate (14) to the functions up and uq that
are the classical solutions to the initial - boundary value problems (19) we immediately obtain the inequality

‖ up − uq ‖R̄≤
1

c
‖ vp − vq ‖[0,T ] +max{‖ fp − fq ‖Ω̄ ,‖ hp − hq ‖∂Ω×[0,T ] +

1

c
‖ vp − vq ‖[0,T ]}. (21)

This mean that un,n = 1,2, ... is Cauchy sequences in C (R̄T ), and since it is Banach space then un converges to a function
u ∈ C (R̄T ).
Moreover, the estimates in (14) and (18) obtained in Theorem 5 and Corollary 1 for the classical solution of the problem
(9)-(11) remain valid for the weak solution, too. That is,

‖ un ‖C (R̄)≤
1

c
‖ vn ‖C ([0,T ]) +max

{

‖ fn ‖C (Ω̄),‖ hn ‖C (∂Ω×[0,T ]) +
1

c
‖ vn ‖C ([0,T ]),0

}

, (22)

is valid for all n = 1,2, .... Since ‖ un − u ‖C (R̄)−→ 0 as n → ∞, then ‖ un ‖R̄→‖ u ‖R̄ as n → ∞. Similarly, for fn,hn

and vn.

The estimate (18) for the weak solution is used to prove the following uniqueness theorem.

Theorem 6.(Uniqueness of the weak solution) The problem (9-11) possesses at most one weak solution in the sense of

Definition 3
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Proof Assume that the problem (9-11) has two weak solutions u1,u2, and let w = u1 − u2, then







ABC
0Dα

t w = L(w)− q(x)w, (x, t) ∈ R,

w(x,0) = 0, x ∈ Ω̄ ,

w(x, t) = 0, (x, t) ∈ ∂Ω × [0,T ].
(23)

Furthermore, w satisfies the estimation (18)

‖ w ‖R̄≤ max
{

‖ f ‖Ω̄ ,‖ h ‖∂Ω×[0,T ],0
}

= 0. (24)

thus w(x, t) = 0 in R̄.

In the rest of this section we prove the existence of a weak solution to the initial-boundary-value problem (9-11) under
some conditions. We restrict ourselves to the case where the operator L is in divergence form, i.e., we choose

b j(x, t) =
n

∑
i=1

∂ai j(x, t)

∂xi

, j = 1, ...,n,

then

L(u) =
n

∑
i=1

n

∑
j=1

ai, j(x, t)
∂ 2u

∂xi∂x j

+
n

∑
j=

b j(x, t)
∂u

∂x j

=
n

∑
i=1

∂

∂xi

(

n

∑
j=1

ai, j(x, t)
∂u

∂x j

)

= div(A(x, t) ·∇u).

where A(x, t) = [ai j(x, t)]1≤i, j≤n, and each ai j(·, t) ∈ C 1(Ω̄ ), i, j = 1, ...,n. We treat the initial-boundary value problem







ABC
0Dα

t u = L(u)+ g(x, t), (x, t) ∈ R,

u(x,0) = f (x), x ∈ Ω̄
u(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ],

(25)

where

L(u) = L(u)− q(x)u, (26)

and we suppose that the conditions

ai j(·, t) ∈ C
1(Ω̄ ), i, j = 1, ...,n, q ∈ C (Ω̄ ), q(x)≥ c > 0,x ∈ Ω , (27)

hold true. Now we show the existence of a solution to the initial-boundary value problem (25) by using the eigenfunction
expansion method. Let

u(x, t) = X(x)T (t), (x, t) ∈ R,

and substitute in the homogenous equation of the problem (25), we get

ABC
0Dα

t T

T (t)
=

L(X)

X(x)
=−λ ,

where λ being a constant which does not depend on the variables t and x. Then the eigenvalue problem associated with
(25) is given by

{

L(X) =−L(X)+ q(x)X(x) = λ X(x), x ∈ Ω ,

X(x) = 0, x ∈ ∂Ω .
(28)

The conditions (27) implies that the operator L is a positive definite and self adjoint operator. According to the theory
of the eigenvalue problems for self adjoint operators [35], the eigenvalue problem (28) has a counted number of the positive
eigenvalues 0 < λ1 ≤ λ2 ≤ ... with finite multiplicity. Any function f ∈ ML can be represented thought its Fourier series
in the form

f (x) =
∞

∑
k=1

< f ,Xk > Xk(x), (29)
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where < f ,Xk > denotes the standard scalar product in L2(Ω) and Xk ∈ ML are the eigenfunctions that correspond to the
eigenvalues λk, that is,

L(Xk) =−L(Xk)+ q(x)Xk(x) = λkXk(x),k = 1,2, ... (30)

and
ML =

{

f ∈ C
2(Ω), f |∂Ω = 0 and L( f ) ∈ L2(Ω)

}

.

Suppose that the function g(·, t) ∈ ML for any t ∈ (0,T ], then g can be represented in the form of a uniformly convergent
series

g(x, t) =
∞

∑
k=1

gk(t)Xk(x) where gk(t) =< g,Xk >=

∫

Ω
g(x, t)Xk(x)dx. (31)

We write the solution of the problem (25) in the form of a Fourier series

u(x, t) =
∞

∑
k=1

Tk(t)Xk(x), Tk(t) =< u(x, t),Xk(x)>, (32)

with the initial condition

Tk(0) = (u(x,0),Xk) =< f (x),Xk >=

∫

Ω
f (x)Xk(x)dx = fk. (33)

Substituting the representation (32) into the equation of the IBVP (25), and using (30) we get the following uncoupled
system of ordinary fractional differential equations with AB- fractional derivative of Caputo sense

{

(ABC
0Dα

t Tk)(t)+λkTk(t) = gk(t), t ∈ (0,T ],
Tk(0) = fk, k = 1,2, ...

(34)

and this initial-value problem has a unique solution for all k = 1,2, ...

Tk(t) =
1

M(α)−λk(1−α)

(

M(α) fkEα [ωktα ]+ (1−α)(rk(t)∗ g′k(t)+ gk(0)rk(t))
)

, (35)

where ωk =
−λkα

M(α)+λk(1−α)
, and

rk(t) = Eα [ωktα ]+
αtα−1

1−αΓ (α)
∗Eα [ωktα ].

Thus the formal solution of the initial-boundary value problem (25) can be written in the form

u(x, t) =
∞

∑
k=1

Tk(t)Xk(x), (36)

where Tk(t) is defined by (35).

Theorem 7.The formal solution (36) of the initial-boundary value problem (25) is a weak solution.

Proof: Let

un(x, t) =
n

∑
k=1

Tk(t)Xk(x),

be a sequence of partial sums of the Fourier series (36), then un,n = 1,2, ... is a classical solution of the initial-boundary-
value problem (25), and from the inequality (5) we have

‖ Tk ‖C [0,T ]≤ Mk = max
t∈[0,T ]

| gk(t) |

λk

,

since λk → ∞ as k → ∞, then the sequence 1
λk
,k = 1,2, ... is bounded, and the Fourier series

∞

∑
k=1

gk(t)Xk(x),

converges. By the Weierstrass M-test we conclude that the sequence un,n = 1,2... converges absolutely and uniformly
to (36).
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5 Illustrated examples

Example 1.Consider the initial-boundary value problem

ABC
0 Dα

t u = uxx − u+ t sin(x), (0,π)× (0,T ], (37)

u(x,0) = 0, x ∈ [0,π ] (38)

u(0, t) = u(π , t) = 0. t ∈ [0,T ] (39)

We have, |g(x, t)|= |t sin(x)| ≤ t,0 < x < π , so we can choose v(t) = t in Eq. (12). Then

‖ u ‖R̄≤ 2T.

The eigenvalues and the eigenfunctions of the eigenvalue problem (28) associated with (37-39) are

λn = n2 + 1, Xn = sin(nx).

The Fourier series for the function g(x, t) = t sin(x) is

g(x, t) =
∞

∑
k=1

gn(t)sin(nx), gn(t) =

{

t n = 1

0 n 6= 1.
(40)

Thus, the solution of the initial-value problem (37-39) is

u(x, t) = T1(t)sin(x)

=
1−α

M(α)− 2(1−α)

[

∫ t

0
Eα [ω1sα ]+

αsα−1

1−αΓ (α)
∗Eα [ω1sα ]ds

]

sin(x),

where ω1 =
−2α

M(α)+2(1−α) .

Example 2.Consider the initial-boundary value problem

ABC
0 Dα

t u = uxx − u+ 5et sin(2x), (0,π)× (0,1], (41)

u(x,0) = sin(2x), x ∈ [0,π ] (42)

u(0, t) = u(1, t) = 0. t ∈ [0,T ] (43)

We have, |g(x, t)|= |5et sin(2x)| ≤ 5et
,0 < x < π , so we can choose v(t) = 5et in equation (12), we get

‖ u ‖R̄≤ 5e.

The Fourier series for the functions f (x) = sin(2x) and g(x, t) = 5et sin(2x) are

f (x) =
∞

∑
k=1

fn sin(nx), fn =

{

1 n = 2

0 n 6= 2.
(44)

g(x, t) =
∞

∑
k=1

gn(t)sin(nx), gn(t) =

{

5et n = 2

0 n 6= 2.
(45)

Thus, the solution of the initial-value problem (41-43) is

u(x, t) = T2(t)sin(2x),

where

T2(t) =
1

M(α)− 5(1−α)

(

M(α)Eα [ω2tα ]+ 5(1−α)(r2(t)∗ et + r2(t))
)

, (46)

where ω2 =
−5α

M(α)+5(1−α) , and

r2(t) = Eα [ω2tα ]+
αtα−1

1−αΓ (α)
∗Eα [ω2tα ].
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6 Conclusion

In this paper, We derived weak maximum-minimum principles for general time-fractional diffusion operators involving
the ABC-fractional derivative to prove the uniqueness and stability of the solution of the initial-boundary value problem
associated with the general time-fractional operators and then we prove the existence of a weak solution. Future work
will be extending our results to include a nonlinear source function to the equation and applying the method of upper and
lower solutions to establish existence and uniqueness of nonlinear time-fractional diffusion problems. Other work could
be considering different types of fractional derivatives on time and space.

References

[1] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010.

[2] H. G. Sun, X. Hao, Y. Zhang and D. Baleanu, Relaxation and diffusion models with non-singular kernels, Phys. A Stat. Mech. App.

468, 590-596 (2017).

[3] Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well, J. Math. Phys. 54(1), 012111 (2013).

[4] W. Uchaikin, Fractional derivatives for physicists and engineers. Volume I Background and Theory. Volume II Applications.

Springer, Heidelberg, 2012.

[5] S. Z. Radia and A. A. M. Arafa, Exact solutions of fractional-order biological population model, Commun. Theor. Phy. 52(6),

992-996 (2009).

[6] A. Atangana and D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech.

143(5), D4016005 (2017).

[7] Y. Ding and H. Ye, A fractional-order differential equation model of HIV infection of CD4+T-cells, Math. Comp. Model. 50(3-4),

386-392 (2009).

[8] A. A. M. Arafa, S. Z. Rida and M. Khalil, A fractional-order model of HIV infection with drug therapy effect, J. Egypt. Math. Soc.

22(3), 538-543 (2014).

[9] H. A. A. El-Saka, Backward bifurcations in fractional-order vaccination models, J. Egypt. Math. Soc. 23(1), 49-55 (2015).

[10] Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional

diffusion equation, Comput. Math. Appl. 59(5), 1766–1772 (2010).

[11] Y. Luchko, Boundary value problems for the generalized time-fractiona diffusion equation of distributed order, Fract. Calc. Appl.

Anal. 12, 409-422 (2009).

[12] M. Al-Refai and Y. Luchko, Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional

derivative and their applications, Fract. Calc. Appl. Anal. 17(2), 483–498 (2014).

[13] M. Al-Refai and Y. Luchko, Analysis of fractional diffusion equations of distributed order: Maximum principles and their

applications, Fract. Calc. Appl. Anal. 36(2), 123-133 (2015).

[14] M. Al-Refai and Y. Luchko, Maximum principles for the multi-term time-fractional diffusion equations with the Riemann-Liouville

fractional derivatives, Appl. Math. Comput. 257, 40-51 (2015).

[15] Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: Some uniqueness and existence results for the initial-

boundary-value problems, Fract. Calc. Appl. Anal. 19(3), 676-695 (2016).

[16] D. Baleanu, B. Ghanbari, J. H. Asad, A. Jajarmi and H. M. Pirouz, Planar system-masses in an equilateral triangle: numerical

study within fractional calculus,Comp. Model. Engin. Sci. 124(3), 953-968 (2020).

[17] A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order nonlinear fractional boundary value

problems, Frontiers in Phy. 8, 220 (2020).

[18] S. S. Sajjadi, D. Baleanu, A. Jajarmi and H. M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological

snap oscillator, Chaos Soliton, Fract. 138, 109919 (2020).

[19] S. Ahmad, A. Ullah, A. Akgül and D. Baleanu, Analysis of the fractional tumour-immune-vitamins model with Mittag–Leffler

kernel, Res. Phy. 19, 103559 (2020).

[20] G. A. Danish, M. Imran, M. Tahir, H. Waqas, M. I. Asjad, A. Akgül and D. Baleanu, Effects of non-linear thermal radiation and

chemical reaction on time dependent flow of Williamson nano fluid with combine electrical MHD and activation energy, J. Appl.

Comput. Mech., (2020).

[21] D. Baleanu and A. Jajarmi, On the fractional optimal control problems with a general derivative operator, Asian J. Cont., 1-10

(2019).

[22] A. Akgül, A. I. Aliyu, M. Inc, A. Yusuf and D. Baleanu, Approximate solutions to the conformable Rosenau-Hyman equation
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