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Abstract: In this paper, we study a general time-fractional diffusion equation involving the Atangana-Baleanu derivative of Caputo
sense. First, we derive weak maximum-minimum principles to the associated fractional differential operators of the parabolic type, then
we apply these principles to establish uniqueness and stability results to initial-boundary value problem and to obtain a norm estimate of
the solution. For the existence of solution to the problem, we apply the eigenfunction expansion method to construct a formal solution,
which under certain conditions proved to be a weak solution.
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1 Introduction, motivation and preliminaries

Fractional diffusion models have been implemented to model various problems in several fields, such as physical sciences
[1,2,3,4,5], engineering [5,6], medicine [7,8,9] and biology [4]. Recently, many studies devoted to develop the theory
of fractional diffusion equations. For instance, Luchko in [10] considered a class of time-fractional diffusion equation
with Caputo fractional derivative. He established uniqueness and stability results by a maximum-principle technique.
The existence of solutions was proved using the eigenfunction expansion method. Analogous results were obtained in
[11] for the generalized time-fractional diffusion problem where the fractional derivative is of distributed order. The
applicability of maximum principle to linear and nonlinear fractional diffusion equations with the Riemann-Liouville
fractional derivative, multi-term and distributed order fractional derivatives of Riemann-Liouville type was first discussed
and proved by Al-Refai and Luchko in [12,13,14]. In [15], maximum-minimum principles were used to analyze a class
of fractional diffusion equations which generalizes the single and the multi-term time-fractional diffusion equations.

Fractional calculus is a branch of mathematical analysis that has wide applications in different fields in engineering
and science [16,17,18,19,20]. In these fields, various analytical and numerical methods including their applications have
been proposed in recent years [21,22,23,24,25]. Recently, two new types of non-local fractional derivatives with non
singular kernels have been developed, the Atangana-Baleanu derivative [26] and, the Caputo-Fabrizio derivative [27].
Many researchers have studied these new types and their applications [25,28,29,30,31,32]. In [33] Al-Refai and
Abdeljawad extended the results presented in [12] for a class of the time-fractional diffusion equations involving the
Caputo fractional derivative with exponential kernel, and recently Al-Refai in [34] analyzed the solutions of a class of
fractional differential equations involving Atangana-Baleanu fractional derivative of Caputo sense (ABC-fractional
derivative).

In this paper, we extend the results obtained in [33] for the general time-fractional diffusion operator involving the
ABC-fractional derivative. First, we derive new maximum-minimum principles for general time-fractional diffusion
operators over an open bounded domain Q x (0,7],2 C R", then we use these principles to prove uniqueness and
stability of the solutions to the initial-boundary value problems associated with the general time-fractional operators.
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Furthermore we derive some a priori norm estimates of these solutions. Finally, we propose a definition for the weak
solution and prove the existence of solutions for this class of general time-fractional diffusion problems.

The paper is organized as follows. First, we present some fundamental definitions and results about ABC-fractional
derivative. In Section 2, we derive new weak maximum-minimum principles for time-fractional diffusion operator of
parabolic type. In Section 3, we analyze the solutions of linear time-fractional diffusion equations using the obtained
maximum-minimum principles. The notion of the weak solution of the initial-boundary value problem for the general
time-fractional diffusion equation is introduced in Section 4 and some existence results are given. Finally, in Section 5 we
present some illustrated examples and concluding remarks.

Definition 1.Let u € H'(0,T),T > 0, the Atangana-Baleanu fractional derivative of Caputo sense of order o € (0,1) is
defined by

WACIN
@) = 1D [ ([l ) s m
where
_ o
7/01 1 7 (X,
A (@) is a normalization function satisfying
o
A (o) = (1 —05)4‘%7 AM0)=.2#(1)=1,

and Eq(-) is the Mittag-Leffler function.

Now we present the main properties of AB-fractional derivative of Caputo sense, then using these results we derive
new maximum-minimum principles for some general linear fractional operators based on this derivative.

Lemma 1./34] Letu € H' (0,T) attain its maximum at a point ty € [0,T]. Then for 0 < o0 < 1 we have

WA
(D) 10) 2 Yo L2 [t (utt) — u(0) 2 0. @
Lemma 2./34] Let A € R and 0 < a < 1. The fractional initial value problem

{ (GB°DRu)(t) = Au(t) +g(1), 0<1<T, 3
u(0) = uo,

has the unique solution in the fractional space H'(0,T) N€[0,T], if and only if Aug+ g(0) = 0. The solution of the
fractional initial value problem (3) is given in the form

u(t) = ///(a)‘//_/(;‘()] _ a)uoEa [at®) + ///(a()l_—lo(? — (r(t) xg'(t) + g(0)r (1)), @
where
b= gy ATy 0 Bl T 0 Bl

Lemma 3./34] Let p € €[0,T] where p(t) >0, t € [0,T], and g(t) is piecewise continuous function. Ifu € H'(0,T) is a
solution of

(0BEDu) (1) + p(t)u(t) = g(1), t>0, 0<a <1,

then

: (&)

%00,7]

| ullz0,r= max [u(t) |<

0<t<T
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2 Weak maximum-minimum principles

In this section, we derive weak maximum and minimum principles to the following general fractional differential operator
Py(u) = (*B€ oD®)u—L(u) +q(x)u, 0 < a < 1,1 € (0,T],x € Q,

where Q C R" is a bounded open domain with smooth boundary 92, ¢(x) > ¢ > 0,x € Q, and L is the uniformly elliptic

operator defined by
1 %u L du
= a;j(x,t)=——=——+Y bi(x,t)=—.
i:ZI ]2::1 T 0xi0x,) ,:21 T 0w

The coefficients a; ;, b;, satisfy the following conditions

a)a; j(-,1) € €1(Q), bi(-,1) € €(Q), Vi,j=1,2,...,n, Vt € (0,T].
b)aij(x,t) =aji(x,t) Vi,j=1,2,...,n, V(x,t) € 2 x(0,T].
c)There exist a positive constant ¢ > 0 which is independent of x and ¢ such that

Zla” X 0)EE; >uZ & V() e Qx[0,T] and (&, ..., &) € R
i

Theorem 1./ Weak maximum principle ]
Let u € C*(Q)NH'(0,T] satisfy Py(u) <0inR=Q x (0,T], then

max_u(x,t) < max {u(x,t),0}. (6)

(x,t)ER (x,)€IR

Proof Assume by contradiction that the result (6) is not true. Since u is continuous, then u attains a positive maximum
at a point (xo,%) € R with u(xg,t9) = M > 0. We have

du %u
a_xi|(JC0,l()) = 05 ax a | x() t()

and by virtue of the result in [36] we have

1 2%u
(Z _Zm,j(%ﬂm) <0, @)

i=1j=1

07 la.lfl

‘(xvf):(xo 10)

L du
+ (izlbi(x,t)a—xl) <0.
(

X0+10)

and hence

n o n aQu
Xolo ZZaUXt 8i8xj
i=1j=1 ‘(X(Jv’())

From Lemma 1, we have

(47 oD (u(x0,0) (1) 2 32
= Mt (1~ u(20.0)) > 0

Eq [~ Yatg] (u(x0,10) — u(x0,0))

which together with
q(x0)u(xo,f0) = q(xo)M >0,
implies that

Po(u

) s >0,
which is a contradiction to the assumption that Py (u) < 0.

=(xo,t0)

Theorem 2(Weak minimum principle).
Let u € C*(Q)NH'(0,T] satisfy Py(u) > 0in R = Q x (0,T], then

min_u(x,t) > min {u(x,t),0}. (8)

(x,t)eR (x,r)€dR

Proof By applying Theorem 1 to —u, we obtain the result (8).
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3 Linear fractional diffusion problem

We consider the initial-boundary value problem

(ABC oD*Vu = L(u) — q(x)u+g(x,1), (x,1) €R=Q x (0,T], 9)
u(x,0) = f(x), x€Q, (10)
u(x,t) =h(x,t), (x,t) €dQxI0,T]. (11)

Where g(x,t), f(x),h(x,t) are continues on R, Q and 9Q x [0, T], respectively.

Definition 2.A classical solution to the problem (9-11) is a function u € € (R)N€*(2) NH,(0,T) that satisfy the equation
(9) and the conditions (10-11), where

H:(0,T) = {u(x,-) € €'0,T],u(x,-) € H(0,T)}.
In the following we present uniqueness and stability results and norm estimate of solution to the problem (9-11).

Theorem 3.(Uniqueness) The fractional initial-boundary value problem (9-11) posses at most one classical solution .

Proof Assume that the problem (9-11) has two solutions u,u;, and let w = u; — u;. Then it holds that

(ABC ODta)W = L(W_) - q(X)W, ()C,t) €R,
w(x,0)=0, xe€Q,
w(x,t) =0, (x,t) €d x(0,T].

Applying the weak maximum principle in Theorem 1 we have

w(x,t) <0, (x,t) €R.
The above statements hold true for —w(x,¢), and thus

—w(x,1) <0, (x,1) ER.
Hence w(x,t) = 0, V(x,) € R, which complete the proof.

Theorem 4.(Stability) Let u(x,t) and uy(x,t) be two classical solutions to the initial-boundary value problem (9) that
satisfy the boundary conditions (11) and the initial conditions

ul(x50) = fi ()C), uz(x,O) :fZ(x)v Vre Q.
Then

[RZE m:mkaqu(x,t)I <l Ai=Fllea) -
Proof Let w(x,r) = u; (x,t) — up(x,t). Then w(x,?) satisfies
ABC ODtaW = L(W) - q(X)W, ()Evt) €R,
w(x,0) = fi(x) - f2(x), x€Q
w(x,7) =0, (x,7) €9Q x(0,T].
By virtue of the weak maximum principle, we have
max w(x,t) < max{fi(x) — f»(x),0}.
R OR
Applying analogue statements for —w(x,7), we have
max {—w(x,7)} < max{f,(x) - fi(x),0}.

Thus

Iwller g = max|w(x, )] < max|fo(x) = /@) = |lfi = Lalla) W
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Theorem 5.Let u(x,t) be a classical solution to the time-fractional initial boundary value problem (9-11) with g(x,0) = 0.
Let v(t) € C[0,T] be such that

g )| <v(1), (x.1) €R, v(0) =0,
and y(t) be the unique solution of

(ABCoD%y)(1) = —q(x)y(t) +v(t), t >0, 0 < o < 1,g(x) > ¢ >0, (12)
y(0) = 0. (13)
Then it holds that
1
| u[lgr)< #((0.7)) +max{||f (@) I 7 llz@axp.m) +- ||V|%([0,T])70}- (14)

Proof From Lemma 2 the initial-value problem (12) has a unique solution y(¢), and from the inequality (5) the solution
y(t) is bounded.
Let w(x,t) = u(x,t) —y(t), then

Po(w(x,1)) = —L(w(x,1)) +q(0)w(x,1) + *5 oDF'w(x,1)
—L(ulx,1)) + ( Ju(x,1) + 45 oDffu — A5 oD y(r) — q(x)y(r)
= g(x1) —v(t) <

The initial and boundary conditions of w(x,t) are
W(x,0) = £(x)—¥(0) = f(x), WxeD,
w(x,t) = h(x,t) —y(t), Y(x,t) € Q2 x[0,T].
Using the weak maximum principle, we have

(x t) < max {f( (x,t)—y(t),O},

(x,t)€dR

thus
u(x,r) < y(t)+ max {f(x),h(x,1)—y(t),0}. (15)

(x,t)edR
Let w(x,t) = —u(x,r) — y(¢), then w(x,t) satisfies
Po(w(x,1)) = —L(w(x J))HI( )W+ APC oDt w

= L(u(x,1)) — q(x)u(x,t) — *5€ oDFu— *BC oDy (1) — q(x)y(1)
= —g(x, t) V(1) <0
and it holds that

w(x,0) = —f(x) —y(0) = —f(x), Vx€Q,
w(x,1) = —h(x,t) —y(t), V(x,7) € Q2 x[0,T].
Applying the weak maximum principle, we have

w(xr) < max {—f(x),—h(x,1) =y(t),0},

(x,)€0R

thus
—u(x,1) <y(r)+ max {—f(x),—h(x,r) = y(t),0}. (16)

(x.t)€0R
Combining equations (15) and (16) we get

|u oy | i llz@axom) + 1y (o0}

By inequality (5), we have

|v(®) | 1 1
> < — < — , 17
|| Yllg(o,m)> [g[lél);] {|q(x) |} C]( )[Zf(‘)'v; |V( ) |— c H Vile(o,1])> (17
which implies that
[ uller= - || v [l%(o0,1)) +max{|f|% A lg@axpo,m) + | %(0.1)> 0}

and this completes the proof.ll
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Corollary 1.Let u be a classical solution to the fractional initial value problem (9-11) with g(x,t) = 0. Then it hold that

|

“R)< maX{Hf (@) |l h %(3Q><[0,T])a0}- (18)

Proof Since g(x,t) =0, we can choose v(r) = 0, and thus by virtue of the result in (14), we obtain the result in
inequality (18).

4 Weak solution

In this section, we prove the existence of the unique solution to the initial-boundary value problem (9-11) under certain
conditions. First, we define the concept of the weak solution in the sense of Vladimirov [35].

Definition 3.Ler g, € %(RT),fn € €(Q) and hy, € €(dQ x [0,T]),n = 1,2,.... and let v, € €([0,T]) be such that
lgn(x,8)| < wn(t), V(x,t) € R and suppose that these sequences of functions satisfy the following conditions:

1.

¢Ry)—0asn—oo, | fu—f

|l gn—g
| hy—h

%(Q)—>O as n— oo,

gaxor)— 0 as n— oo, [ vy =vllgr)—0 as n— oo,

and let y,(t) be the unique solution of

(P oDPya) (1) = —q(X)yu(t) +valt), >0, 0< <1,
ya(0) =0,
foralln=1,2,..., such that y,(t) satisfy

| yn =¥ llg o) —>0 as n— oo.

2.For any n = 1,2, ... there exist a classical solution u, = u,(x,t) to the initial-boundary value problem
ABC oDfun = L(un) — q_(x)“n +gn(x,1), (x,1) ER,
un(x,0) = fu(x), x€Q, (19)
un(x,t) = hy(x,2), (x,2) €92 x[0,T],

then the function u € € (R) defined by

||y —u g@®— 0 as n— oo, (20)

is called a weak solution to the initial-boundary value problem (9-11).

In the following we prove that there always exist a function u € % (R) that satisfies the property (20). To do this, we show
that the sequences u,,n = 1,2, ... is uniformly convergent in R. Applying the estimate (14) to the functions u,, and u, that
are the classical solutions to the initial - boundary value problems (19) we immediately obtain the inequality

1
o,7) Tmax{|| fp = fq lla: 1l p — g llaax(0.7] +; [ vp—vq llo,7}- (21)

1
(| up —uq l|lz< - [ vp—vq |
This mean that u,,n = 1,2, ... is Cauchy sequences in ¢’ (R7), and since it is Banach space then u,, converges to a function
uc (K(RT)
Moreover, the estimates in (14) and (18) obtained in Theorem 5 and Corollary 1 for the classical solution of the problem
(9)-(11) remain valid for the weak solution, too. That is,

1
€(9Qx[0,T)) +; ([ vn

1
CRS [ vn #(@) | I

| un %(0,7]) +max { | fu %([o,r])yo} : (22)

is valid for all n = 1,2,.... Since || u, —u
and v,.
The estimate (18) for the weak solution is used to prove the following uniqueness theorem.

¢@®— 0 as n— oo, then || uy [[g— u[|g as n — co. Similarly, for fy, /1,

Theorem 6.(Uniqueness of the weak solution) The problem (9-11) possesses at most one weak solution in the sense of
Definition 3
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Proof Assume that the problem (9-11) has two weak solutions u;,u;, and let w = u; — up, then

ABC OD;XW:L(W)__q(x)Wv (X,t) ER,
w(x,0) =0, xeQ, (23)
w(x,t) =0, (x,¢)€dQx[0,T].

Furthermore, w satisfies the estimation (18)
Iw llz< max {|| f ll@. [l & l90x[0,r);0} = 0. (24)

thus w(x,r) =0 in R.
In the rest of this section we prove the existence of a weak solution to the initial-boundary-value problem (9-11) under
some conditions. We restrict ourselves to the case where the operator L is in divergence form, i.e., we choose

" daji(x,t) .
bj(X,t):Z#’ ‘]:1,---7117

i=1

u

= i _x <i ai’j(XJ)a_x]')

ABC D%y = IL(u) +8(x,1), (x,1) €ER,

u(x,0)=f(x), x€Q (25)
u(x,t) =0, (x,r)€dRx(0,T],

where
L(u) = L(u) — g(x)u, (26)

and we suppose that the conditions
aij(,1) € CH(RQ), Lj=1,n, g€ C(RQ), q(x) 2> 0x€ L, 27)

hold true. Now we show the existence of a solution to the initial-boundary value problem (25) by using the eigenfunction
expansion method. Let
u(x,t) =X(x)T(t), (x,7) ER,

and substitute in the homogenous equation of the problem (25), we get

ABCODIOCT _ L(X) —)
Tt — Xkx) 7

where A being a constant which does not depend on the variables ¢ and x. Then the eigenvalue problem associated with
(25) is given by

{ L(X)=-L(X)+q(x)X(x) =AX(x), x € Q, (28)
X(x)=0, x€0dQ.

The conditions (27) implies that the operator L is a positive definite and self adjoint operator. According to the theory
of the eigenvalue problems for self adjoint operators [35], the eigenvalue problem (28) has a counted number of the positive
eigenvalues 0 < A; < A, < ... with finite multiplicity. Any function f € .#, can be represented thought its Fourier series
in the form

fx) = i < [ Xk > Xi(x), (29)

k=1
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where < f,X; > denotes the standard scalar product in L? () and X; € .#, are the eigenfunctions that correspond to the
eigenvalues Ay, that is,
L(Xx) = —L(Xk) + q(x)Xi(x) = LXp(x), k= 1,2,... (30)

and
My ={f € CHRQ),flag =0 and L(f) € L*(Q)}.

Suppose that the function g(+,¢) € .41, for any ¢ € (0,T], then g can be represented in the form of a uniformly convergent
series

glx,1) = Z ()X (x) where gi(t) =< g,X; >= /Qg(x,t)Xk(x)dx. 31
k=1
We write the solution of the problem (25) in the form of a Fourier series
u(x,t) =Y T()Xe(x), Ti(t) =< u(x,r),X(x) >, (32)
k=1
with the initial condition X
T (0) = (u(x,0),Xk) =< f(x), X >= /!2 F)Xk(x)dx = fi. (33)

Substituting the representation (32) into the equation of the IBVP (25), and using (30) we get the following uncoupled
system of ordinary fractional differential equations with AB- fractional derivative of Caputo sense

(ABC oD ) (1) + AT (1) = g(t), 1€ (0,7, (34)
T(0) = fi, k=1,2,...

and this initial-value problem has a unique solution for all k = 1,2, ...

Ti(t) = M) = ik(l _p (M(@) fiEalaxt®] + (1 —a)(ri(r) * g (1) + g(0)rc (1)) , (35
where oy, = W, and |
re(t) = Eolont®) + #F(a) + Eq[t].

Thus the formal solution of the initial-boundary value problem (25) can be written in the form

u(x,t) = Y Ti(t)Xp(x), (36)

il nok

where T () is defined by (35).

Theorem 7.The formal solution (36) of the initial-boundary value problem (25) is a weak solution.
Proof: Let

up(x,t) = Xn: T (1) X (%),
k=1

be a sequence of partial sums of the Fourier series (36), then u,,,n = 1,2, ... is a classical solution of the initial-boundary-
value problem (25), and from the inequality (5) we have

8kl
7)0,1)< My = max 80|

T;
I 7 €0, 1] A

since Ay — o0 as k — o, then the sequence %k ,k=1,2,... is bounded, and the Fourier series

Y (0% ().
k=1

converges. By the Weierstrass M-test we conclude that the sequence u,,,n = 1,2... converges absolutely and uniformly
to (36).
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S Illustrated examples

Example 1.Consider the initial-boundary value problem

8BCD% = uy — u+1sin(x), (0,7) x (0,7, (37
u(x,0)=0, xe€l0,x] (38)
u(0,t) =u(m,t)=0. t€[0,T] (39)
We have, |g(x,t)| = |tsin(x)| <7,0 < x < 7, so we can choose v(¢) =t in Eq. (12). Then
lullg= 2.

The eigenvalues and the eigenfunctions of the eigenvalue problem (28) associated with (37-39) are
A =n*+1, X, = sin(nx).
The Fourier series for the function g(x,) = 7sin(x) is

t n=1

gn(t)sin(nx), gn(t) = {O w1 (40)

ngki

g(xvt) =
k

1

Thus, the solution of the initial-value problem (37-39) is
u(x,t) = T (t) sin(x)

S el /’E (® s“]—l—ﬂ*E [o15%ds | sin(x)
T M) —2(1—a) [Jo ! 1—al(a) ™ ’
Wherewlim.

Example 2.Consider the initial-boundary value problem

07 Dffu = e —u+5¢'sin(2x), (0,7) x (0,1], @1
u(x,0) =sin(2x), x€[0,x] 42)
u(0,6) =u(1,t)=0. 1 €[0,T] (43)

We have,

g(x,r)| = |5€ sin(2x)| < 5¢',0 < x < 7, so we can choose v(r) = 5¢' in equation (12), we get
[ u[z< Se.

The Fourier series for the functions f(x) = sin(2x) and g(x,#) = 5¢' sin(2x) are

1 n=2
s @

F0) =Y fusin(n), fo
k=1

s:0) = X gul0)sin(m), (1) = {?f " (45)
Thus, the solution of the initial-value problem (41-43) is
u(x,t) = Tr(t) sin(2x),
where :
Tr(t) = M) =5(1—a) (M(Oc)Ea[a)zt“] +5(1 —a)(ra(t) * € + rz(t))) , (46)
where @, = W, and
ra(t) = Eq[ont*] + #F(la) * Eq[ant®].
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6 Conclusion

In this paper, We derived weak maximum-minimum principles for general time-fractional diffusion operators involving
the ABC-fractional derivative to prove the uniqueness and stability of the solution of the initial-boundary value problem
associated with the general time-fractional operators and then we prove the existence of a weak solution. Future work
will be extending our results to include a nonlinear source function to the equation and applying the method of upper and
lower solutions to establish existence and uniqueness of nonlinear time-fractional diffusion problems. Other work could
be considering different types of fractional derivatives on time and space.
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