

Progress in Fractional Differentiation and Applications An International Journal

http://dx.doi.org/10.18576/pfda/090108

Well-Posedness of General Time-Fractional Diffusion Equations Involving Atangana-Baleanu Derivative

Soraya Abdelaziz^{1,*}, Nabil Shawagfeh¹ and Mohammed Al-Refai²

Received: 10 Mar. 2021, Revised: 9 May 2021, Accepted: 16 Aug. 2021

Published online: 1 Jan. 2023

Abstract: In this paper, we study a general time-fractional diffusion equation involving the Atangana-Baleanu derivative of Caputo sense. First, we derive weak maximum-minimum principles to the associated fractional differential operators of the parabolic type, then we apply these principles to establish uniqueness and stability results to initial-boundary value problem and to obtain a norm estimate of the solution. For the existence of solution to the problem, we apply the eigenfunction expansion method to construct a formal solution, which under certain conditions proved to be a weak solution.

Keywords: Atangana-Baleanu derivative, fractional diffusion equations, maximum-minimum principle, weak solution.

1 Introduction, motivation and preliminaries

Fractional diffusion models have been implemented to model various problems in several fields, such as physical sciences [1,2,3,4,5], engineering [5,6], medicine [7,8,9] and biology [4]. Recently, many studies devoted to develop the theory of fractional diffusion equations. For instance, Luchko in [10] considered a class of time-fractional diffusion equation with Caputo fractional derivative. He established uniqueness and stability results by a maximum-principle technique. The existence of solutions was proved using the eigenfunction expansion method. Analogous results were obtained in [11] for the generalized time-fractional diffusion problem where the fractional derivative is of distributed order. The applicability of maximum principle to linear and nonlinear fractional diffusion equations with the Riemann-Liouville fractional derivative, multi-term and distributed order fractional derivatives of Riemann-Liouville type was first discussed and proved by Al-Refai and Luchko in [12,13,14]. In [15], maximum-minimum principles were used to analyze a class of fractional diffusion equations which generalizes the single and the multi-term time-fractional diffusion equations.

Fractional calculus is a branch of mathematical analysis that has wide applications in different fields in engineering and science [16, 17, 18, 19, 20]. In these fields, various analytical and numerical methods including their applications have been proposed in recent years [21,22,23,24,25]. Recently, two new types of non-local fractional derivatives with non singular kernels have been developed, the Atangana-Baleanu derivative [26] and, the Caputo-Fabrizio derivative [27]. Many researchers have studied these new types and their applications [25,28,29,30,31,32]. In [33] Al-Refai and Abdeljawad extended the results presented in [12] for a class of the time-fractional diffusion equations involving the Caputo fractional derivative with exponential kernel, and recently Al-Refai in [34] analyzed the solutions of a class of fractional differential equations involving Atangana-Baleanu fractional derivative of Caputo sense (ABC-fractional derivative).

In this paper, we extend the results obtained in [33] for the general time-fractional diffusion operator involving the ABC-fractional derivative. First, we derive new maximum-minimum principles for general time-fractional diffusion operators over an open bounded domain $\Omega \times (0,T], \Omega \subset \mathbb{R}^n$, then we use these principles to prove uniqueness and stability of the solutions to the initial-boundary value problems associated with the general time-fractional operators.

¹ Department of Mathematics, The University of Jordan, Amman 11942, Jordan

² Department of Mathematics, Yarmouk University, Irbid, Jordan

^{*} Corresponding author e-mail: sorayaabd2@gmail.com

Furthermore we derive some a priori norm estimates of these solutions. Finally, we propose a definition for the weak solution and prove the existence of solutions for this class of general time-fractional diffusion problems.

The paper is organized as follows. First, we present some fundamental definitions and results about ABC-fractional derivative. In Section 2, we derive new weak maximum-minimum principles for time-fractional diffusion operator of parabolic type. In Section 3, we analyze the solutions of linear time-fractional diffusion equations using the obtained maximum-minimum principles. The notion of the weak solution of the initial-boundary value problem for the general time-fractional diffusion equation is introduced in Section 4 and some existence results are given. Finally, in Section 5 we present some illustrated examples and concluding remarks.

Definition 1.Let $u \in H^1(0,T), T > 0$, the Atangana-Baleanu fractional derivative of Caputo sense of order $\alpha \in (0,1)$ is defined by

$$\binom{ABC}{0}D_t^{\alpha}u(t) = \gamma_{\alpha}\frac{\mathscr{M}(\alpha)}{\alpha}\int_0^t u'(s)E_{\alpha}\left[-\gamma_{\alpha}(t-s)^{\alpha}\right]ds,\tag{1}$$

where

$$\gamma_{\alpha} = \frac{\alpha}{1 - \alpha},$$

 $\mathcal{M}(\alpha)$ is a normalization function satisfying

$$\mathcal{M}(\alpha) = (1-\alpha) + \frac{\alpha}{\Gamma(\alpha)}, \ \mathcal{M}(0) = \mathcal{M}(1) = 1,$$

and $E_{\alpha}(\cdot)$ is the Mittag-Leffler function.

Now we present the main properties of AB-fractional derivative of Caputo sense, then using these results we derive new maximum-minimum principles for some general linear fractional operators based on this derivative.

Lemma 1.[34] Let $u \in H^1(0,T)$ attain its maximum at a point $t_0 \in [0,T]$. Then for $0 < \alpha < 1$ we have

$$\binom{ABC}{0}D_t^{\alpha}u(t_0) \ge \gamma_{\alpha}\frac{\mathscr{M}(\alpha)}{\alpha}E_{\alpha}\left[-\gamma_{\alpha}t_0^{\alpha}\right](u(t_0) - u(0)) \ge 0. \tag{2}$$

Lemma 2.[34] Let $\lambda \in \mathbb{R}$ and $0 < \alpha < 1$. The fractional initial value problem

$$\begin{cases} \binom{ABC}{0} D_t^{\alpha} u)(t) = \lambda u(t) + g(t), & 0 < t \le T, \\ u(0) = u_0, \end{cases}$$

$$(3)$$

has the unique solution in the fractional space $H^1(0,T) \cap \mathscr{C}[0,T]$, if and only if $\lambda u_0 + g(0) = 0$. The solution of the fractional initial value problem (3) is given in the form

$$u(t) = \frac{\mathscr{M}(\alpha)}{\mathscr{M}(\alpha) - \lambda(1-\alpha)} u_0 E_{\alpha}[\mu_{\alpha} t^{\alpha}] + \frac{(1-\alpha)}{\mathscr{M}(\alpha) - \lambda(1-\alpha)} (r(t) * g'(t) + g(0)r(t)), \tag{4}$$

where

$$\mu_{lpha} = rac{\lambda \, lpha}{\mathscr{M}(lpha) - \lambda (1 - lpha)}, \quad r(t) = E_{lpha}[\mu_{lpha} t^{lpha}] + rac{lpha}{1 - lpha \Gamma(lpha)} \left(t^{lpha - 1} * E_{lpha}[\mu_{lpha} t^{lpha}]
ight).$$

Lemma 3.[34] Let $p \in \mathcal{C}[0,T]$ where p(t) > 0, $t \in [0,T]$, and g(t) is piecewise continuous function. If $u \in H^1(0,T)$ is a solution of

$$\binom{ABC}{0}D_t^{\alpha}u(t) + p(t)u(t) = g(t), \ t > 0, \ 0 < \alpha < 1,$$

then

$$\| u \|_{\mathscr{C}[0,T]} = \max_{0 \le t \le T} | u(t) | \le \left\| \frac{g}{p} \right\|_{\mathscr{C}[0,T]}.$$
 (5)

2 Weak maximum-minimum principles

In this section, we derive weak maximum and minimum principles to the following general fractional differential operator

$$P_{\alpha}(u) = {ABC \choose 0}D_{t}^{\alpha}(u) - L(u) + q(x)u, \ 0 < \alpha < 1, t \in (0, T], x \in \Omega,$$

where $\Omega \subset \mathbb{R}^n$ is a bounded open domain with smooth boundary $\partial \Omega, q(x) \geq c > 0, x \in \bar{\Omega}$, and L is the uniformly elliptic operator defined by

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{i=1}^{n} b_{i}(x,t) \frac{\partial u}{\partial x_{i}}.$$

The coefficients $a_{i,j}, b_i$, satisfy the following conditions

a)
$$a_{i,j}(\cdot,t) \in \mathscr{C}^1(\bar{\Omega}), \ b_i(\cdot,t) \in \mathscr{C}(\bar{\Omega}), \ \forall i,j=1,2,...,n, \ \forall t \in (0,T].$$
b) $a_{ij}(x,t) = a_{ji}(x,t) \ \forall i,j=1,2,...,n, \ \forall (x,t) \in \Omega \times (0,T].$

b)
$$a_{ij}(x,t) = a_{ii}(x,t) \ \forall i, j = 1, 2, ..., n, \ \forall (x,t) \in \Omega \times (0,T].$$

c) There exist a positive constant $\mu > 0$ which is independent of x and t such that

$$\sum_{i,j=1}^n a_{i,j}(x,t)\xi_i\xi_j \ge \mu \sum_{i=1}^n |\xi_i|^2 \quad \forall (x,t) \in \Omega \times [0,T] \text{ and } (\xi_1,...,\xi_n) \in \mathbb{R}^n.$$

Theorem 1.[Weak maximum principle]

Let $u \in C^2(\bar{\Omega}) \cap H^1(0,T]$ satisfy $P_{\alpha}(u) \leq 0$ in $R = \Omega \times (0,T]$, then

$$\max_{(x,t)\in\bar{R}} u(x,t) \le \max_{(x,t)\in\partial R} \{u(x,t),0\}. \tag{6}$$

Proof Assume by contradiction that the result (6) is not true. Since u is continuous, then u attains a positive maximum at a point $(x_0,t_0) \in R$ with $u(x_0,t_0) = M > 0$. We have

$$\frac{\partial u}{\partial x_i}|_{(x_0,t_0)} = 0, \quad \frac{\partial^2 u}{\partial x_i \partial x_j}|_{(x_0,t_0)} \le 0, \quad i,j = 1,...,n,$$

and by virtue of the result in [36] we have

$$\left(\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}\right)_{|(x,t)=(x_{0},t_{0})} \leq 0, \tag{7}$$

and hence

$$L(u)\mid_{(x_0,t_0)} = \left(\sum_{i=1}^n \sum_{j=1}^n a_{i,j}(x,t) \frac{\partial^2 u}{\partial x_i \partial x_j}\right)_{\mid_{(x_0,t_0)}} + \left(\sum_{i=1}^n b_i(x,t) \frac{\partial u}{\partial x_i}\right)_{\mid_{(x_0,t_0)}} \le 0.$$

From Lemma 1, we have

$$\begin{split} \left(^{ABC} {_0}D_t^{\alpha}(u(x_0,t)) \right)(t_0) &\geq \frac{M(\alpha)}{1-\alpha} E_{\alpha} \left[-\gamma_{\alpha} t_0^{\alpha} \right] \left(u(x_0,t_0) - u(x_0,0) \right) \\ &= \frac{M(\alpha)}{1-\alpha} E_{\alpha} \left[-\gamma_{\alpha} t_0^{\alpha} \right] \left(M - u(x_0,0) \right) > 0, \end{split}$$

which together with

$$q(x_0)u(x_0,t_0) = q(x_0)M \ge 0,$$

implies that

$$P_{\alpha}(u)\mid_{(x,t)=(x_0,t_0)}>0,$$

which is a contradiction to the assumption that $P_{\alpha}(u) \leq 0$.

Theorem 2(Weak minimum principle).

Let
$$u \in C^2(\bar{\Omega}) \cap H^1(0,T]$$
 satisfy $P_{\alpha}(u) \geq 0$ in $R = \Omega \times (0,T]$, then

$$\min_{(x,t)\in\bar{R}} u(x,t) \ge \min_{(x,t)\in\partial R} \{u(x,t),0\}. \tag{8}$$

Proof By applying Theorem 1 to -u, we obtain the result (8).

3 Linear fractional diffusion problem

We consider the initial-boundary value problem

$$(^{ABC}_{0}D_{t}^{\alpha})u = L(u) - q(x)u + g(x,t), \quad (x,t) \in R = \Omega \times (0,T],$$
 (9)

$$u(x,0) = f(x), \quad x \in \bar{\Omega}, \tag{10}$$

$$u(x,t) = h(x,t), \quad (x,t) \in \partial \Omega \times [0,T]. \tag{11}$$

Where g(x,t), f(x), h(x,t) are continues on $\bar{R}, \bar{\Omega}$ and $\partial \Omega \times [0,T]$, respectively.

Definition 2. A classical solution to the problem (9-11) is a function $u \in \mathcal{C}(\bar{R}) \cap \mathcal{C}^2(\Omega) \cap H_t(0,T)$ that satisfy the equation (9) and the conditions (10-11), where

$$H_t(0,T) = \{u(x,\cdot) \in \mathcal{C}^1[0,T], u(x,\cdot) \in H^1(0,T)\}.$$

In the following we present uniqueness and stability results and norm estimate of solution to the problem (9-11).

Theorem 3.(Uniqueness) The fractional initial-boundary value problem (9-11) posses at most one classical solution.

Proof Assume that the problem (9-11) has two solutions u_1, u_2 , and let $w = u_1 - u_2$. Then it holds that

$$\begin{cases} (^{ABC} \ _0D_t^\alpha)w = L(w) - q(x)w, \quad (x,t) \in R, \\ w(x,0) = 0, \quad x \in \bar{\Omega}, \\ w(x,t) = 0, \quad (x,t) \in \partial \Omega \times (0,T]. \end{cases}$$

Applying the weak maximum principle in Theorem 1 we have

$$w(x,t) \le 0, \quad (x,t) \in \bar{R}.$$

The above statements hold true for -w(x,t), and thus

$$-w(x,t) \le 0, \quad (x,t) \in \bar{R}.$$

Hence w(x,t) = 0, $\forall (x,t) \in \overline{R}$, which complete the proof.

Theorem 4.(Stability) Let $u_1(x,t)$ and $u_2(x,t)$ be two classical solutions to the initial-boundary value problem (9) that satisfy the boundary conditions (11) and the initial conditions

$$u_1(x,0) = f_1(x), \ u_2(x,0) = f_2(x), \ \forall x \in \bar{\Omega}.$$

Then

$$\parallel u_1 - u_2 \parallel_{\mathscr{C}(\bar{R})} = \max_{\bar{R}} |u(x,t)| \leq \parallel f_1 - f_2 \parallel_{\mathscr{C}(\bar{\Omega})}.$$

Proof Let $w(x,t) = u_1(x,t) - u_2(x,t)$. Then w(x,t) satisfies

$$\begin{cases} {}^{ABC} \, {}_{0}D^{\alpha}_{t}w = L(w) - q(x)w, \quad (x,t) \in R, \\ w(x,0) = f_{1}(x) - f_{2}(x), \quad x \in \bar{\Omega} \\ w(x,t) = 0, \quad (x,t) \in \partial \Omega \times (0,T]. \end{cases}$$

By virtue of the weak maximum principle, we have

$$\max_{\bar{R}} w(x,t) \le \max_{\partial R} \{ f_1(x) - f_2(x), 0 \}.$$

Applying analogue statements for -w(x,t), we have

$$\max_{\bar{R}} \{-w(x,t)\} \le \max_{\partial R} \{f_2(x) - f_1(x), 0\}.$$

Thus

$$\|w\|_{\mathscr{C}(\bar{R})} = \max_{\bar{R}} |w(x,t)| \leq \max_{\bar{\Omega}} |f_2(x) - f_1(x)| = \|f_1 - f_2\|_{\mathscr{C}(\bar{\Omega})}. \blacksquare$$

Theorem 5.Let u(x,t) be a classical solution to the time-fractional initial boundary value problem (9-11) with g(x,0) = 0. Let $v(t) \in C[0,T]$ be such that

$$|g(x,t)| \le v(t), (x,t) \in \bar{R}, v(0) = 0,$$

and y(t) be the unique solution of

$$(^{ABC}{}_{0}D^{\alpha}_{t}y)(t) = -q(x)y(t) + v(t), \ t > 0, \ 0 < \alpha < 1, q(x) \ge c > 0,$$
 (12)

$$y(0) = 0. (13)$$

Then it holds that

$$\| u \|_{\mathscr{C}(\bar{R})} \leq \frac{1}{c} \| v \|_{\mathscr{C}([0,T])} + \max \left\{ \| f \|_{\mathscr{C}(\bar{\Omega})}, \| h \|_{\mathscr{C}(\partial\Omega \times [0,T])} + \frac{1}{c} \| v \|_{\mathscr{C}([0,T])}, 0 \right\}. \tag{14}$$

Proof From Lemma 2 the initial-value problem (12) has a unique solution y(t), and from the inequality (5) the solution y(t) is bounded.

Let w(x,t) = u(x,t) - y(t), then

$$\begin{split} P_{\alpha}(w(x,t)) &= -L(w(x,t)) + q(x)w(x,t) + {}^{ABC}{}_{0}D^{\alpha}_{t}w(x,t) \\ &= -L(u(x,t)) + q(x)u(x,t) + {}^{ABC}{}_{0}D^{\alpha}_{t}u - {}^{ABC}{}_{0}D^{\alpha}_{t}y(t) - q(x)y(t) \\ &= g(x,t) - v(t) \leq 0. \end{split}$$

The initial and boundary conditions of w(x,t) are

$$w(x,0) = f(x) - y(0) = f(x), \quad \forall x \in \bar{\Omega},$$

$$w(x,t) = h(x,t) - y(t), \quad \forall (x,t) \in \partial \Omega \times [0,T].$$

Using the weak maximum principle, we have

$$w(x,t) \le \max_{(x,t) \in \partial R} \{ f(x), h(x,t) - y(t), 0 \},$$

thus

$$u(x,t) \le y(t) + \max_{(x,t) \in \partial R} \{ f(x), h(x,t) - y(t), 0 \}.$$
(15)

Let w(x,t) = -u(x,t) - y(t), then w(x,t) satisfies

$$\begin{split} P_{\alpha}(w(x,t)) &= -L(w(x,t)) + q(x)w + {}^{ABC}{}_{0}D^{\alpha}_{t}w \\ &= L(u(x,t)) - q(x)u(x,t) - {}^{ABC}{}_{0}D^{\alpha}_{t}u - {}^{ABC}{}_{0}D^{\alpha}_{t}y(t) - q(x)y(t) \\ &= -g(x,t) - v(t) < 0, \end{split}$$

and it holds that

$$w(x,0) = -f(x) - y(0) = -f(x), \quad \forall x \in \bar{\Omega},$$

$$w(x,t) = -h(x,t) - y(t), \quad \forall (x,t) \in \partial \Omega \times [0,T].$$

Applying the weak maximum principle, we have

$$w(x,t) \le \max_{(x,t) \in \partial R} \{-f(x), -h(x,t) - y(t), 0\},\$$

thus

$$-u(x,t) \le y(t) + \max_{(x,t) \in \partial R} \{-f(x), -h(x,t) - y(t), 0\}.$$
(16)

Combining equations (15) and (16) we get

$$\mid u\mid \leq \parallel y\parallel_{\mathscr{C}([0,T])} + \max\{\parallel f\parallel_{\mathscr{C}(\bar{\Omega})}, \parallel h\parallel_{\mathscr{C}(\partial\Omega\times[0,T])} + \parallel y\parallel_{\mathscr{C}([0,T])}, 0\}.$$

By inequality (5), we have

$$\|y\|_{\mathscr{C}([0,T])} \le \max_{t \in [0,T]} \left\{ \frac{|v(t)|}{|q(x)|} \right\} = \frac{1}{q(x)} \max_{t \in [0,T]} |v(t)| \le \frac{1}{c} \|v\|_{\mathscr{C}([0,T])}, \tag{17}$$

which implies that

$$\parallel u \parallel_{\mathscr{C}(\bar{R})} \leq \frac{1}{c} \parallel \nu \parallel_{\mathscr{C}([0,T])} + \max \left\{ \parallel f \parallel_{\mathscr{C}(\bar{\varOmega})}, \parallel h \parallel_{\mathscr{C}(\partial \varOmega \times [0,T])} + \frac{1}{c} \parallel \nu \parallel_{\mathscr{C}([0,T])}, 0 \right\},$$

and this completes the proof.■

Corollary 1.Let u be a classical solution to the fractional initial value problem (9-11) with g(x,t) = 0. Then it hold that

$$\|u\|_{\mathscr{C}(\bar{R})} \leq \max\left\{\|f\|_{\mathscr{C}(\bar{\Omega})}, \|h\|_{\mathscr{C}(\partial\Omega\times[0,T])}, 0\right\}. \tag{18}$$

Proof Since g(x,t) = 0, we can choose v(t) = 0, and thus by virtue of the result in (14), we obtain the result in inequality (18).

4 Weak solution

In this section, we prove the existence of the unique solution to the initial-boundary value problem (9-11) under certain conditions. First, we define the concept of the weak solution in the sense of Vladimirov [35].

Definition 3.Let $g_n \in \mathcal{C}(\bar{R}_T), f_n \in \mathcal{C}(\bar{\Omega})$ and $h_n \in \mathcal{C}(\partial \Omega \times [0,T]), n = 1,2,...$ and let $v_n \in \mathcal{C}([0,T])$ be such that $|g_n(x,t)| \le v_n(t), \ \forall (x,t) \in \bar{R}$ and suppose that these sequences of functions satisfy the following conditions:

1.

$$\|g_n - g\|_{\mathscr{C}(\bar{R}_T)} \longrightarrow 0 \text{ as } n \to \infty, \|f_n - f\|_{\mathscr{C}(\bar{\Omega})} \longrightarrow 0 \text{ as } n \to \infty,$$
$$\|h_n - h\|_{\mathscr{C}(\partial\Omega \times [0,T])} \longrightarrow 0 \text{ as } n \to \infty, \|v_n - v\|_{\mathscr{C}([0,T])} \longrightarrow 0 \text{ as } n \to \infty,$$

and let $y_n(t)$ be the unique solution of

$$(^{ABC}_{0}D_{t}^{\alpha}y_{n})(t) = -q(x)y_{n}(t) + v_{n}(t), \ t > 0, \ 0 < \alpha < 1,$$

 $y_{n}(0) = 0,$

for all n = 1, 2, ..., such that $y_n(t)$ satisfy

$$\|y_n - y\|_{\mathscr{C}([0,T])} \longrightarrow 0 \text{ as } n \to \infty.$$

2. For any n = 1, 2, ... there exist a classical solution $u_n = u_n(x,t)$ to the initial-boundary value problem

$$\begin{cases} {}^{ABC}{}_{0}D_{t}^{\alpha}u_{n} = L(u_{n}) - q(x)u_{n} + g_{n}(x,t), & (x,t) \in R, \\ u_{n}(x,0) = f_{n}(x), & x \in \bar{\Omega}, \\ u_{n}(x,t) = h_{n}(x,t), & (x,t) \in \partial \Omega \times [0,T], \end{cases}$$
(19)

then the function $u \in \mathcal{C}(\bar{R})$ defined by

$$\|u_n - u\|_{\mathscr{L}(\bar{R})} \longrightarrow 0 \text{ as } n \to \infty,$$
 (20)

is called a weak solution to the initial-boundary value problem (9-11).

In the following we prove that there always exist a function $u \in \mathcal{C}(\bar{R})$ that satisfies the property (20). To do this, we show that the sequences $u_n, n = 1, 2, ...$ is uniformly convergent in \bar{R} . Applying the estimate (14) to the functions u_p and u_q that are the classical solutions to the initial - boundary value problems (19) we immediately obtain the inequality

$$\| u_{p} - u_{q} \|_{\bar{R}} \leq \frac{1}{c} \| v_{p} - v_{q} \|_{[0,T]} + \max\{ \| f_{p} - f_{q} \|_{\bar{\Omega}}, \| h_{p} - h_{q} \|_{\partial \Omega \times [0,T]} + \frac{1}{c} \| v_{p} - v_{q} \|_{[0,T]} \}.$$
 (21)

This mean that $u_n, n = 1, 2, ...$ is Cauchy sequences in $\mathcal{C}(\bar{R}_T)$, and since it is Banach space then u_n converges to a function $u \in \mathcal{C}(\bar{R}_T)$.

Moreover, the estimates in (14) and (18) obtained in Theorem 5 and Corollary 1 for the classical solution of the problem (9)-(11) remain valid for the weak solution, too. That is,

$$\| u_n \|_{\mathscr{C}(\bar{R})} \leq \frac{1}{c} \| v_n \|_{\mathscr{C}([0,T])} + \max \left\{ \| f_n \|_{\mathscr{C}(\bar{\Omega})}, \| h_n \|_{\mathscr{C}(\partial\Omega\times[0,T])} + \frac{1}{c} \| v_n \|_{\mathscr{C}([0,T])}, 0 \right\}, \tag{22}$$

is valid for all n=1,2,... Since $\|u_n-u\|_{\mathscr{C}(\bar{R})}\longrightarrow 0$ as $n\to\infty$, then $\|u_n\|_{\bar{R}}\to \|u\|_{\bar{R}}$ as $n\to\infty$. Similarly, for f_n,h_n and v_n .

The estimate (18) for the weak solution is used to prove the following uniqueness theorem.

Theorem 6.(Uniqueness of the weak solution) The problem (9-11) possesses at most one weak solution in the sense of Definition 3

Proof Assume that the problem (9-11) has two weak solutions u_1, u_2 , and let $w = u_1 - u_2$, then

$$\begin{cases} {}^{ABC}{}_{0}D_{t}^{\alpha}w=L(w)-q(x)w, & (x,t)\in R,\\ w(x,0)=0, & x\in\bar{\Omega},\\ w(x,t)=0, & (x,t)\in\partial\Omega\times[0,T]. \end{cases} \tag{23}$$

Furthermore, w satisfies the estimation (18)

$$\|w\|_{\bar{R}} \le \max\{\|f\|_{\bar{O}}, \|h\|_{\partial\Omega \times [0,T]}, 0\} = 0.$$
 (24)

thus w(x,t) = 0 in \bar{R} .

In the rest of this section we prove the existence of a weak solution to the initial-boundary-value problem (9-11) under some conditions. We restrict ourselves to the case where the operator L is in divergence form, i.e., we choose

$$b_j(x,t) = \sum_{i=1}^n \frac{\partial a_{ij}(x,t)}{\partial x_i}, \ j = 1,...,n,$$

then

$$L(u) = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j}(x,t) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}} + \sum_{j=1}^{n} b_{j}(x,t) \frac{\partial u}{\partial x_{j}}$$
$$= \sum_{i=1}^{n} \frac{\partial}{\partial x_{i}} \left(\sum_{j=1}^{n} a_{i,j}(x,t) \frac{\partial u}{\partial x_{j}} \right)$$
$$= \mathbf{div}(A(x,t) \cdot \nabla u).$$

where $A(x,t) = [a_{ij}(x,t)]_{1 \le i,j \le n}$, and each $a_{ij}(\cdot,t) \in \mathscr{C}^1(\bar{\Omega}), i,j = 1,...,n$. We treat the initial-boundary value problem

$$\begin{cases} {}^{ABC}{}_{0}D_{t}^{\alpha}u = \mathbb{L}(u) + g(x,t), & (x,t) \in R, \\ u(x,0) = f(x), & x \in \bar{\Omega} \\ u(x,t) = 0, & (x,t) \in \partial\Omega \times (0,T], \end{cases}$$
 (25)

where

$$\mathbb{L}(u) = L(u) - q(x)u,\tag{26}$$

and we suppose that the conditions

$$a_{ij}(\cdot,t) \in \mathcal{C}^1(\bar{\Omega}), \ i,j=1,...,n, \ g \in \mathcal{C}(\bar{\Omega}), \ g(x) > c > 0, x \in \Omega,$$
 (27)

hold true. Now we show the existence of a solution to the initial-boundary value problem (25) by using the eigenfunction expansion method. Let

$$u(x,t) = X(x)T(t), (x,t) \in R,$$

and substitute in the homogenous equation of the problem (25), we get

$$\frac{^{ABC}{_{0}}D_{t}^{\alpha}T}{T(t)} = \frac{\mathbb{L}(X)}{X(x)} = -\lambda,$$

where λ being a constant which does not depend on the variables t and x. Then the eigenvalue problem associated with (25) is given by

$$\begin{cases} \mathbb{L}(X) = -L(X) + q(x)X(x) = \lambda X(x), & x \in \Omega, \\ X(x) = 0, & x \in \partial \Omega. \end{cases}$$
 (28)

The conditions (27) implies that the operator $\mathbb L$ is a positive definite and self adjoint operator. According to the theory of the eigenvalue problems for self adjoint operators [35], the eigenvalue problem (28) has a counted number of the positive eigenvalues $0 < \lambda_1 \le \lambda_2 \le ...$ with finite multiplicity. Any function $f \in \mathcal{M}_{\mathbb L}$ can be represented thought its Fourier series in the form

$$f(x) = \sum_{k=1}^{\infty} \langle f, X_k \rangle X_k(x), \tag{29}$$

where $< f, X_k >$ denotes the standard scalar product in $L^2(\Omega)$ and $X_k \in \mathcal{M}_{\mathbb{L}}$ are the eigenfunctions that correspond to the eigenvalues λ_k , that is,

$$\mathbb{L}(X_k) = -L(X_k) + q(x)X_k(x) = \lambda_k X_k(x), k = 1, 2, \dots$$
(30)

and

$$\mathcal{M}_{\mathbb{L}} = \left\{ f \in \mathcal{C}^2(\Omega), f|_{\partial \Omega} = 0 \text{ and } \mathbb{L}(f) \in L^2(\Omega) \right\}.$$

Suppose that the function $g(\cdot,t)\in \mathscr{M}_{\mathbb{L}}$ for any $t\in (0,T]$, then g can be represented in the form of a uniformly convergent series

$$g(x,t) = \sum_{k=1}^{\infty} g_k(t) X_k(x) \quad \text{where } g_k(t) = \langle g, X_k \rangle = \int_{\Omega} g(x,t) X_k(x) dx. \tag{31}$$

We write the solution of the problem (25) in the form of a Fourier series

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x), \quad T_k(t) = \langle u(x,t), X_k(x) \rangle, \tag{32}$$

with the initial condition

$$T_k(0) = (u(x,0), X_k) = \langle f(x), X_k \rangle = \int_O f(x) X_k(x) dx = f_k.$$
(33)

Substituting the representation (32) into the equation of the IBVP (25), and using (30) we get the following uncoupled system of ordinary fractional differential equations with AB- fractional derivative of Caputo sense

$$\begin{cases}
(^{ABC} {}_{0}D_{t}^{\alpha}T_{k})(t) + \lambda_{k}T_{k}(t) = g_{k}(t), & t \in (0, T], \\
T_{k}(0) = f_{k}, & k = 1, 2, ...
\end{cases}$$
(34)

and this initial-value problem has a unique solution for all k = 1, 2, ...

$$T_k(t) = \frac{1}{M(\alpha) - \lambda_k(1 - \alpha)} \left(M(\alpha) f_k E_{\alpha} [\omega_k t^{\alpha}] + (1 - \alpha) (r_k(t) * g'_k(t) + g_k(0) r_k(t)) \right), \tag{35}$$

where $\omega_k = \frac{-\lambda_k \alpha}{M(\alpha) + \lambda_k (1 - \alpha)}$, and

$$r_k(t) = E_{\alpha}[\omega_k t^{\alpha}] + \frac{\alpha t^{\alpha-1}}{1 - \alpha \Gamma(\alpha)} * E_{\alpha}[\omega_k t^{\alpha}].$$

Thus the formal solution of the initial-boundary value problem (25) can be written in the form

$$u(x,t) = \sum_{k=1}^{\infty} T_k(t) X_k(x),$$
(36)

where $T_k(t)$ is defined by (35).

Theorem 7.The formal solution (36) of the initial-boundary value problem (25) is a weak solution.

Proof: Let

$$u_n(x,t) = \sum_{k=1}^n T_k(t) X_k(x),$$

be a sequence of partial sums of the Fourier series (36), then u_n , n = 1, 2, ... is a classical solution of the initial-boundary-value problem (25), and from the inequality (5) we have

$$\parallel T_k \parallel_{\mathscr{C}[0,T]} \leq M_k = \max_{t \in [0,T]} \frac{\mid g_k(t) \mid}{\lambda_k},$$

since $\lambda_k \to \infty$ as $k \to \infty$, then the sequence $\frac{1}{\lambda_k}$, k = 1, 2, ... is bounded, and the Fourier series

$$\sum_{k=1}^{\infty} g_k(t) X_k(x),$$

converges. By the Weierstrass M-test we conclude that the sequence u_n , n = 1, 2... converges absolutely and uniformly to (36).

5 Illustrated examples

Example 1. Consider the initial-boundary value problem

$${}_{0}^{ABC}D_{t}^{\alpha}u = u_{xx} - u + t\sin(x), \quad (0,\pi) \times (0,T], \tag{37}$$

$$u(x,0) = 0, \quad x \in [0,\pi]$$
 (38)

$$u(0,t) = u(\pi,t) = 0. \ t \in [0,T]$$
 (39)

We have, $|g(x,t)| = |t\sin(x)| \le t, 0 < x < \pi$, so we can choose v(t) = t in Eq. (12). Then

$$||u||_{\bar{R}} \leq 2T$$
.

The eigenvalues and the eigenfunctions of the eigenvalue problem (28) associated with (37-39) are

$$\lambda_n = n^2 + 1, \ X_n = \sin(nx).$$

The Fourier series for the function $g(x,t) = t \sin(x)$ is

$$g(x,t) = \sum_{k=1}^{\infty} g_n(t)\sin(nx), \ g_n(t) = \begin{cases} t & n=1\\ 0 & n \neq 1. \end{cases}$$
 (40)

Thus, the solution of the initial-value problem (37-39) is

 $u(x,t) = T_1(t)\sin(x)$

$$=\frac{1-\alpha}{M(\alpha)-2(1-\alpha)}\left[\int_0^t E_{\alpha}[\omega_1 s^{\alpha}]+\frac{\alpha s^{\alpha-1}}{1-\alpha\Gamma(\alpha)}*E_{\alpha}[\omega_1 s^{\alpha}]ds\right]\sin(x),$$

where $\omega_1 = \frac{-2\alpha}{M(\alpha) + 2(1-\alpha)}$.

Example 2. Consider the initial-boundary value problem

$${}_{0}^{ABC}D_{t}^{\alpha}u = u_{xx} - u + 5e^{t}\sin(2x), \quad (0,\pi) \times (0,1], \tag{41}$$

$$u(x,0) = \sin(2x), \quad x \in [0,\pi]$$
 (42)

$$u(0,t) = u(1,t) = 0. \ t \in [0,T]$$
 (43)

We have, $|g(x,t)| = |5e^t \sin(2x)| \le 5e^t$, $0 < x < \pi$, so we can choose $v(t) = 5e^t$ in equation (12), we get

$$||u||_{\bar{R}} \leq 5e$$
.

The Fourier series for the functions $f(x) = \sin(2x)$ and $g(x,t) = 5e^t \sin(2x)$ are

$$f(x) = \sum_{k=1}^{\infty} f_n \sin(nx), \ f_n = \begin{cases} 1 & n=2\\ 0 & n \neq 2. \end{cases}$$
 (44)

$$g(x,t) = \sum_{k=1}^{\infty} g_n(t)\sin(nx), \ g_n(t) = \begin{cases} 5e^t & n=2\\ 0 & n \neq 2. \end{cases}$$
 (45)

Thus, the solution of the initial-value problem (41-43) is

$$u(x,t) = T_2(t)\sin(2x),$$

where

$$T_2(t) = \frac{1}{M(\alpha) - 5(1 - \alpha)} \left(M(\alpha) E_{\alpha} [\omega_2 t^{\alpha}] + 5(1 - \alpha) (r_2(t) * e^t + r_2(t)) \right), \tag{46}$$

where $\omega_2 = \frac{-5\alpha}{M(\alpha) + 5(1-\alpha)}$, and

$$r_2(t) = E_{\alpha}[\omega_2 t^{\alpha}] + \frac{\alpha t^{\alpha-1}}{1 - \alpha \Gamma(\alpha)} * E_{\alpha}[\omega_2 t^{\alpha}].$$

6 Conclusion

In this paper, We derived weak maximum-minimum principles for general time-fractional diffusion operators involving the ABC-fractional derivative to prove the uniqueness and stability of the solution of the initial-boundary value problem associated with the general time-fractional operators and then we prove the existence of a weak solution. Future work will be extending our results to include a nonlinear source function to the equation and applying the method of upper and lower solutions to establish existence and uniqueness of nonlinear time-fractional diffusion problems. Other work could be considering different types of fractional derivatives on time and space.

References

- [1] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, Imperial College Press, London, 2010.
- [2] H. G. Sun, X. Hao, Y. Zhang and D. Baleanu, Relaxation and diffusion models with non-singular kernels, *Phys. A Stat. Mech. App.* **468**, 590-596 (2017).
- [3] Y. Luchko, Fractional Schrödinger equation for a particle moving in a potential well, J. Math. Phys. 54(1), 012111 (2013).
- [4] W. Uchaikin, Fractional derivatives for physicists and engineers. Volume I Background and Theory. Volume II Applications. Springer, Heidelberg, 2012.
- [5] S. Z. Radia and A. A. M. Arafa, Exact solutions of fractional-order biological population model, *Commun. Theor. Phy.* **52**(6), 992-996 (2009).
- [6] A. Atangana and D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, *J. Eng. Mech.* **143**(5), D4016005 (2017).
- [7] Y. Ding and H. Ye, A fractional-order differential equation model of HIV infection of CD4+T-cells, *Math. Comp. Model.* **50**(3-4), 386-392 (2009).
- [8] A. A. M. Arafa, S. Z. Rida and M. Khalil, A fractional-order model of HIV infection with drug therapy effect, *J. Egypt. Math. Soc.* **22**(3), 538-543 (2014).
- [9] H. A. A. El-Saka, Backward bifurcations in fractional-order vaccination models, J. Egypt. Math. Soc. 23(1), 49-55 (2015).
- [10] Y. Luchko, Some uniqueness and existence results for the initial-boundary value problems for the generalized time-fractional diffusion equation, *Comput. Math. Appl.* **59**(5), 1766–1772 (2010).
- [11] Y. Luchko, Boundary value problems for the generalized time-fractiona diffusion equation of distributed order, *Fract. Calc. Appl. Anal.* **12**, 409-422 (2009).
- [12] M. Al-Refai and Y. Luchko, Maximum principles for the fractional diffusion equations with the Riemann-Liouville fractional derivative and their applications, *Fract. Calc. Appl. Anal.* **17**(2), 483–498 (2014).
- [13] M. Al-Refai and Y. Luchko, Analysis of fractional diffusion equations of distributed order: Maximum principles and their applications, *Fract. Calc. Appl. Anal.* **36**(2), 123-133 (2015).
- [14] M. Al-Refai and Y. Luchko, Maximum principles for the multi-term time-fractional diffusion equations with the Riemann-Liouville fractional derivatives, *Appl. Math. Comput.* **257**, 40-51 (2015).
- [15] Y. Luchko and M. Yamamoto, General time-fractional diffusion equation: Some uniqueness and existence results for the initial-boundary-value problems, *Fract. Calc. Appl. Anal.* **19**(3), 676-695 (2016).
- [16] D. Baleanu, B. Ghanbari, J. H. Asad, A. Jajarmi and H. M. Pirouz, Planar system-masses in an equilateral triangle: numerical study within fractional calculus, *Comp. Model. Engin. Sci.* **124**(3), 953-968 (2020).
- [17] A. Jajarmi and D. Baleanu, A new iterative method for the numerical solution of high-order nonlinear fractional boundary value problems, *Frontiers in Phy.* **8**, 220 (2020).
- [18] S. S. Sajjadi, D. Baleanu, A. Jajarmi and H. M. Pirouz, A new adaptive synchronization and hyperchaos control of a biological snap oscillator, *Chaos Soliton, Fract.* **138**, 109919 (2020).
- [19] S. Ahmad, A. Ullah, A. Akgül and D. Baleanu, Analysis of the fractional tumour-immune-vitamins model with Mittag-Leffler kernel, *Res. Phy.* **19**, 103559 (2020).
- [20] G. A. Danish, M. Imran, M. Tahir, H. Waqas, M. I. Asjad, A. Akgül and D. Baleanu, Effects of non-linear thermal radiation and chemical reaction on time dependent flow of Williamson nano fluid with combine electrical MHD and activation energy, *J. Appl. Comput. Mech.*, (2020).
- [21] D. Baleanu and A. Jajarmi, On the fractional optimal control problems with a general derivative operator, *Asian J. Cont.*, 1-10 (2019).
- [22] A. Akgül, A. I. Aliyu, M. Inc, A. Yusuf and D. Baleanu, Approximate solutions to the conformable Rosenau-Hyman equation using the two-step Adomian decomposition method with Padé approximation, *Math. Meth. Appl. Sci.* **43**(13), 7632-7639 (2019).
- [23] E. K. Akgül, A. Akgül and D. Baleanu, Laplace transform method for economic models with constant proportional Caputo derivative, *Fract. Fraction.* **4**(3), 30 (2020).
- [24] A. Atangana and A. Akgül, On solutions of fractal fractional differential equations, Disc. Cont. Dyn. Sys. S.
- [25] A. Akgül, A novel method for a fractional derivative with non-local and non-singular kernel, *Chaos Solit. Fract.* **114**, 478-482, (2018).
- [26] A. Atangana and D. Baleanu, New fractional derivatives with non-local and non-singular kernel, *Theor. App. Heat Trans. Model. Therm. Sci.* **20**(2), 763-769 (2016).

- [27] M. Caputo and M. Fabrizio, A new definition of fractional derivative without singular kernel, *Prog. Fract.Differ. Appl.* **1**(2), 73-85 (2015).
- [28] A. Atangana and I. Koca, Chaos in a simple nonlinear system with Atangana-Baleanu derivatives with fractional order, *Chaos Solit. Fract.* **89**, 447-454 (2016).
- [29] A. Atangana and B. S. T. Alkahtani, Extension of the resistance, inductance, capacitance electrical circuit to fractional derivative without singular kernel, *Adv. Mech. Engin.* 7, 1-6 (2015).
- [30] T. Abdeljawad and D. Baleanu, On the fractional derivative with exponential kernel and their discrete versions, *Rep. Math. Phys.* **80**(1), 11-27 (2017).
- [31] T. Abdeljawad and D. Baleanu, Discrete fractional differences with nonsigular discrete Mittag-Leffler kernels, *Adv. Differ. Equ.* **2016**, 232 (2016).
- [32] J. F. Gomez-Aguila, Space-time fractional diffusion equation using a derivative with non-singular and regular kernel, *Physica A Stat. Mech. App.* **465**, 562-572 (2017).
- [33] M. Al-Refai and T. Abdeljawad, Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel, *Adv. Differ. Equ.* **2017**, 315 (2017).
- [34] M. Al-Refai, Comparaison principles for differential equations involving Caputo fractional derivative with Mittag-Leffler non-singular kernel, *Elect. J. Diff. Equ.* **36**, 1-10 (2018).
- [35] V. S. Vladimirov, Equations of mathematical physics, Nauka, Moscow, 1971.
- [36] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations, Prentice-Hall, Englewood Cliffs, 1967.